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when the electron is deflected into the element of
solid angle sin 8d8dy is given by
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This has been obtained by making use of (26),
(13) and (2) and of the formula

g ne-*x"/n! =x.
n=0

On account of the extra factor &u,
'm (30), the

mean total energy, unlike the mean total number
of quanta, is finite. Formula (31) is just the total
probability that the electron be scattered into the
element of solid angle sin 8d6dy multiplied by
the amount of energy which it would radiate

classically in such a deflection. The expansion in
powers of e'/hc in the limit of small frequencies,
where alone Formula (31) may be supposed to be
valid, leads to the same result for the mean
energy radiated, though its results are entirely
misleading so far as transition probabilities are
concerned. "

The above considerations can be applied al-
most literally also to cases such as the theory of
P-decay, in which the external perturbation does
not act on the electron coordinates, but creates
an electron. The only difference, so far as the
electromagnetic field is concerned, consists in
replacing pc by the velocity of the nucleus and vc

by the velocity with which the electron is created.
Here again the total probability of P-decay is
unaltered by the interaction of the electron with
the low frequency radiation and the mean radi-
ated energy is in agreement with that calculated
by expanding in powers of e'/hc.

» This remark does not affect the cross section for the
emission of a high frequency quantum as calculated by
Bethe and Heitler, and experimentally verified. However,
the cross section so derived has to be interpreted, not as
the probability that the high frequency quantum alone be
emitted, but as the probability that this happens no rnatter
how many other light quanta are emitted.
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The radiative scattering of a nonrelativistic electron is treated by an approximate method
which neglects the reaction of the radiation field on the motion of the electron. In this approxi-
mation the different modes of oscillation of the radiation field are independent of one another,
and can therefore be treated individually. For frequencies of the radiation small compared to
the inverse impact time of the electron, it is shown that the probability of emitting any finite
number of quanta is zero, and that the mean radiated energy depends only on the total change
in velocity of the electron, the amount of energy radiated being given by the same formula as in
classical theory.

1. INTRODUCT ION

'N a previous paper' Bloch and the author have
treated the interaction of a relativistic elec-

tron and the radiation field by a method which
* National Research Fellow.'F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937);

subsequently referred to as I.

consists essentially of an expansion in powers of
the parameters e'cu/mc', &co/8, h~/c&P (~=angu-
lar frequency of radiation; E=kinetic energy,
Ap=change in momentum, of electron). Applica-
tions of the method to actual physical processes
were made in an approximate way by regarding
external influences on the electron, such as atomic
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fields or the interactions responsible for P-ray
processes, as small perturbations. It was shown

that, to the extent to which these approximations
are legitimate, the classical prediction concerning
the radiation emitted is valid in the mean, and
the motion of the electron is unaffected by the
radiation field.

In this paper the radiative scattering of a non-
relativistic electron in a potential field V(r) is
considered from the same point of view, but
without regarding U(r) as a small perturbation.
A treatment of this problem with no restrictions
except that the above mentioned parameters
shall be small is possible in principle but com-
plicated and dependent on the detailed form of
U(r). Since all frequencies except the extremely
low ones may be treated adequately by the or-
dinary expansion in powers of e'/kc, as was shown

in I. we shall have offset the additional complica-
tion of treating the scattering field exactly by
imposing a further restriction on the frequency.

We may again guide our considerations just as
was done in I, by reference to the corresponding
classical problem. If the potential energy of the
electron at a distance r from the center of the
scattering field is V(r) and if V(r) tends to zero
faster than 1/r as r~ ~, as we shall for simplicity
assume throughout this paper, the classical orbit
of the electron has the form r=r(t) with

r(t) -vt!+a; t & —T/2,
wt+b; t) T/2,

where v and w are the initial and final velocities,
a and b are constants and T is the collision time.
For —T/2&t &T/2, r(t} w!Il be a more compli-
cated function, which, however, does not affect
the radiation of suFficiently low frequencies. The
amoun t of energy radiated wi th angul ar fre-

quency co in a direction within the element of
solid angle dZ is given by

(e'&4!r'c')
~

r'~,
~

'd(ader: (1)

where i"~, is the Fourier component of the com-
ponent of the acceleration perpend!cular to the
direction of propagation of the radiation:

dpi"'g t e '"'= —(v dfrg 1 e '"'.

depends essentially only on the initial and final
velocities v and w, and may be evaluated without
knowledge of the detailed motion of the electron
during t.he collision:

r~, - = (v~ —tv~) (I+o(~T)).

Hence the amount of low frequency radiation is

(e'/4!r'c") (v~ —w~)'d~dZ. (2)

The simplicity of this result depends physically
on the fact that the deflection of the electron
takes place suddenly with respect to the periods
of the radiation considered, so that the simple
methods of sudden impulse dynamics apply.

