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Fock showed that the virial theorem is automatically
satisfied for any quantum-mechanical system whose

potential is a homogenous function of the coordinates if a
scale factor is introduced into the approximate charge
distribution and varied so as to give the lowest energy.
In this paper, we extend Fock's treatment to problems
involving molecules or metals where it is customary to
treat the internuclear separations as parameters. The
introduction and variation of the scale factor requires
very little additional work and results in considerable
improvement in the physical properties. The Heitler-
London-Sugiura charge distribution for molecular hydrogen
has a mean potential energy, V= —52.98 ev; a mean
kinetic energy, T=22.79 ev; and a total energy, E= V+ T
= —30.20 ev. When the scale factor is inserted into the
eigenfunction and varied to form the Wang function:
E= —T= —,

' V= —30.83 ev and the virial theorem is

satisfied. The total energy is improved by only 0.63 ev
but the potential energy is improved by 8.67 ev and the
kinetic energy by 8.04 ev. The eigenfunction for the
diatomic hydrogen ion, += NLexp (—r„)+exp (—rb) j
where N is the normalization factor and r, and rb are the
distances of the electrons to nuclei a and b, respectively,
is another example where the scale factor results in striking
improvement in the mean potential and kinetic energies.
The James and Coolidge function for molecular hydrogen
almost satisfies the virial theorem since -';V= —31.680 ev
and —T= —31.588 ev. When the scale factor, s = 1.0029,
is introduced, we obtain F=-', V= —T= —31.772 ev. If
the mean potential and kinetic energies, V& and T& re-

spectively, are known for one nuclear separation, Rp, then
on the introduction and variation of the scale factor, l

lower energy is obtained for the internuclear separation,
R = —2RpTy/ Vy, for which E= —T= 2 V= —

4 VP/Ty.

tions of the electrons from the nuclei and from
each other. There is no serious loss in generality
as a result of this condition since any approxi-
mate eigenfunction can be put into this form by
replacing the internuclear distances, R, in the
eigenfunction by Eo, the values of the inter-
nuclear separations for a particular configuration.
Let 4'&(r, R) be an approximate eigenfunction
satisfying this condition where r is symbolic for
the electronic coordinates. The scale factor, s,
is introduced into the charge distribution in
such a way that each electronic distance is
multiplied by s whilst the internuclear separa-
tions remain unchanged. Thus:

A FEW years ago, Professor Slater' pointed
out that the virial theorem applies to

molecular systems and that it offers a new

principle to use in obtaining satisfactory charge
distributions. In this paper, we develop a simple
method for modifying the approximate charge
distributions to satisfy the virial theorem and
we find that considerable improvement in the
molecular properties results. Fock' showed that
the virial theorem is automatically satisfied for
any quantum mechanical system whose potential
is a homogenous function of the coordinates if a
scale factor is introduced into the approximate
charge distribution and varied so as to give the
lowest energy. The form which Fock developed
is useful for atomic problems, but his theorem
requires extension for problems involving mole
cules or metals where it is customary to trea
the internuclear separations as parameters.

In this paper, we consider only those approxi
mate molecular or metallic eigenfunctions fo
the ground state which do not involve th
internuclear distances explicitly but only im

plicitly through the electronic coordinates. Thes
eigenfunctions are functions only of the separa

%,(r, R) =s""4'&(sr, R).

' J. C. Slater, J. Chem. Phys. 1, 687 (1933).
2 V. Fock, Zeits. f. Physik 63, 855 (1930).

Here n is the number of electrons in the system.
The subscripts s and 1 indicate that the eigen-
functions are for the scale factors s and 1,
respectively. The effect of s is to shrink the
electronic charge distribution closer to the nuclei

just as though these nuclei increased their
effective charge by this factor. The approximate
eigenfunctions with the scale factors are related
to the approximate eigenfunctions without the
scale factors but for which the internuclear
separations are expanded by s. For each elec-
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O, (r, R) =s&'"0'r(r', sR). (2)

tronic configuration, r, with the internuclear
separations, R, there is a corresponding geo-
metrically similar configuration for the nuclear
separations, sR, such that the electronic separa-
tions are r' =sr. Because of the assumption which

we have made as to the functional form of Qf: (BE,.(R) y d'I'&(sR) d V&(sR)
O=i —

i
=s s' +s

dR ) . d(sR) d(sR)
(9)

For the best value of R we have the additional
condition that the energy be stationary with
respect to variations in the internuclear sepa-
rations, R:

Combining (8) and (9) we see that for the best
The mean value of the (electronics kinetic

value of the internuclear distances, the best
energy, T,jRj, is given by the relation:

value of s is

8m~m& electrons

s = —-',- V, (sR)/T, (sR),

for which the lowest value for the total energy is

Now using (2) and making the substitution of
variables r'=sr, it follows that: E,(R) = —-', Ur(sR)'/Tg(sR).

