An Extension of the Analysis of the Spectrum of Neutral Samarium, Sm I

WALTER ALBERTSON*

George Eastman Research Laboratory of Physics, Massachusetts Institute of Technology, † Cambridge, Massachusetts (Received July 9, 1937)

The term $4f^{6}({}^{7}F)6s7s {}^{9}F$ has been found, which yields 5.6 volts as the approximate ionizing potential of Sm I. The triad of terms $4f^{6}({}^{7}F)6s6p \; {}^{9}GFD^{0}$ have been completely identified. Several new energy states have been located, which account for all previously unidentified low temperature lines. Experimental proof of the existence of more than 910 energy states which are necessary to account for existing data is pointed out. The extreme difficulty of analyzing the remaining data is discussed.

INTRODUCTION

PARTIAL analysis which included most of A the low temperature lines of the spectrum of Sm I has been published by the writer.¹ These lines result from transitions from high odd energy states to $4f^{6}6s^{2}$ ⁷*F*, the normal state of the atom. An extension of the Sm I analysis and a discussion of the problems involved in that part of the analysis which remains to be done is presented in this paper.

IDENTIFIED TERMS OF SM I

The main electron transition of Sm I is $4f^{6}6s6p$ $\rightarrow 4f^{6}6s^{2}$. The basic terms from these configurations have now been identified and are presented in Table I. a^7F is from $4f^{6}6s^2$ and the triad of terms $z^9 GFD^0$ is from $4f^6 6s6p$. The combinations between these sets of terms are presented in Table II. In Table I, column 1 gives the energy state; column 2 the symbol used to identify the state in the earlier paper;¹ column 3 the energy in cm⁻¹. In Table II, column 1 gives the wavelength; column 2 the arc emission, furnace emission (with temperature class in Roman numerals), and furnace absorption intensities; column 3 the energy in cm^{-1} ; column 4 the two states involved in the transition.

The term e^9F from $4f^6(^7F)6s7s$ has been located. This term is the second member of the series from $4f^{6}6sns$, $4f^{6}(6s)^{2}$ ⁷F being the first. From these two terms one may calculate 5.4 volts as the energy of $4f^{6}6s$ of Sm II. The energies and combinations of $e^{9}F$ are given in Tables I and II, respectively. The identifications of the $z^{9}GFD^{0}$ states were made after a study of the intervals involved, and of the intensities of their combinations with a^7F and e^9F . Only for $z^9G_1^0$ and z^9G_0 are the assignments in doubt. Strictly speaking, the assignments have no meaning because of the intermediate type of coupling and configuration interaction. The assignment given here is to be interpreted as meaning that the state seems to contain more of the quantum numbers assigned to it than it does any other set of quantum numbers. It is useful to know which single set of quantum numbers the state seems most nearly to correspond to. A few more new states are given at the end of Table I with their combinations at the end of Table II.

COMPLEXITY OF THE ANALYSIS OF SM I

The temperature classification of Sm I as published by King² contains 2710 lines between 8706A and 2911A. Of this number 422 are of class I and II, while the remaining are of class III, IV, and V. All of the class I lines, nearly all the class II lines, and for wave-lengths less than 4000A many lines, of all temperature classes, have been classified as transitions between upper states and $a^{7}F$. These lines are strongly absorbed,³ even those which appear faint in emission, hence their low level origin is clearly indicated. At the shorter wave-lengths the lines show much more readily in absorption than in emission, in fact, Paul³ has measured 540 absorption lines between 3070A and 2500A that have not been observed in emission at all. Several class II lines in the deep red are not absorbed; these lines are due to $z^9G^0 - e^9F$.

National Research Fellow in Physics.

[†] This work was conducted at the Mount Wilson Observatory of the Carnegie Institution of Washington, Pasadena, and the Department of Physics, University of ¹ U. E. Albertson, Phys. Rev. **47**, 370 (1935).

² A. S. King, Astrophys. J. 82, 140 (1935).

³ F. W. Paul, Phys. Rev. 49, 156 (1936).

