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before a promising term array can be proven
fortuitous. In fact, many fine looking arrays,
involving hundreds of lines, were obtained only
to be discarded later as entirely fortuitous, As
there are many possible intervals between the
known high states that one can start with in the
search for the lower metastable states, there are
many intervals to eliminate. So much can be
obtained by chance alone that the real is hidden
by the false.

A glance at the theoretical possible terms
from the two electron configurations in question
will show the cause of the great line density
from this electron transition.

There will be 114 states from 4f'('F) 5d6s

including
" ' ' "'(IIGFDP)

and 334 high states from 4f'('F) 5d6p including
'" ' ' ""(IIIG, IIGF, GFD, FDP, DPS).

The intense lines from the transition 4f'5d6s
4f—'6s6p will be in the inaccessible infrared.
The writer wishes to thank the National

Research Council for the Fellowship that made
this research possible, the Mount Wilson Ob-
servatory of the Carnegie Institution of Wash-
ington, and the Physics Departments of the
University of California and the Massachusetts
Institute of Technology for placing their re-
sources at his disposal ~
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It is shown that the waves in a hollow conducting tube described by Carson and by Barrow
may be represented as semi-standing waves due to the superposition of plane waves with
normal phase velocity c/(fop)& reflected back and forth from one side of the tube to the other.
It is also shown that certain types of waves can be transmitted without attenuation in tubes of
triangular, rectangular and hexagonal cross section.

HE theory of the propagation of electro-
magnetic waves in cylindrical conducting

tubes of circular cross section has been presented
by Carson, Mead and Schelkunoff' and inde-
pendently by Barrow, ' and has been verified
experimentally by Southworth. ' While the math-
ematical analysis in these papers pursues the
most direct and obvious method of attack, it fails
to reveal the details of the physical process
involved in the transmission of waves in the
interior of a hollow tube. Fundamentally the"E"and "II"types of wave described by Carson
and by Barrow are the result of the superposition
of an infinite number of elementary plane waves
traveling at an angle with the axis of the tube and
having the normal phase velocity c/(~p) l charac-
teristic of the permittivity a and permeability p

~ J. R. Carson, S. P. Mead and S. A. SchelkunoE, Bell
System Tech. J. 15, 310 (1936).' W. L. Barrow, Proc. I. R. E. 24, 1298 (1936).' G. C. Southworth, Bell System Tech. J. 15, 284 (1936).

of the homogeneous isotropic nonconducting
medium filling the interior of the tubular con-
ductor, these waves being refiected back and
forth from one side of the tube to the other. The
two types of wave differ only in the state of
polarization of the component elementary plane
waves to whose superposition they are due. The
elementary plane wave with normal phase
velocity is more fundamental physically than the
waves discussed by Carson and by Barrow for the
reason that the Poynting Aux is everywhere in the
direction of wave propagation.

It is the object of this communication to show
. that the superposition of the specified plane
waves yields the waves described by Carson and
by Barrow. Incidentally we shall discuss the
possibility of the propagation of electromagnetic
waves in cylindrical conducting tubes of polygonal
cross section. In all cases we shall limit ourselves
to tubes which are perfectly conducting, using
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the symbol u for the normal phase velocity
c/(~t ) '.

(1.) PARALLL~'L PLANES

First consider waves propagated in the X
direction in a homogeneous isotropic medium
between two conducting planes y =0 and y =a.
Solutions of the field equations satisfying the
boundary conditions are

E=jA cos (lx uit), l=—a&/u;

E=A {im sin my cos (lx —cut)

—jl cos nzy sin (lx cut) }—, (2—1)

E =B{km sin nzy cos (lx —~t) }, (2-2)

zn = kzr/a, 1'+ z-'n=(u'-/ '-u,

where k is an integer; and

E=A {i(m'+n') sin my sin ns cos (lx ~t)—
Jlm—cos my sin ns sin (lx cut)—

—knl sin my cos ns sin (lx ~t) }, (3——1)

E=B{ jn cos my sin —nz cos (lx cot)—
+km sin my cos ns cos (lx cut) }, (3——2)

nz = kzr/a, l'+m'+n'= cu'/uz

As (1) represents a plane wave with normal phase
velocity v no special comment is needed.

