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rate with'atomic number is appreciably greater
in the present data than in that previously
reported. This result would appear to be asso-
ciated with the above noted fact that the increase
in counting rate due to showers from the heavier
elements, as measured by our arrangement of
counters, is not a linear function of the thickness
of producing material. This follows because our
earlier data were multiplied by the atomic
weight to obtain the relative frequency of
showers per unit atomic density. Such a pro-
cedure would only be accurate if the shower
frequency vs. thickness curve were linear in
each case.

The recent theoretical results of Carlson and
Oppenheimer7 and of Bhabha and Heitler' have
indicated that the multiplication theory of

' J. F. Carlson and J. R. Oppenheirner, Phys. Rev. 51,
220 (1937).

H. J. Bhabha and W. Heitler, Proc. Roy. Soc. 159A,
432 (1937).

showers is capable of accounting, in a rough
way, for the showers due to the softer component
of the general cosmic-radiation. It would appear
that such a theory, if correctly applied, can
account for a variation of shower production
with a second or relatively small power of the
atomic number. It is apparently not necessary
to assume from such a dependence on atomic
number that the showers have their origin in a
single act. Any detailed analysis of results such
as those herein reported would involve a number
of complicating factors. An important one of
these factors is the difference in angular spread
of the showers from various materials, and its
effect on the eAiciency of the counting apparatus.
Although such a complete analysis is impossible,
it appears desirable to record these observations,
the results of which are consistent with those of
our previous data obtained under identical
experimental conditions.
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It now seems reasonable on both theoretical and experi-
mental grounds to suppose that the formulae of the
present radiation theory are valid in the cosmic-ray energy
range. The work of Carlson and Oppenheimer and of
Bhabha and Heitler has shown that this assumption is
capable of accounting for many of the observed features
of cosmic-ray absorption and of shower production. These
writers concern themselves principally with the mean
behavior of a group of electrons and photons moving
through matter. Since the fluctuations around this mean
behavior are large and for some purposes very important,
it is desirable to investigate their nature, even though this
involves a loss of accuracy in dealing with other aspects
of the situation. In this paper we consider two fluctuation
problems: (1) The fluctuations in size of showers produced
by single electrons or photons: In dealing with this problem
we take the energetic relations into account only very
roughly. (2) Fluctuations in energy loss of electrons: The
possible production of secondaries is disregarded. The
inadequacies in treatment have for both problems the
consequence that the results are applicable only to thin
layers of heavy substances. The first problem is discussed

in Section II. The conclusion is that the distribution in
shower sizes should be essentially of the type P(n; (n))
=((n)) 'I1 —((n)') ~I" ' where (n) is the mean number.
but that under ordinary experimental conditions the
number of very small showers should be rather greater
than indicated by this law. The results account for two
observed phenomena which might at first sight be taken
as forming serious objections to the multiplicative hy-
pothesis: First, the occasionally observed production of
large showers (~20 or 30 particles) from small thicknesses
(~1 cm) of lead; and second, the appearance which many
of the larger showers present of having originated at a
single point near the bottom of the lead. In Section III
we deal with the second problem, with the purpose of
providing a way to use energy loss measurements to
provide a more detailed check on the theoretical formulae.
A method is given for constructing energy loss distribution
curves corresponding to any assumed form of the Brems-
strahlung spectrum. Also a solution is outlined for the
problem of using accurate and detailed information on

I

energy losses to compute an empirical spectrum curve.
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I. INTRoDUcTIoN

S OME months ago, Anderson and Nedder-
meyer' published the results of a new series

of measurements of the energy losses incurred by
cosmic-ray electrons in passing through a thin
sheet of lead. These results indicate that the
formula for the loss of energy by radiative
collisions (Bremsstrahlung) calculated' according
to the present radiation theory, is probably
obeyed up to primary energies of some hundreds
of trillions of volts; and on theoretical grounds'
it is reasonable to suppose that it holds to much
greater energies. There is also a strong presump-
tion that the corresponding formula for absorp-
tion of photons by pair production' is valid in
the range of energies of the cosmic rays.