As one goes to shorter wave-lengths the temperature class of the absorption lines becomes progressively higher and higher, due to the difficulty of exciting the high states in the furnace, so that it is almost certain that all the lines below 4000A, regardless of temperature class, originate from transitions to $a^{7}F$. Many of these lines have not as yet been classified. This is to be expected since, for many of the states, only one of the three possible combinations of the state with a^7F will appear. Hence, for wavelengths less than 4000A every unclassified line represents the only recorded combination between a high state and one of the seven low states. It is, of course, impossible to determine which of the seven low states the combination is with and thus to fix the energy of the upper state. The latter will be within $\pm 2000 \text{ cm}^{-1}$ of the value obtained by adding 2000 $\rm cm^{-1}$ to the wave number of the line. From the above, it follows that at least 910 high energy states are represented by the observed absorption data for Sm I. Here is an indication of the true complexity of the energy system of a rare earth element.

Nearly 1700 lines between 8700A and 4700A have not as yet been classified. Although many of the lines are very intense in emission, not a single one appears with any appreciable intensity in absorption. Included among these lines are eleven intense class II lines, which either do not appear in absorption or only faintly so. This is contrasted with the intense absorption of all class II lines that involve the ground state. A few of the numerous intense class III lines are also faintly absorbed. It is obvious that these lines must originate in transitions from high states to metastable states.

The recent analysis of Sm II by the writer⁴ shows that terms from the configuration $4f^{6}({}^{7}F)5d$ are about 10,000 cm⁻¹ above the ground state. One would expect the corresponding terms from $4f^{6}({}^{7}F)6s5d$ in Sm I to be present at approximately the same energy region. So far as comparisons can be made, there is a fairly close agreement between related energy structures in Sm I and Eu I and also between Sm II and Eu II. The recent extension of the analysis of Eu I by Russell and King⁵ also indicates that the

 $4f^{6}({}^{7}F)6s5d$ terms of Sm I should be found at exactly the same energy region as indicated by the analysis of Sm II. The lines from the transition $4f^{7}5d6s - 4f^{7}5d6p$ in Eu I fall in the wavelength region in question for Sm I. Their character is similar to the Sm I lines, consisting chiefly of intense class III lines and a few intense class II lines, the only difference being

that there are many more Sm I lines than Eu I lines. This is to be expected on comparing the relative complexity of the term systems involved. Nearly all of the previously unclassified intense Eu I lines were found to belong to this transition.

There is little doubt, in the writer's opinion, that most of the 1700 unclassified lines between

TABLE I. Certain energy states of Sm I.

State	Symbol	Energy
$a^2 F$	1	0.00
<i>u</i> - <i>1</i> ,0	2	202 59
1	2	292.58
2	3	811.92
3	4	1,489.55
4	5	2,273.09
5	6	3,125,46
ő	7	4 020 66
Ū	,	1,020.00
$z^9G_0^0$		13.796.36
1	10	14.863.85
$\hat{2}$	14	15 567 32
2	10	16 211 04
3	10	16,211.04
4	21	10,890.59
5	26	17,587.44
. 6	34	18,298.29
7		19.005.64
8		19 753 30
0		17,700,000
$z^9F_1^0$	8	13,999.43
2	9	14 380.44
3	11	14 015 83
4	15	15 570 11
4	15	15,579.11
5		10,344.77
6		17,193.75
7		18,118.85
z9D.0	12	15 030 50
2 12 2	12	15 507 25
5	1.0	15,507.55
4	17	10,131.53
5	20	10,859.31
6	27	17,654.53
e9 F.		28 708 14
2		20,037,20
2		29,037.20
3		29,551.80
4		30,191.24
5		30,921.99
6		31,725.70
7		32,567.76
2	176	26 786 82
2	170	20,700.02
2	177	10,081.74
2,3	178	16,748.30
1	179	16,112.33
1,2	180	16.116.42
1	181	17 003 28
*	101	17,000.20

⁴ W. E. Albertson, Astrophys. J. 84, 26 (1936).

⁵ H. N. Russell and A. S. King, unpublished material.

WALTER ALBERTSON

TABLE II. Certain classified lines of Sm I.

TABLE II.—Continued.