Waves (2—1) and (2—2) are transmitted only
for frequencies greater than c/2a(~tz) l. In Carson' s
notation (2—1) is an "B" wave and (2—2) an
''Ji" wave. The first may be written in the form

E=-',A {(im —jl) sin (lx+my —cut)

—(im+jl) sin (lx my cut) },—(4——1)

showing that it is due to the superposition of two
plane waves with normal phase velocity u

traveling in the XY plane in directions making
angles with the X axis whose tangents are
&m/l. Each component elementary wave is
polarized with the electric vector in the plane
determined by the direction of propagation and
the X axis. Similarly (2—2) may be resolved into .

the two plane waves

E=—,'B{km sin (lx+my uit)—
—km sin (lx my cut) } (4——2)—

with normal phase velocity v traveling in the XY
plane in directions making angles with the X

axis whose tangents are +m/l. In this case the
component elementary waves are polarized with
the electric vector perpendicular to the plane
determined by the direction of propagation and
the X axis. The physical process underlying the
propagation of these waves, therefore, consists in
the back and forth reflection from the two
conducting planes of plane waves traveling at an
angle with the X axis with the normal phase
velocity u. The phase velocity ru/l along the X
axis of the resultant wave represents the recipro-
cal of the component in this direction of the wave
slowness of either of the component elementary
waves, and for this reason it is greater than u. As
the limiting frequency is approached the angles
which the directions of propagation of the
component waves make with the X axis approach
&zr/2, and consequently these waves are re-
flected back and forth between the two con-
ducting planes without progressing in the X
direction. Hence the velocity of propagation of
the resultant wave becomes infinite.

Waves (3—1) and (3—2) permit the introduction
of the conducting planes s =0, z = b, with
n=k'zr/b, in addition to the conducting planes
y=0, y=a, with m=kzr/a. In the first we have an

wave and in the second an "H" wave
propagated in a conducting tube of rectangular
cross section. Excepting the special cases where
m or n is equal to zero, these waves are trans-
mitted only for frequencies greater than
(a'+b')'c/2ab(Ktz) l. If n =0, (3—2) becomes

E=B{km sin my cos (lx —&ot) },

which is a wave identical with (2—2) having the
limiting frequency c/2a(~tz)l independent of b,

and if m =0, we have the analogous wave

E= —B{jnsin ns cos (lx —uit) }

with the limiting frequency c/2b(xzz)
i inde-

pendent of a. The first of these waves satisfies the
boundary conditions for any s dimension of the
rectangular tube, and the second for any y
dimension. In a manner similar to the method
employed in the cases of (2—1) and (2—2), it is
easily shown that each of the waves (3—1) and

(3—2) can be resolved into four elementary plane
waves traveling with the normal phase velocity u

in directions making equal angles with the X
axis. These waves, however, differ from those
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previously discussed in that they do not travel,
in general, in directions lying in planes de-
termined by the normals to the conducting
planes and the X axis.

and the recurrence formulas

(2n/mr) J„(mr) =J„ I(mr)+ J„+,(mr), (6—1)

2J„'(mr) =J„~(mr) J„—+&(mr) (6.—2)

(2) CYLINDRICAL TUBE OF CIRCUI.AR

CROSS SECTION

We shall now show that the Carson-Barrow
waves, like the simpler waves just described, are
due to the superposition of plane waves traveling
with normal phase velocity U =c/(att) I at an angle
with the axis of the tube and refl.ected back and
forth one side to the other. As the normal
component of the wave slowness of each ele-
mentary plane wave is reversed on reflection
we shall save labor by taking as primary waves
those specified by (2—1) and (2—2) instead of the
pairs (4—1) and (4—2) of elementary plane waves
into which they may be resolved. We shall need
the expansions'

sin (mr cos 8) =2J&(mr) cos 8 2J,(mr—) cos 38

+2J, (mr) cos 58—,(5—1)

cos (mr cos 8) = Jo(mr) —2J~(mr) cos 28

+2J4(mr) cos 48—,(5—2)

Take the axis of the tube as X axis and let the
circle in Fig. 1 with center at 0 represent a cross
section of the tube. Let the Y axis have the
direction of the projection on this cross section
of the velocity of propagation of an elementary
plane wave. A point P lying on a wave front Afar
is located by the cylindrical coordinates x, r, p.