These assumptions make the picture of what
happens in the passage of cosmic-ray electrons
and photons through matter a quite complicated
one. The dominant feature of the process is the
rapid decrease in the amount of energy carried
by any individual particle, together with a rapid
increase in the number of fast electrons and high
energy photons present. The events through
which these results come about are of an alto-
gether accidental and random character, so that
the behavior of such a "multiplicative shower"
in any given case may differ widely from the
average behavior. The main points to be taken
into account in discussing such a situation are
accordingly:

(a) Loss of energy by individual particles.
(b) Production of secondary particles.
(c) Fluctuations.

In dealing with so complicated a matter it has
been necessary not only to simplify the calcula-
tions by using suitable approximations to the
theoretical formulae involved, but also to con-
fine attention to certain aspects only. The calcu-
lations of Carlson and Oppenheimer4 and of

~ C. D. Anderson and S. H. Neddernieyer, Phys. Rev.
50, 263 (1936).

2H. Bethe and W. Heitler, Proc. Roy. Soc. A140, 83
(1934); W. Heitler, The Quantum Theory of Radiation
(Oxford, 1936).

3C. F. v. Weizsacker, Zeits. f. Physik 88, 612 (1934);
E. J.Williams, Phys. Rev. 45, 729 (1934);D. Kgl. Danske
Widensk. Selskab. , Math-fys. Meddelelser 13, 4 (1935).

J. F. Carlson and J. R. Oppenheirner, Phys. Rev. 51,
220 (1937).

Bhabha and Heitler, ' which have shown that thjs
general picture can account for many of the
observed facts of cosmic-ray absorption and
shower production, were concerned essentially
with the treatment of points (a) and (b), ' the
fluctuations being given only slight considera-
tion. The purpose of the present paper is to
obtain further evidence about the fluctuations,
which is done at the expense of omitting from
consideration one or the other of the first two
points. Though this may appear a very crude
procedure, it is possible to assign physical
conditions for which the results should be
significant; and the fluctuations are found to be
so great that information about them seems
comparable in importance with information
about the other aspects of the situation.

In Section II the question of fluctuations in
the number of particles present in a shower is
taken up; that is, the problem is centered about
points (b) and (c), point (a) being omitted.
Such considerations can be regarded as pertinent
only for the case of showers produced in a small
thickness of a heavy material, such as lead: for
larger thicknesses the loss of particles by stopping
becomes comparable with their production; and
in light materials this will be so even at the
smallest thicknesses which are capable of occa-
sioning an appreciable production of secondaries.
In spite of their limited application, these calcu-
lations are of importance because they show to
what extent the theory can account for the
occasionally observed production of a large
shower from a fairly thin layer of lead, which
might at first sight seem to be a grave objection
against the multiplication hypothesis. The results
indicate that the fluctuations are very large
indeed, and that the occasional production of
showers with several times the expected mean
number of particles is quite in accordance with
the theory.

In Section III we consider the fluctuations in

5 H. J. Bhabha and W. Heitler, Proc. Roy. Soc. A159, 432
(1937).' In treating this combination, it is of course necessary
to require that the energy lost by the electrons through
J3remsstraklung appears as the energy of new light quanta,
and that the pairs produced receive the energy of the light-
quanta absorbed. The fluctuations in number of particles
are neglected in both calculations, the formulae used being
concerned only with mean numbers; some account is taken
of fluctuations in radiative energy loss, by the use of rough
approximations.
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radiative energy loss of an electron, leaving out
of account the production of secondary electrons.
(Points (a) and (c), point (b) omitted. ) Here
again the results are of interest principally only
for a small thickness of a heavy substance: in

light substances ionization loss, which cannot be
taken into account with any accuracy, is com-
parable in importance with the radiative loss;
and in thicker layers of lead the situation is
inevitably obscured by the presence of second-
aries. We are thus concerned not with the
problem of straggling in range, in which con-
nection such calculations were originally made
by Bethe and Heitler, but rather with putting
the theory into shape for comparison with
energy loss experiments made with thin sheets of
lead. The most practical procedure for use with a
limited amount of data seems to be to compute
the distribution curves for energy losses corre-
sponding to various assumed forms of the
Bremsstrahlung spectrum; a general method of
doing this is developed. At the end of the section
a procedure is outlined for solving the converse
problem: Given a very large amount of highly
accurate energy loss data, to compote the corre-
sponding form of the spect rum.