These considerations indicate that if in the
quantum theoretical treatment of the problem we
limit ourselves to frequencies small compared to
the reciprocal of the impact time, we shall get a
correspondingly simple treatment. In fact, when.

we neglect the additional parameters ha&/E and
hs&/cAp, which are a measure of the effect of the
quantum mechanical fluctuations of the radiation
field on the electron, we may expect to get exactly
the classical formula (2). The motion of the
electron itself in the scattering field need not, of
course, be describable in classical terms.

2. RADIATIVE SCATTERING

We shall keep the notation of I except where
further symbols are explicitly defined. The
HamIlton function is

where

(e/c)A= Pa, q[P, &, cos (k„r)+Q,!, sin (k„r)j.
Let P(r) describe the motion of the electron with-

out interaction with the radiation:

( p'/2m+ V(r) ——,'nsv'
I p(r) = 0

and suppose!!t to have the asymptotic form for
large r appropriate to a scattering experiment:

P(r) exp (im(v, r)/h)
+f(8, y)/r exp (imvr/I!, ) (3).

X= (1/2m)(p —(e/c)A)'+ U(r)

+2&&~,(&,~'+Q, ~'-'),

For frequencies such that col'«1, this expression If we now write for the solution 4'(r, Q,q) of the
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equation {K—E}%'=0,

e(r, Q,~) =li(r) U(r, Q,„)

we get for U the equation

(f/2m)(p —(e/c)A)'U+(pP/m)(p —(e/c)A) U

+(0/2) E&~.(P.&, '+Q, ~') U

(4)

—P(E ——,'mz&') U= 0. (5)

The first term in this equation represents the
reaction of the radiation on the electron; its order
of magnitude relative to the remaining terms is
given by the ratio of the mean recoil momentum
to the momentum mv of the electron. In ac-
cordance with our program we neglect this term.
Such a procedure is quite analogous to what
is done in the theory of molecules, where the
reaction of the Huctuating motion of the elec-
trons on the nuclei is similarly left out of
account. The resulting equation is separable
with respect to the various modes of vibra-
tion of the radiation field. Thus U is approxi-
mately equal to IIu, &, (r, Q,z), where

S)l,

(yP/m) (y —a,&,[P.&, cos (k„r)
+Q,&, sin (k„r)])u,~+(P/2)&)z&o, (P,„z

+Q.g') u, g
—PE,&,u,,&

= 0. (6)

This approximate separabili'ty is an expression of
the fact that the behaviors of different compo-
nents of the radiation field, in particular any
changes in the numbers of light quanta present in
them, are almost independent. The coupling be-
tween different components exists only in virtue
of the intermediary action of the electron and is
therefore small whenever the reaction of the
radiation on the electron is small.

We proceed to the solution of Eq. (6), which is
to be carried out in the approximation o&«1/T.
Let R be the "radius" of the scattering field, or
more precisely, the smallest radius for which
P(r) is well represented by (3). For r )R we have
then, dropping the subscripts s, ) temporarily,

exp (im(v, r)/l'z) {(v, p —a[P cos (k, r)
+Q sin (k, r)])+-', ))z&o(P'+Qz) —E}u
+f(z'Z, v)/r exp (zmvr/Iz) {(w, p —a[P cos(k, r)

+Q sin (k, r)]+,'h&o(P'+Q') E}—:-0, (7)—

In the derivation of (7) we have neglected terms
of order 1/r' coming from the differentiation of
f(» v)/r

The solution of (7) which we require is defined

by the condition that the incident electron be
accompanied by no free light quanta. Hence at
r = ~, N must be the function appropriate to the
motion of a free electron with velocity v, ac-
companied only by its proper field. This function
u'" is a solution of {F—E}u& ) =0, where {F E}—
is the first bracket in (7), and is, according to I,
u'"' =exp {io cos (k, r) [Q ——,'o.

Xsin (k, r)]} ho(Q —o sin (k, r)), (8)

where o = (v, a)/h(&o —(v, k)), and where we have
neglected a term of order z&z/c' in F.

Now since the scattering of the electron occurs
within a small fraction of a period of the radia-
tion, we should expect the wave function of the
field to remain unaltered by the scattering. Hence
u&'& should be a solution of the complete Eq. (6)
in our approximation. To show that this is true,
we must prove first that {G—E}u'" 0 where

{G E} is the s—econd bracket in (7); and second,
that the values of u'" at different points on the
sphere r =R join on to each other correctly
according to Eq. (6).