First consider the "Z" waves. The complete
solution of the electromagnetic equations of the
form (2—1) is

E,= m[ a&cos my a2 sin my]—cos (lx ut), (—7—1)

E„=lfaI. sin my+am cos my] sin (tx —cut), (7—2)

where a& and a2 are independent arbitrary con-
stants. This solution is obtained immediately
from (2—1) by replacing y by y —8. Now let the
number of such primary plane waves propagated
in the range of 0 between 0 and 8+d0 be
cos n(8+&)d8 where n is an integer. Then, as
y=r cos 0, the X component of the resultant
amplitude at: P is

2Ir

A =maI cos (mr cos 8) {cosn8 cos nP sin n—8 sin ng}d8

,2Ir

—ma2 ( sin (mr cos 8) {cosn8 cos ng —sin n8 sin ng}d8
0

(—1)"t227rmaIJ (mr) COS np, n even,

(—1) &"+'&~'2m-ma~ J„(mr) cos ng, n odd,

from (5—1) and (5—2). Similarly the component of the resultant amplitude in the direction of in-
creasing Q is

2Ir

A~ ——~laI sin (mr cos 8) {Lsin (n+1)8—sin (n —1)8]cos nQ+[cos (n+1)8—cos (n —1)8]sin np}d 8
0

2m'

+-,'i@2 cos mr cos 0 sin n+1 0 —sin n —1 0 cos n@+ cos n+1 0 —cos n —1 0 sin np d0
0

(—1)" aria~{ „J~( mr)+ J„+~(mr) } sin np, n even,

(—1)&"+""~l {aJ2„&(mr)+J„+,(mr) } sin n@, n odd,

( —1)""2m.(l /mn)( ~/ra) J (mr) sin nP, n even,

( —1)&"+'&"2~(ln/m) (a2/r) J„(mr) sin nP, n odd,
4 Gray, Mathews and Macrobert, Besse/ Functions, p. 16 and 32.

(g—2)
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from (5—1), (5—2) and (6—1). In the same manner we obtain for the resultant amplitude in the direction
of increasing r

—(—1)"122m.la~J' '(mr) cos nP,

—(—1) &"+'&"2s.lan J„'(mr) cos nP, n odd,
(8-3)

from (5—1), (5—2) and (6—2).
Therefore the components of the electric in-

tensity at P due to the superposition of the group
of elementary plane waves reHected back and
forth from one side of the tube to the other, for n
either even or odd, are

obtained for the "A" type wave by Carson and

by Barrow, who have discussed the circumstances
under which the boundary conditions are satis6ed.

The "II"waves are due to the superposition
of primary plane waves of the other state of

cos nQ
E,=Am' J„(mr) cos (lx —cot),

s1n sQ

COS SP I' sin (lx —a)/), (9—2)E„= A lm J—.'.(mr)
SIIl S@

Eg ——Aln- J„(mr)
r

sin nq5

—cos sQ
sin (lx cut), —(9—3)

the lower factors in the braces having been
obtained from the upper by replacing np by
nP —m/2, which is equivalent to making the
number of primary waves in the range d9 pro-
portional to sin n (8+@) instead of to cos n(8+ P).
These are, however, just the components of E

0

FIG. I. CrOSS SeCtiOn Of Circular tUhe.

polarization. From (2—2) we have in the primary
plane wave

E,=m[b~ sin my+b2 cos my j sin (lx —&ot), (10)

and, if we take the number of such primary
waves propagated in the angle d8 to be
cos n(8+@)d8, we get.