II. DISTRIBUTION IN Sl/E: Ol." MUl, TIE E.ICATIVE.

SHIVERS

In the calculations of this section we leave out
of account the questions of distribution of the
particles in energy, and of energy loss; some
indication of the probable effects of these con-
siderations on the results will be given at the
end of the section. In order for such a treatment
to be approximately valid, it is necessary that
the primary energy be large compared to the
total ionization loss which would be suffered by
all the particles of the largest shower to be
considered, in traversing a thickness comparable
with that in question. This condition is satisfied
for primary energies of some hundreds of
millions of volts and thicknesses 1 cm Pb, if
one wishes to consider showers ranging up to
twenty or thirty particles.

Following the notation of Carlson and Oppen-
heimer, 4 we measure thickness in terms of a
variable t, such~ that t= 1 corresponds to about

~ The definition of the variable t is made more precise at
the beginning of Section III.

0.5 cm Pb. Then the probability that in trav-
ersing thickness dt a high energy electron emits a
photon of energy comparable with its own is,
very roughly, just dt. The probability that in a
thickness dt a high energy photon will produce
a positron-electron pair is o-dt, with o- equal to
about two-thirds.

We solve first a decidedly oversimplified
problem, which nevertheless serves to indicate
the essential nature of the desired distribution:

Problem A: The probability that in traversing
thickness dt one particle is converted into two is

just dt If o. ne particle enters a sheet of thickness t,
what is the probability P(n; t) that n particles
mill emerge/

The probabilities in question satisfy the dif-
ferential equations

(d/dt)P(1; t) = —P(1; t)
(d/dt) P (2; t) = —2P(2; t) +P(1; t)

(d/dt)P(n; t) = —nP(n; t)
+(n 1)P(n ——1; t)

with the boundary conditions

P(1; 0) =1; .P(n; 0) =0, n)1. (2)

By successive integration and application. of the
boundary conditions one obtains

P(1; t) =e ' P(2; t) =e '(1 e') —(3)

and it is readily established by mathematical
induction that

P(n; t) =e '(1 —e ') "—'--
The most probable number of particles emerging
is one; the mean number is (n)=e'. Thus (4)
can be written

We want the solution to a somewhat diferent
problem:

Problem 8: The probability that in dt an electron

produces a photon is dt, the electron itself con

tinuing its course; the Probability that in dt a
photon produces a pair of electrons is adt, the

photon being absorbed. If one electron enters a
sheet of thickness t, what is the probability Q(n; t)
that n electrons mill emerf. eP

Defining P(n; m; t) as the probability that n
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electrons and m photons emerge, one has the
differential equations

(d/dt) P(1; 0; t) = —P(1; 0; t)
(d/dt)P(1; 1; t) = —(1+o)P(1; 1; t)

+P(1; 0; t)
(d/dt)P(1; 2; t) = —(1+2o)P(1; 2; t)

+P(1; 1; t)
(d/dt)P(3; 0; t) = —3P(3; 0; t)

+oP(1; 1; t)
I-(5)

(d/dt)P(n; m; t) = —(n+ma)P(n; m; t)
+nP(n; m —1; t)
+(m+1)oP(n —2; m+1; t)

Q(n; t) = P P(n; m; t).
m=0

The equations can be solved successively like
the first set, without difficulty; but the formulae
obtained rapidly become very long, and could
scarcely be interpreted except by numerical
computation. To carry this through for large
values of n would be prohibitively laborious.
We shall see that the behavior of Q(n; t) can be
obtained more easily.