Provide and the second s				And the survey of the state of the survey of the survey of the state of the survey of	the second se	the spin sector is a sector in the sector is a sector in the sector is a secto	the state of the s		the local data and the local dat			
	INT. AND TEMP. CLASS					INT. AND TEMP. CLASS						
I. A.	Arc	Furn.	Abs.	v (vac.)	DESIGNATION	I. A.	Arc	Furn.	Abs.	ν (vac.)	DESIGNATION	
7262.69 7172.67 7101.46 7114.50 7403.30	3 40 10 10 8	2011A 301 501 801 601A	3 5 5 10 15	13,765.21 13,937.88 14,077.74 14,051.93 13,503.78	$\begin{array}{c} a^7 F_6 - z^9 G_5^0 \\ a^7 F_5 - z^9 G_4^0 \\ a^7 F_4 - z^9 G_3^0 \\ a^7 F_3 - z^9 G_2^0 \\ a^7 F_2 - z^9 G_1^0 \\ a^7 F_1 - z^9 G_0^0 \end{array}$	6502.57 6544.66 6589.56 6648.12	2 40 ? 25	3IV 4IV 12III 15III		15,374.29 15,275.42 15,171.34 15,037.70	$z^{9}F_{6}^{0} - e^{9}F_{7}$ $z^{9}F_{5}^{0} - e^{9}F_{6}$ $z^{9}F_{4}^{0} - e^{9}F_{5}$ $z^{9}F_{3}^{0} - e^{9}F_{4}$ $z^{9}F_{2}^{0} - e^{9}F_{3}$ $z^{9}F_{1}^{0} - e^{9}F_{7}$	
7002.03 6912.79 6839.23 6790.88 6775.30 6860.93	2 3 10 30 60 300	60IA 100IIA 100IIA 60IA 150IA 300I	2 3 1 5 8 15	$\begin{array}{c} 14,277.64\\ 14,461.96\\ 14,617.50\\ 14,721.57\\ 14,755.43\\ 14,571.27\end{array}$	$\begin{array}{c} a^7 F_6 - z^9 G_6^0 \\ a^7 F_5 - z^9 G_5^0 \\ a^7 F_4 - z^9 G_4^0 \\ a^7 F_3 - z^9 G_3^0 \\ a^7 F_2 - z^9 G_2^0 \\ a^7 F_1 - z^9 G_1^0 \end{array}$	6919.03 6879.50 6858.12 6841.75 6830.54 6820.91	20 80 15 60 80 40	15111 20111 10111 25111 25111 15111		14,448,91 14,531,94 14,577,24 14,612,12 14,636,10 14,656,76	$z^{9}F_{7}0 - e^{9}F_{7}$ $z^{9}F_{6}0 - e^{9}F_{6}$ $z^{9}F_{5}0 - e^{9}F_{5}$ $z^{9}F_{4}0 - e^{9}F_{4}$ $z^{9}F_{3}0 - e^{9}F_{3}$ $z^{9}F_{5}0 - e^{9}F_{2}$	
6671.51 6588.91 6528.02 6491.28 6492.05 6544.95 6725.88	800 500 200 15 5 40 300	400I 300I 250I 100IA 25IIA 150IA 200I	10 10 12 8 1 12 15	$\begin{array}{c} 14,984.98\\ 15,172.83\\ 15,314.36\\ 15,401.03\\ 15,399.11\\ 15,274.75\\ 14,863.85\end{array}$	$\begin{array}{c} a^{7}F_{6}-z^{9}G_{7}^{0}\\ a^{7}F_{5}-z^{9}G_{6}^{0}\\ a^{7}F_{4}-z^{9}G_{5}^{0}\\ a^{7}F_{3}-z^{9}G_{7}^{0}\\ a^{7}F_{2}-z^{9}G_{3}^{0}\\ a^{7}F_{1}-z^{9}G_{2}^{0}\\ a^{7}F_{0}-z^{9}G_{1}^{0} \end{array}$	6796.82 7347.30 7282.21 7220.10 7154.83 7079.50 6977.55	40 150 20 50 25 10 5	15111 8IV 4IV 1511 1011 1011 20111		14,708.71 13,606.70 13,728.32 13,846.41 13,972.73 14,121.40 14,327.73		