2n

By = gmAI, S1n mr cos 0 cos 'tfg+ 1 0+cos B—1 8 cos BQ
0

—[sin (n+1)8+sin (n 1)8j sin ng}d8—

+-2mb2 cos mr cos 0 cos n+1 0+cos n —1 8 cosnQ

—(—1)" xmtb~ I J„~(mr) J„+&(mr) } co—s n4,

—[sin (n+1)8+sin (n —1)8j sin ng}d8

n even,

—(—1) ~"+'&I'7rmb2 I J„~(mr) —J~+~(mr) } cos nP, n odd,

—( —1)"t'2mmbi J„'(mr) cos nP, e even,

—( —1) & "+'&"2~mb~ J„'(mr) cos nP, n odd,

from (5—1), (5—2) and (6—2). Similarly

—(—1)"~'2xn(bg/r) J„(mr) sin nP,

—(—1) '" +'"'2m n(b 2r/) J„(mr) sin nP, n odd,

from (5—1), (5—2) and (6—1).
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Therefore the components of electric intensity
in the "H" wave, for n either even or odd, are

&,=Bn—J.(mr)
r

sin nP
sin (tx —rat), (12—1)—cos n$

+s sin k(2~/n)]
(13)

=a P cos k(2x/e) sin Lmy cos k(2m/n)]
cos nP

sin (lx —(at),E~=~m~ ™
sin nQ

(12—2)

k=0

Xcos [ms sin k(2z/n)]

no matter whether the number n of faces is odd or

in agreement with Carson and with Barrow.
Obviously the same methods can be applied to

the dielectric rod of circular cross section, the
analysis being complicated, however, by the fact
that the elementary plane waves are partially
rejected and partially transmitted at the surface
of the dielectric.

(3) CYLINDRICAL TUBE OF POLYCONAL

CROSS SECTION
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FIG. 2. Cross section of hexagonal tube, 0 is on the axis,

Last we shall investigate the propagation of a
wave inside a cylindrical tube whose cross section
is a regular polygon. The square tube is a special
case of the rectangular tube already considered
and we have seen that both an "Z"wave and an
"FI" wave may be transmitted by it. For other
cross sections it seems that no "E." wave can be
transmitted, and an "FI" wave is propagated
only in the cases of a triangular or hexagonal
section, the transmission in these types of tube
being due to the circumstance that cos 60' is the
reciprocal of an integer.

Let Fig. 2 represent a cross section of the tube,
0 being on the axis and the heavy lines being the
traces of the faces of the tube. Primary plane
waves of the "A" type (2—2) with directions of
propagation in planes containing the X axis and
the normals to the faces of the tube give rise to a
resultant amplitude of the electric intensity at a
point P(y, s) equal to

even .
The boundary condition at the face MN is that

A, should vanish for all values of z. But this
condition can be satisfied only if every cos (2m k/n)
is an integral multiple of the same number. Such
a situation exists only for n =3, 4, 6. Conse-
quently we conclude that this type of wave can
be transmitted only by triangular, square, and
hexagonal tubes.

For the triangular tube 2'/n = 120' and
cos 2m.k/n assumes the values 1, —1/2, —1/2.
Therefore

(3) '
A, =a sin my+sin(my/2) cos ms

2

(3)'
=a sin —,'my 2 cos (my/2)+cos ms

2

which vanishes for all values of z if y is an integral
multiple of 27r/m.

Hence the minimum frequency for transmission
of this wave is v =c/p(~y) I, where p is the perpen-
dicular distance from the axis to one of the faces.

For the hexagonal tube 2m/e = 60'. Here
cos 2xk/n has the values 1, 1/2, —1/2, —1,
—1/2, 1/2 and sin 2xk/n the values 0, g3/2,
g3/2, 0, —Q3/2, —g3/2. Hence

(3)"
A, =a 2 sin my+4 sin (my/2) cos ms

2
(15)

(3) '= 2a sin (my/2) 2 cos (my/2)+cos —ms,
2

which is just double A, for the triangular tube.
When we pass to the tube of circular cross

section by making n—&" we see that (13) gives us
A & for the "FIO" wave. No further cases of
transmission are obtained by directing the
elementary waves toward the corners N of the
polygonal tube instead of directing them at right
angles to the faces.