From (5) and (6) one readily finds for n = 1:
P(1; 0; t) =e ' P(1; 1; t) =e 'o '(1 e") . —

. . ; P(1;m; t) = (e
—'/o "ni!)(1 —e—")'" (8)

and on summing,

The mean number of photons accompanying the
primary if no secondary electrons have been
produced is

(m, ) = I Q(1; t) }-'PmP(1; m; t)

=o '(1 —e "). (10)

Let us also calculate (m ), tahe mean number of
photons accompanying a primary which has just
produced its first pair of secondary electrons.
Keeping in mind that the probability of pro-
ducing this secondary pair is proportional to the

with the boundary conditions

P(1; 0; 0) = 1; all other P(n; m; 0) = 0. (6)

After solving for P(n; m; t), one has

number of photons present, we have

(m i') =
I PmP(1; m; t) } 'gm(m —1)P(1;m; t)

=o (1 —e «) =(m[). (11)

Thus the mean number of photons belonging to
a given electron depends only on the distance the
electron has traversed, and not on how many
secondaries have been produced by its photons.
This makes it possible to formulate the condi-
tions of Problem 8 in such a way that no explicit
reference is made to the photons:

Problem 8 (restatement): The probability that
in dt a given electron will proditce a pair is'
(1 —e ")dt, where t' is the distance the electron
has traversed since it was produced or entered the
lead. If one electron enters a sheet of thickness t,
what is the probability Q(n; t) that n electrons will

emerf, eP

Besides the trivial difference that the second-
aries are produced in pairs instead of singly, this
formulation differs from Problem A in that an
electron's capacity for producing secondaries is
not constant, but is zero at the beginning of the
electron's path and approaches only asymp-
totically the constant value assigned to it in
Problem A. This dependence on the electron's
past history makes the problem much more
difficult; it cannot be formulated in terms of
ordinary differential equations involving the
Q(n; t). '

We can use the new formulation to get an
expression for Q(3; t). The probability that a
secondary pair was produced between t' and
t'+dt' and that no other pair was produced is
the product of three factors:

(1) The probability that the primary did not
produce a pair before reaching t' or after passing
t'+dt'. Since dt' is infinitesimal, and since the
probability of the primary's producing a pair is
unaffected by its having already done so, this
factor is just Q(1; t)

(2) The probability that the primary did

Hy introducing the variable s =Z(i —e a") and defin-
ing Q(n; s; t)ds as the probability that at t there are n
electrons and s lies in ds, we can derive the partial differen-
tial equations

I(a/at)+o(n —s) (8/Ds)+(s —0) I Q(n; s; t) =sQ(n —2; s; t).
They seem to be of no particular help in attacking the
problem.



FLUCTUATION PHENOM E NA 573

produce a pair between t' and t'+dt'. This is of
course (1 e—")dt'.

(3) The probability that neither secondary
produced a pair in going from t' to t. This is
equal to {Q(1;t —t') }'.Then, by (9):

t

Q(3; t) =Q(1; t)Jf (1 —.— )«{Q(1;t —t') }'
0

t

=Q&1 t)e"J &1 —e ")dls'
0

, e—(2/&)) exp [—o (t—t')j

1.00000
1.00000
.50000
.16667
.04167
.00833
.00139

.50000

.83333

.75000

.48333

.24861

.20833

.50833

.66528 .08472

TABLE I. Values of the g„

Setting (2/&r) e '&' '& =s, we have
Q(e;)) = Pq„„I'(n+m; i),

m=0
(13)

e "ds
/~)~ 0 t

I'hus Q(3; t) is expressed in terms of incomplete
gamma-functions. For certain rational values of
0—those which make (2/0) an integer —expo-
nentials su%ce. For example, one finds that for
o =1)

Q(3; t) = }Q(1;t)Le~'{Q(1; &') }~+2e ' —3] (l2a)

and for o. =-';,

Q(3; t) = (1/18)Q(l; t) [(2+3e '""')e"

,'Q(1; t) }'+12 e—"~'—17]. (12b)

By a similar procedure one can obtain the
expressions for Q(5; t), Q(7; t), etc , in ter.ms of
multiple integrals; and when (2/&r) is an integer,
the integrations can be performed in terms of
exponentials. This gives a more practicable
method for evaluating the Q(n; t) than is pro-
vided by Eqs. (5), (6), and (7); but the formulae
still increase rapidly in complexity with in-
creasing n, and would require extended nu-
merical computations for their interpretation.