That u'" is an approximate solution of
{G—E}u&"=0, and thus of the whole Eq. (7), is
best shown by expanding N(" in terms of the
proper functions of G. We have according to I

u(o) —Qcz (0)f (Q)
n.=0

where

f„(Q)=exp {ircos (k, r)[Q —zr sin (k, r)]}
h„(Q —r sin (k, r)),

n„")= exp {—in(k, r) } X(o, 0; r, n),

the quantity X being given by formula (20) in I.
Hence

&G E}u&o& Pa &o)nfl(&o+(w, k))f„(Q).

where w is the final velocity of the electron, i.e. , By an alteration of N(') which is negligible for
w has the magnitude of v and the direction of r. h&o«mz&z we may bring {G—E}u'"' to vanish: we
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need evidently only replace n„(" by

n„"' exp {—in(&v+(w, k))r/v}.

This involves an alteration of I") consisting of
inserting factors of the kind exp {—i(znvr/Iz)

(h~/mvz) }. On account of the smallness of
i'zoo/mvz, such factors vary much less rapidly with
r than P, the wave function of the electron, and so

may be replaced by unity. ' To be consistent we

also replace cos (k, r) by one and sin (k, r) by
zero, since k, the wave number of the radiation, is
likewise small compared to mv/b The. solution of

(7) is then

tion I"& appropriate to the initial motion v of the
electron in terms of the functions f„(Q) appro-
priate to the final motion w, in writing the
coefficient of the scattered wave:

exp (im(v, r)/h)IIu, q&'&(Q, ~)

+f(8, &p)/r exp (inzvr/I'z) II{P K(a,q, 0;
sZ n, ),

r, z., n„)f„,„„(Q,~) }. (12)

From this it follows that the cross section for
scattering with the emission of n,~ light quanta of
the kind s, X is

u&'& e"~hg(Q) (10)

It remains to be shown that the values of u("
at various points on the surface of the sphere
r =R are correctly related to each other in virtue
of Eq. (6). The argument by which this may be
proved is essentially that used for the behavior of
a quantum mechanical system under the influ-

ence of a sudden external perturbation. ' Let us
write Eq. (6) in the form

(Iz/i) (v(r), grad) u
= {(v(r), a)P —-', i'zoo(Pz+Q')+E}u,

where v(r) =(pP)/nzP. Integrating each side of
this equation roughly from a point rI on the
sphere r =R through the sphere to the point r2 on
the sphere, we find

(bR/ T) (u(r, ) u(r, ))—h~Ru,

where u is a certain average value of u in the
region r(R. Hence

u(rz) —u(r)) ((aT)u-0.

Thus (10) is the solution of (6) for frequencies
such that AT«1, A&a/znv'«1 and h&u/mvc«1

The whole wave function + may now be
written down. For purposes of interpretation we
use the expansion (9), which expresses the func-

' The rigorous justification for neglecting the variation
of such factors lies in the possibility of forming a wave
packet describing the motion of the electron, with dimen-
sions so large that the energy of the electron is well defined
and yet small compared to (v/c)t, where X is the wave-
length of the radiation. The' factors concerned are approxi-
mate constants over the region occupied by such a wave
packet. Our method is thus valid provided only that an
electron with relative uncertainty in energy b(mv')/mv'
~ken/mv' is scattered in sensibly the same way as one of
definite energy.

'See e.g. W'. Pauli, Handbuch der I'hysik, Vol. 24, pp.
163-4.

(ez/4zrzc') (v~ —zv~)'(du&, /Iza), )d Z, (14)

which corresponds exactly to the classical
formula (2).

As was shown in I, the method of expanding in

powers of the interaction between electron and
radiation leads to the same result for the mean
radiated energy. This may be understood on the
basis that the various modes of vibration of the
radiation field behave independently, as we have
already mentioned in connection with Eq. (6).
Because of this independence, the method of ex-

panding in powers of e'/Izc gives correctly the
probability that a definite amount of radiation
be emitted in one mode irrespective of the be-
havior of all other modes. One may therefore
calculate the mean radiated energy in each mode
separately and then add them together, and this
is just the procedure used in the method of
expanding in powers of ez/kc.

The author is grateful to Professor J. R.
Oppenheimer for very helpful discussions of the
questions considered above.

For the interpretation of this fomula the reader
is referred to I, where the equivalent formula (25)
is discussed. In particular, it is easily to be seen

by using the value of X given in I, that the total
probability of scattering of the electron irre-

spective of what radiation is emitted is just
If(8, q) ' sin 8d8dv' , that the probability of
emission of any finite number of quanta is zero;
and that the mean number of quanta emitted with
definite frequency and direction when the elec-
tron is deflected into the solid angle sin 8d8dp is