8027.5 7907.48 7755.32 7580.91	1- 5 ? 5	151IA 40IA 80IA 60IA	0 2 4 8	12,453.6 12,642.78 12,890.83 13,187.40	$a^{7}F_{6} - z^{9}F_{5}^{0}$ $a^{7}F_{5} - z^{9}F_{4}^{0}$ $a^{7}F_{4} - z^{9}F_{3}^{0}$ $a^{7}F_{3} - z^{9}F_{2}^{0}$ $a^{7}F_{2} - z^{9}F_{1}^{0}$	6703.61 6724.73 6759.25 6808.31	150 150 60 60	25111 30111 15111 20111		14,913.23 14,866.39 14,790.46 14,683.89	$z^9D_6^0 - e^9F_7$ $z^9D_5^0 - e^9F_6$ $z^9D_4^0 - e^9F_5$ $z^9D_3^0 - e^9F_4$	
7562.7 7513.3 7446.2 7367.9	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & 1 - \\ & & 1 - \\ & & \\ & & \\ \end{array}$	2IV 8IIA 5IIA 4IIA	$\begin{array}{c} \cdots \\ 2 \\ 2 \\ 1 \\ \cdots \\ \end{array}$	13,219.1 13,306.1 13,426.0 13,568.6	$a^{7}F_{6} - z^{9}F_{6}^{0}$ $a^{7}F_{5} - z^{9}F_{6}^{0}$ $a^{7}F_{4} - z^{9}F_{4}^{0}$ $a^{7}F_{3} - z^{9}F_{3}^{0}$ $a^{7}F_{2} - z^{9}F_{2}^{0}$ $a^{7}F_{1} - z^{9}F_{1}^{0}$	6888.81 7104.54 7109.06 7110.56 7118.28 71142.00	40 ? 4 12 15	25III ?? 4III 6III 10II		14,512.30 14,071.63 14,062.69 14,059.70 14,044.47	$z^9D_2^0 - e^9F_3$ $z^9D_6^0 - e^9F_6$ $z^9D_5^0 - e^9F_5$ $z^9D_4^0 - e^9F_4$ $z^9D_5^0 - e^9F_3$	
7091.16 7106.23 7104.54 7095.50 7088.30 7096.33 7141.13	100 100 150 150 150 100 30	150I 150I 200I 200I 250I 150I 100I	10 18 18 18 15 18 15	$\begin{array}{c} 14,098.19\\ 14,068.29\\ 14,071.63\\ 14,089.56\\ 14,103.87\\ 14,087.91\\ 13,999.53 \end{array}$	$a^{7}F_{6} - z^{9}F_{7}^{0}$ $a^{7}F_{5} - z^{9}F_{6}^{0}$ $a^{7}F_{4} - z^{9}F_{5}^{0}$ $a^{7}F_{3} - z^{9}F_{4}^{0}$ $a^{7}F_{2} - z^{9}F_{3}^{0}$ $a^{7}F_{1} - z^{9}F_{2}^{0}$ $a^{7}F_{0} - z^{9}F_{1}^{0}$	7498.71 7449.28 7389.03 7314.00	4 6 15 6 4	4111 V 21V 21V 21V 1IV		13,397.65 13,331.96 13,420.42 13,529.85 13,668.65	$z^{9}D_{2}^{9} - e^{9}F_{2}$ $z^{9}D_{6}^{0} - e^{9}F_{5}$ $z^{9}D_{5}^{0} - e^{9}F_{4}$ $z^{9}D_{4}^{0} - e^{9}F_{3}$ $z^{9}D_{3}^{0} - e^{9}F_{2}$ $z^{9}D_{2}^{0} - e^{9}F_{1}$	
7787.02 7686.70 7554.14 7378.04 7332.65 7279.25 7213.82 7131.80 7026.62	8 8 5 60 80 80 100 100	60IA 60IA 60IA 100I 100I 100I 150I 200IA	2 4 10 12 15 15 15 18 15 15	$\begin{array}{c} 12,838.35\\ 13,005.91\\ 13,234.14\\ 13,550.01\\ 13,633.88\\ 13,733.90\\ 13,858.47\\ 14,017.84\\ 14,227.67\end{array}$	$\begin{array}{c} a^{7}F_{6}-z^{9}D_{3}^{0}\\ a^{7}F_{5}-z^{9}D_{4}^{0}\\ a^{7}F_{4}-z^{9}D_{2}^{0}\\ a^{7}F_{3}-z^{9}D_{6}^{0}\\ a^{7}F_{5}-z^{9}D_{6}^{0}\\ a^{7}F_{5}-z^{9}D_{6}^{0}\\ a^{7}F_{4}-z^{9}D_{4}^{0}\\ a^{7}F_{4}-z^{9}D_{2}^{0}\\ a^{7}F_{3}-z^{9}D_{2}^{0}\\ \end{array}$	6580.53 6551.80 