In the case o-= 1 a special method is available
for the numerical evaluation of the Q(n; t), and
the results suffice to suggest what is almost
certainly the form of the answer for other
values of o. also. This method depends on the
fact that when o.=1 Problem B differs from
Problem A only by our making a distinction.
between the two kinds of particles (electrons and
photons). We then have

with the boundary condition

f10 1) f01 (15)

Table I shows the values of a few of the g„„,.

Its manner of construction by the use of (14) is
obvious. Each row of entries is computed from
the preceding row, and a check is provided by
the fact that the sum across each row is unity.
Such a table was prepared extending to n+m
=50, and was used together with (4) and (13)
to compute the Q(n; t) for 0.= 1. .

The results are summarized in Table II. Only

TABLE II. (0=1.)

n Q(n; 1) p„(1) Q(n; 1.5) pn(1.5) Q(n; 2) p)r(2) Q(n; 2.5) pn(2. 5)

Limit

0.69220
.22088
.06257
.01705

0.48528
.8190 .26389
.2838 .12911
.2805 .06268

.2802

.5439

.4898

.4855

.4852

0.32182
.23856
.15888
.10071

0.20555
.7269 .17649 .8586.6588 .13796 .7817
.6545 .10719 .7770

.654& — .7767

a few entries have to be given, for the reason that
the quantities

„(t)=Q(n; t)/Q(n —2; t) (16)

very rapidly approach a constant limiting value.
The distribution for Problem B, o- = 1, is thus
of almost exactly the same type as for Problem A.

where the P(l; t) are given by (4), and q„„, is the
probability that if there are n+m particles, n are
electrons. The q„,„'s satisfy the relations

q „„=nq„, ., &/(n+m —1)

+ (m+ 1)q„q +,/(n+m —1) (14)
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(n) =1+2Q(3; t)/(1 —p)' (19)

(n') -=Q(1; t)+ IQ(3; t)/(I —p) I

&& L9+ 16p/(1 —p) +8 I p/(1 —p) j 27. (20)

It is somewhat embarrassing to have such a
simple behavior turn up, without being able to
give an abstract proof that it should, The
writer has devoted considerable time and thought
to various attempts to obtain such a proof, but
without success. At any rate, for 0.= 1 the
simple behavior does appear, and the assumption
that it holds for other values of 0- is very
plausible: it is owing to the qualitative difference
between Problem B—cf. especially the second
formulation —and Problem A, and not to the
particular value of 0-, that one would have
expected any decided departure from the simple

type of distribution.
The validity of this assumption for 0-=-', was

tested by the following procedure: Q(1; t) and

Q(3; t) were computed from Fqs. (9) and (12b).
The rest of the distribution was approximated by
setting

Q*(3+21; t)= p'Q(3 t) (17)

and determining p from the requirement that the
sum of all the probabilities be unity:

Q(1; t)+Q(3; t)/(1 —p) =1;
p=1 —Q(3; t)/{1 —Q(1 t) I (18)

This approximate distribution was then used to
calculate approximate values of (n), the mean
number of electrons emerging, and (n'), the mean
square. One obtains

—0.46156e ' """+0.63351e—"""'
+0.18813e " "' (25)

The results of the computation are shown in
Table III. Values calculated from (19) and (20)
are indicated by the sign —,the exact values
from (24) and (25) by =. It is seen that the
agreement is good. The increasing discrepancy
for larger values of t is presumably due to the
increasing importance of slight differences be-
tween p and the actual limiting ratio; obviously
their effect would be most pronounced in the
case of (n'). To check this supposition, an
alternative calculation was made for t =2.5:
The approximation (17) was replaced by

Q*(5+2l; t) = p'Q*(5 t) (17')

and Q*(5; t) and p were determined by the
requirements that the sum of all probabilities
be unity and that (n) receive its correct value as
given by (24). The results were:

Q*(5; t) =.15766, p =.68426, (n') =—59.506.

TABLE III. (o =-', .)