T, (R) = s'Ti(sR). (4) The virial theorem is satisfied by this charge
distribution since:

The mean potential energy of the system, V, (R),
is given by the relation: E,(R) = —T,(R) =-,' U, (R), (12)

U.,(R) = ~+,(r, R)[U„+U„„+U„]O.(r, R)dr, .

where

fIee P e /riji fIetl,
electron

pMI's

e'/r. ..
electrons i

and nuclei, n

/er. e
nuclear

pairs

Again using (2) and making the substitution
r'=sr, it follows that:

when (10) is substituted into (4) and (6).
Therefore we have the general theorem: If the

approximate charge distribution is expanded or
contracted, the size which corresponds to the lowest

energy gives the proper ratio between potential and
kinetic energy.

302,

3.0

U, (R) =sU, (sR). (6)

Th'e total energy of the molecule, E,(R), is of
course the sum of the mean potential and
kinetic energies:

E,(R) = T,(R)+ V, (R) =s'Ti(sR)+s U&(sR). (7)

Usually there will be values of s different from

unity for which the energy of the system is

improved. The best value of s for a particular
nuclear configuration can be found from the
condition that the energy is stationary for this
value of the scale factor:

1,6

l.2.

(BE,(R) )0=
i i

=2sT&(sR)+ Vi(sR)
Bs

d Tr(sR) d U&(sR)
+R s'- +s

d(sR)

0.8
I l ~ I
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FrG. i. The energy of H& as a function of R and s.
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A simple example will illustrate the dependence
of the molecular energy on the scale factor.
Consider the Heitler-London-Sugiura' 4 eigen-
function for molecular hydrogen:

&T~&(r, R) =Efexp (—r, r —rs2)

+exp (—r, 2
—rb|) j. (13)

Here N is the normalizing factor; r, &, r~i, r.2, r~~

are the separations of electron 1 from nuclei e
and b and similarly for electron 2. For the
lowest energy, the hydrogen nuclei are separated
a distance of R=1.52ao where ao is the radius
of the first Bohr orbit. Here:

Zq(R) = —30.20 ev,
—Tl(R) = —22.79,

—,
' Vg(R) = —26.49.

These three quantities should be equal. Since
they are not equal, the virial theorem is not
satisfied in this case. This situation can be
remedied by introducing the scale factor s into
the eigenfunction to make this Heitler-London-
Sugiura function into a Wang' eigenfunction.

4,(r, R) =N'Lexp ( sr., srqm)— —
+exp ( sr, ~ srb~) j —(14)—

Here N' is the new normalizing factor. Fig. 1

shows the energy as a function of both s and R.
The lowest energy is for the point s=1.166 and
R = 1.41@0and this point is indicated in the figure
by the small circle. For this configuration:

B,(R) = —T,(R) =—,'V, (R) = —30.83 ev.

Thus the variation of the scale factor has
improved the total energy by only 0.63 ev but
the mean kinetic energy is improved by 8.04 ev
and the mean potential energy by 8.67 ev. This
large change in potential and kinetic energies
is an indication of the improvement to be
expected in the other molecular properties.

The improvement in the potential and kinetic
energies for the diatomic hydrogen ion, H2+, will
show that the above is not an exceptional case.
Consider as eigenfunction for H2+ the simple
sum of atomic functions which Pauli"' used in

'Heitler and London, Zeits. f. Physik 44, 455 (19 7).' Y. Sugiura, Zeits. f. Physik 45, 484 (1927).'S. C. Wang, Phys. Rev. 31, 579 (1928).
8 Pauli, Ann. d. Physik 68, 177 (1922); also the Disserta-

tion of K. F. Niessen, Utrecht University (1922).

where s = 1.238.