6533.96 6319.49 6317.81 6273.29 6174.45 6099.90 5879.57	50 200 200 200 250 15 50 150 40 6	2001A 3001 3001 21V 15111 801A 1501 2001A 4111	8 15 15 15 10 10	$\begin{array}{c} 15,192.16\\ 15,258.77\\ 15,300.44\\ 15,819.70\\ 15,823.90\\ 15,936.20\\ 16,191.30\\ 16,389.19\\ 17,003.34 \end{array}$	$a^7F_3 - 177$ $a^7F_3 - 178$ $a^7F_3 - 179$ $a^7F_3 - 180$ $a^7F_1 - 179$ $a^7F_1 - 179$ $a^7F_1 - 178$ $a^7F_2 - 178$ $a^7F_2 - 181$	
6880.86 6853.92 6827.81 6802.96 6779.16	20 15 40 50 100	200II 150IIA 150IA 150IA 200IA	5 8 5 12 10	14,529.0714,586.1714,641.9514,695.4314,747.03	$\begin{array}{c} a^7 F_5 - z{}^9 D_6{}^0 \\ a^7 F_4 - z^9 D_5{}^0 \\ a^7 F_3 - z^9 D_4{}^0 \\ a^7 F_2 - z^9 D_3{}^0 \\ a^7 F_1 - z^9 D_2{}^0 \end{array}$	high states already found to combine with $a^7 F$ are probably from $4f^{6}5d6p$. With faith in this view, a rather extensive program of research was undertaken to unravel the spectrum and locate at least the main terms of the two electron configurations in question. Not a single energy						
7006.04 7071.10 7124.86 7151.03 7148.8 7053.54 6704.25	5 8 ? 4 2 8 40	6IV 5111 2IV 4111 2111 1011 20111	1	$14,269.47 \\ 14,138.18 \\ 14,031.40 \\ 13,980.15 \\ 13,984.5 \\ 14,173.38 \\ 13,796.36 \\ 14,173.6 \\ 14,175.6 \\ 14,$	$\begin{array}{c} z^9 G_{6} 0 - e^9 F_7 \\ z^9 G_{5} 0 - e^9 F_6 \\ z^9 G_{4} 0 - e^9 F_6 \\ z^9 G_{2} 0 - e^9 F_4 \\ z^9 G_{2} 0 - e^9 F_3 \\ z^9 G_{1} 0 - e^9 F_2 \\ z^9 G_{0} 0 - e^9 F_1 \end{array}$							
7371.51 7445.41 7497.26 7221.14	30 150 8 6	5IV 2IV V i0III		13,562.01 13,427.60 13,334.54 13,844.42.	$\begin{array}{c} z^9G_70-e^9F_7\\ z^9G_60-e^9F_6\\ z^9G_50-e^9F_6\\ z^9G_40-e^9F_4\\ z^9G_50-e^9F_3\\ z^9G_20-e^9F_3\\ z^9G_10-e^9F_1\\ \end{array}$	state was found, although several hundred hours of time were devoted to the search. The tre- mendous line density is the cause of failure and will always remain as the chief barrier to sur-						
7801.54 7859.53 7919.44 7931.92 7895.96 7794.50 7607.74	150 100 80 250 250 100 80	100II 30III 10III 50II 50II 25II 30III	1	12,814.4612,719.9112,623.6912,603.8212,661.2312,826.0313,140.89	$\begin{array}{c} z^9G_8^0 - e^9F_7 \\ z^9G_7^0 - e^9F_6 \\ z^9G_6^0 - e^9F_5 \\ z^9G_5^0 - e^9F_4 \\ z^9G_4^0 - e^9F_3 \\ z^9G_3^0 - e^9F_2 \\ z^9G_2^0 - e^9F_1 \end{array}$	mount in any future attempt to bring order to this line group. Allowing a reasonable tolerance for experimental error, any wave number in-						