. The agreement with the exact value of (n2) is
now very good, and the difference between the p
of Table III and the new p is seen to be of the
same order of magnitude as those between p&

and the limiting p in Table II.
Photon-produced showers: Problem 8'.—Keep-

ing the essential postulates of Problem. B fixed,
we may ask: If one photon enters tt sheet of

These values were then checked against the
exact values of these quantities, which satisfy
the equations:

(d/dt)(n) =2o(m); (d/dt)(m) =(n) —o(m), (21)
(d/dt)(n') =4o(nm)+4o. (m)

(d/dt) (nm) = (n') —17(nm)+ 2o (m') —2o (m) ~ (22)
(d/dt) (m') =2(nm) —2o (m')+(n)+ o (m)

1.0

0.76328
.18664
.21240

1.6005
1.6000
4.0564
4.0403

1.5

0.57590
~ 25882
.38972

2.3898
2,3861

10.110
10.045

2.0

0.40845
~ 26284
.55568

.36628

.36447
24.971
24.565

2.5

0.27712
.22354
.69076

5.6753
5.6087

61.473
59.411

and the boundary conditions

(n)=(n')=1, (m)=(nm)=(m2)=0, at t=p. (23)

TABLE IV. (0 =1.)

(n) —P 63867e0.86852t+P 36133e—1.58518t.

(n2) —P 79065el 78704t P 15Q73e0.86852.t

(24)

Here as usual m denotes number of photons.
From (21), (22), (23) one finds, for o =-', :

0
2

6
8

Limit

R(n; 1) pn (1) R(n; 1.5) prt(1.5)

0.36788 — 0,22313
.46728 1.2702 .41604 1.8646
.11876 .2542 .18600 .4471
.033.16 .2792 .09000 .4839
.00929 .2801 .04366 .4851

.2802 — .4852

R(n; 2)

0.13534
.31377
.19079
.12453
.08146

p76(2) R(n; 2.5)

0.08208
2.3185 .21631
.6081 .15693
.6527 .12164
.6541 .09447

.6542

..(2.5)

2.6354
.7255
.7751
.7766

.7767
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TABLE V. (a =-3, photon-produced skomers. )

1.0

(n)—1.2024
(n) = 1.2026
(n') —3.5609
(n') =3.5628

1.5

1.9844
1.9856
8.624
8.647

2.0

3.1166
3.1252

20.612
20.826

2.5

4.8086
4.8526

48.642
50.077

lead t units tkick, what is tke probability R(n; t)
that n electrons ensergeP

Beginning with the case ~ = 1, we have

The comparison of the results is given in Table V.
It is seen that the agreement is good.

These considerations make it practically cer-
tain that the answers to both Problem B and
Problem B' form sequences which rapidly
approach the form of a geometrical progression.
Lumping together the electron-produced and-
photon-produced showers, we may say that the
law of distribution of shower size should be

essentially

(13~) This law may be compared with the usual
Poisson law for independent events,

Yyo(0) =0, rpy(0) = 1. (15')

Obviously R(0; t) =e ': this follows also be-
cause (14) and (15') give ro„——0 for m)1. By
constructing a table of the r„similar to that
of the q„(cf. Table I), the results given in

Table IV were computed. (Here p„=R(n; t)/
R(n —2, t).) It is seen that the sequences, apart
from their first terms R(0; t), approach very
rapidly to a geometric progression just as do the

Q(n; t); and the limiting values of the ratios are
the same as for the Q(u; t)

By a procedure analogous to that leading to
(12b), one finds that, for o =-', .

R(2; t) = (1/9)R(0; t) { (1+3e "")e"

where the r„„obey the same relations (14) as do
the g„, but with the boundary conditions

P;„q(n; (n)) = {((n)) "/n! }e & "& (28)

The Poisson law is applicable to many distribu-
tion problems of physical interest, and Bhabha
and Heitler' assert that it should hold in the
present case. Their argument is based on the
assumption that the occurrences of particles in
various infinitesimal energy ranges may be re-
garded as independent events; actually these
events are not independent, because some of the
particles have produced others, and their chance
of doing so depends both upon their original
energy and upon the energy lost.

The two distributions (4') and (28) for (n)=5
are compared in Fig. 1. It is seen that the
fluctuations given by (4') are large and im-

portant; the mean value is not marked by any
particular feature of the curve, while the curve
given by (28) has a well-defined maximum. In

R(4; t) = (1/108)R(0; t) L(1+6e

+6e '~')e '{Q(1;t) }'—12(1+3e '"'
—4e '"')e" {Q(1; t) }

' —13].