Here the improvement in the total energy is
only 0.60 ev but there is a decrease of 6.12 ev
in the potential energy and an increase of 5.53
ev in .the kinetic energy.

In many molecular problems the computation
of the energy is very laborious for each nuclear
con figuration. For these cases it would be
difficult to construct the whole surface for energy
as a function of s and R. However, knowing the
mean potential and kinetic energy for just one
nuclear configuration, Ro, we can use Eq. (7)
to determine the energy along the rectangular
hyperbola, sR=Rp, in the s, R diagram. Along
this hyperbola the lowest energy is given for
s= —-', U, (RO)/T~(RO) at the internuclear sepa-
ration R=RO/s. For this value of s the virial
theorem holds and

E,(R) = —T,(R) =—', U. (R)
= —-,'- Vg(RO)'/Tj(RD). (16)

This Z, (R) is always lower than Z&(RO) but it is
not necessarily lower than E&(R) or E,'(R) where
s' is some other value of the scale factor and R
is the same internuclear separations. If Ro is
chosen as the best separation of the nuclei when
the scale factor is unity, the point of lowest
energy along the hyperbola will come close to
but in general will not coincide with the con-
figuration having both the best R and the best s.
This is because the term in brackets in Eq. (8)
does not vanish. Thus for the Wang eigen-
function for H2 the best value of R is 1.52eo
when s=i.00. Following along the hyperbola
sR=1.52 (see Fig. 1) we find the lowest energy

Finkelstein and Horowitz, Zeits. f. Physik 48, 118
(1928).

classical quantum mechanics:

%~(r, R) =ÃLexp (—r,~)+exp (—rq&)$. (15)

For the best internuclear separation

E,i(R) = —15.30 ev,
—Tg(R) = —10.37 ev,
q V, (R) = —12.84 ev,

Now introducing the scale factor to form the
Finkelstein and Horowitz' function:

E,(R) = —T,(R) = ~~ U, (R) = —15.90 ev
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for s=1.162 at which E,(R) = —30.79 ev and
R = 1.30cp. This is close to the best point on
the entire energy surface for which it will be
remembered that s=1.166, Z, (R) = —30.83 ev,
and R=1.41ao.

To show how the proper ratio of the potential
to the kinetic energy can be obtained easily in a
complicated case, we consider the thirteen term
eigenfunction of James and Coolidge' for H2.
Here:

Z~(R) = —31.772 ev,
—T~(R) = —31.588 ev,

-', Ug(R) = —31.680 ev.

This charge distribution is truly excellent but
the physical properties of even this eigenfunction
can be improved by the introduction of the scale
factor, s=1.0029, for which

Z, (R) = —T,(R) = y U, (R) = —31.772 ev.

The improvement in the total energy is only
0.0003 ev and hence negligible, but the mean
potential and the mean kinetic energies are each
improved by 0.184 ev.

N. Rosen' has discussed the variation of the
best value of the scale factor with internuclear
distance. For large separations s is less than
unity so that the charge distributions are ex-
panded. This is due of course to the charges
being pulled towards the nucleus of the ap-
proaching atom. For smaller separations s is
greater than unity and the charges are con-
tracted. If the nuclei coalesce s assumes a finite

James and Coolidge, J. Chem. Phys. 1, 825 (1933).' N. Rosen, Phys. Rev. 38, 2099 (1931).

value larger than for the separated atoms. This
variation of s with internuclear separation makes
it dificult to determine the energy as a function
of the internuclear separations using the best
value of s for each separation. Because of this
difficulty, Wang computed the fundamental
vibration frequency of H2 on the assumption
that s remains equal to 1.166 over the whole
range of internuclear separations. A study of
Fig. 1 will show that the energy as a function of
R varies much more rapidly along the line
s = 1.166 than along the curve of best values of s.
Therefore a more accurate calculation of the
fundamental vibration frequency would decrease
Wang's value of 4900 cm ' to a value more in
agreement with the experimental observation of
4260 cm '.

From Eq. (2), it follows that any molecular
property which is proportional to the gth power
of the electronic coordinates is multiplied by s &

when the scale factor is introduced. Thus we
have shown that very little additional work is
required to introduce a scale factor into a
molecular or metallic charge distribution and
the physical properties of the system are con-
siderably improved thereby.
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