8700A and 4700A in Sa I are due to the electron transition $4f^{6}5d6s - 4f^{6}5d6p$. Indeed, many of the

electron e energy red hours The treilure and r to surorder to tolerance mber interval, chosen at random, will be found to occur in the data up to one hundred times. Fortuitous arrays can easily be built up from this start. A tremendous amount of labor must be expended before a promising term array can be proven fortuitous. In fact, many fine looking arrays, involving hundreds of lines, were obtained only to be discarded later as entirely fortuitous. As there are many possible intervals between the known high states that one can start with in the search for the lower metastable states, there are many intervals to eliminate. So much can be obtained by chance alone that the real is hidden by the false.

A glance at the theoretical possible terms from the two electron configurations in question will show the cause of the great line density from this electron transition.

There will be 114 states from $4f^{6}({}^{7}F)5d6s$

including

9, 7, 7, 5(HGFDP)

and 334 high states from $4f^{6}({}^{7}F)5d6p$ including

9, 7, 7, 5(IHG, HGF, GFD, FDP, DPS).

The intense lines from the transition $4f^{6}5d6s$ $-4f^{6}6s6p$ will be in the inaccessible infrared.

The writer wishes to thank the National Research Council for the Fellowship that made this research possible, the Mount Wilson Observatory of the Carnegie Institution of Washington, and the Physics Departments of the University of California and the Massachusetts Institute of Technology for placing their resources at his disposal.

SEPTEMBER 15, 1937

PHYSICAL REVIEW

VOLUME 52

Electromagnetic Waves in Conducting Tubes

LEIGH PAGE AND N. I. ADAMS, JR. Sloane Physics Laboratory, Yale University, New Haven, Connecticut (Received June 24, 1937)

It is shown that the waves in a hollow conducting tube described by Carson and by Barrow may be represented as semi-standing waves due to the superposition of plane waves with normal phase velocity $c/(\kappa\mu)^{\frac{1}{2}}$ reflected back and forth from one side of the tube to the other. It is also shown that certain types of waves can be transmitted without attenuation in tubes of triangular, rectangular and hexagonal cross section.

'HE theory of the propagation of electromagnetic waves in cylindrical conducting tubes of circular cross section has been presented by Carson, Mead and Schelkunoff¹ and independently by Barrow,² and has been verified experimentally by Southworth.3 While the mathematical analysis in these papers pursues the most direct and obvious method of attack, it fails to reveal the details of the physical process involved in the transmission of waves in the interior of a hollow tube. Fundamentally the "E" and "H" types of wave described by Carson and by Barrow are the result of the superposition of an infinite number of elementary plane waves traveling at an angle with the axis of the tube and having the normal phase velocity $c/(\kappa\mu)^{\frac{1}{2}}$ characteristic of the permittivity κ and permeability μ ¹ J. R. Carson, S. P. Mead and S. A. Schelkunoff, Bell of the homogeneous isotropic nonconducting medium filling the interior of the tubular conductor, these waves being reflected back and forth from one side of the tube to the other. The two types of wave differ only in the state of polarization of the component elementary plane waves to whose superposition they are due. The elementary plane wave with normal phase velocity is more fundamental physically than the waves discussed by Carson and by Barrow for the reason that the Poynting flux is everywhere in the direction of wave propagation.

It is the object of this communication to show that the superposition of the specified plane waves yields the waves described by Carson and by Barrow. Incidentally we shall discuss the possibility of the propagation of electromagnetic waves in cylindrical conducting tubes of polygonal cross section. In all cases we shall limit ourselves to tubes which are perfectly conducting, using

<sup>System Tech. J. 15, 310 (1936).
² W. L. Barrow, Proc. I. R. E. 24, 1298 (1936).
³ G. C. Southworth, Bell System Tech. J. 15, 284 (1936).</sup>