-(26) 09-

where Q(1; t) is as defined by (9). If we approxi-
mate the rest of the distribution by setting

R*(4+21 t) = p'R(4 t), (27)

where p is determined by requiring that the sum

of all probabilities be unity, we can compute
approximate values for (n) and (n') Exact.
values can be computed by integrating (21) and

(22) under the boundary conditions

(n) = (n') = (nm) =0, (m) = (m') = 1, at t =0. (23')

FIG. 1. The distribution law (4') compared with the
Poisson law, for (n)=5. The functions in question have
significance only for integral values of the abscissa, but for
convenience continuous curves are plotted.
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comparing the probabilities for large showers it
is more convenient to consider the quantity

excess of simple pairs over the number expected
from this expression; a plausible reason for this
is indicated below.

which gives the probability for the appearance
of I or more electrons. This function, for
(n) =5, together with the corresponding function
S;„q(l; (n)) given by (28), is plotted in Fig. 2.

/0-

OS-

/0 g /5

FIG. 2. Total probability for l or more particles according
to (4') and (28), for (n)=5. As in Fig. 1, smooth curves are
plotted although only discrete points are defined.

The quant'ities S;„&(l;(n)) decrease very rapidly
with increasing l; one finds

S(15; 5) =0.044; S;„u,i(15; 5) =0.0002.
S(20; 5) = .014; S;„d(20; 5) = .0000004.

The results of some cloud chamber observa-
tions on shower sizes were published some time
ago by Street and Stevenson. ' The number of
showers observed was rather small, and the
results are not corrected for the selective char-
acter of the apparatus. Within these limitations,
there is qualitative agreement with the type of
distribution here suggested. For a thickness af
1.3 cm Pb ((n& 5), 8 out of 107 showers ob-
served contained more than 10 electrons, and 4
had more than 15 electrons.

A more extended investigation is being carried
on in this laboratory by Mr. L. M. Fussell.
Results so far obtained, corrected in a reasonable
way for the selectivity of the apparatus, are in
fairly good agreement with a formula of the
type (4'). There seems to be an appreciable

~ J. C. Street and E. C. Stevenson, Phys. Rev. 49, 425
(i936).

Pdthk =dthk/k (28a)

This makes the probability that in dt an electron
produce a photon whose energy equals or exceeds
(1/g) of the original energy of the electron
equal to ln g dt. The full consequences of the
more accurate law (28a) could of course be
worked out only in a treatment which took
account of the detailed energy distribution; two
consequences would presumably be roughly as
follows:

(a) For a high energy primary, or other
particle with many times the energy of an
average "Iow energy" shower particle, ln g may
be several times our estimated value of i. Such
a particle will thus be unusually effective in
producing secondaries. It seems likely that the
main effect of this will be to increase the @teen

Energy considerations

As explained at the beginning of this section,
the most important consequence of our having
left out of account the energy losses and energy
interchanges of the particles is that the per-
tinence of the results is strictly limited to the
case of thin layers of heavy substances. It is
possible to estimate qualitatively the nature of
some of the effects which consideration of this
neglected aspect of the situation would have on
our results:

(1) U'nless the primary has quite a high energy
——some hundreds of millions of volts —there wil1

simply not be enough energy to produce more
than a few particles. Thus unless some way of
selecting high energy primaries is used, there
will be a preponderance of pairs and small
showers over and above that indicated by (4').

(2) Our neglect of the detailed distribution of
energy among the particles made it necessary to
use a very crude approximation to the law of
photon production by Bremsstrafzlung: we set
the probability that in dt an electron produce a
photon "of energy comparable with its own"
equal to dt. A much better approximation4 to
the Brenzsstrahlung formula is obtained if we set
as the probability that in dt an electron produce
a photon of energy between k and k+6k,
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number of particles produced, without changing
the type of distribution. From our present
point of view the high energy primary is to be
regarded as equivalent to a number of primaries;
the composition of a number of distributions
(4') does not give one of the exact form (4'),
but the general behavior is the same.

(b) The mean population of photons accom-
panying each electron consists not only of the
number (mz) of high energy photons given by
(10), but also of a number of lower energy
photons, which are capable of producing pairs.
These pairs are not able to play the same role as
the particles we have been considering, by pro-
ducing further secondaries, and are usually
stopped a short distance beyond the point where
they are produced; but an emergent shower will
often contain some of them. Having been pro-
duced only a short distance back from the
point of emergence, and. tending to diverge
widely because of their low energies, they help
to give many showers an appearance of coming.
from a single center near the bottom of the lead.
This effect, which has been of some importance
in discouraging the adoption of the multiplica-
tive hypothesis, is also already partly explained
by our unmodified formula (4'): The probability
of there being 10 or more electrons at 4 cm
Pb ((n) 2.25) is about 0.005; the probability for
10 or more electrons at 1 cm ((n) 3.5) is about
0.05. Thus any large shower is likely to consist
largely of particles from the last millimeter or
two of the lead.

Considerations of the fluctuations in number
of particles produced have accordingly led us to
a formula indicating the general type of dis-
tribution of shower sizes to be expected, and
have shown how the multiplicative hypothesis
can account for two effects —the appearance of
large showers from fairly thin pieces of lead, and
the apparent divergence of showers from a
point —which at first sight might be regarded as
strong evidence against it.

III. DIsTRIBUTIoN IN FRAcTIQNAL EivERGY Loss

The probability that in penetrating dx centi-
meters of lead an electron of energy E will emit
a photon of energy between k and k+dk is

Pdxdk =Kdx I(E/nzc', k/E)dk/k (29).

Here EI is the spectral intensity of the 8rems-
straklung. According to the calculations of Bethe
and Heitler, ' XI is practically independent of
E/mc' for energies above 100 nzc' (5 X10' volts).
If we choose the two factors so that

~ l

Id(k, iE) =1,
8p

(31)

then X is numerically equal to 2. Thus by using
the variable t, which we introduced without much
comment at the beginning of Section II, we have
Xdx=dt. The mean total rate of energy loss of
an electron in lead is then

(dE/dt)—A„E+p, —— (32)

where Ll ='6X10' volts is the ionization loss per
unit thickness. From this equation we see that
for a large number of 'high energy electrons
whose energies before and after traversing thick-
ness t are Ep and I, respectively,

L(E+&)/(Eo+L3) jA. =e ' (33)

The results of Anderson and Neddermeyer' on
mean energy loss are in reasonably good agree-
ment with this formula.

The question of fluctuations in energy loss can
be approached from either of two points of view:

(1) The "straggLing Problem": The form of
the spectrum I(k/E) being given, to determine
the probability P(t; E)dE that an electron has
energy between B and B+dE,, if before passing
through the thickness t it had energy Ep.

(2) The "spectrum problem": Given the ex-
perimental distribution in energy loss of a large
number of electrons, to determine the corre-
sponding form of the spectrum I(k/E).

For the solution of either problem, two
approximations seem to be indispensable: First,
it is assumed that the form of the spectrum and
the total intensity fo'Id(k/E) are independent of
the energy E; second, the ionization loss is
neglected. Both of these approximations are
justified if the only energies considered are of the
order of some tens of millions of volts. They

The total mean loss by radiation is then

g 1

dx Pkdk= KEdx Id(k/E). (30)
0
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break down, however, when we have to consider
particles which are stopped, or even only slowed
down to energies of a few million volts. What we
have called the "straggling problem" is hence not
adapted to any really accurate treatment of
straggling in range, but is rather to be regarded
simply as the converse of the "spectrum prob-
lem. " For convenience in dealing with it we
introduce a variable

the range Z to E+dE is

Pa, p. (dt, p~(E, E+dE))
= {dtdE/(p E) —

I b,I,(1 E/p)—

=bqE c 'dtdK

Then P(t; E) satisfies the equation

Ep

=b, Epe p'P(t—; p)de

(41)

X=ln (Ep/E)

and a probability function in the scale of X:

~E

b,P(t—; E) ( p'E p 'dp, (42)
0

which by differentiation reduces to

BP BP
gE ' +—{bp/(g—1) I

— +E 'P =0.
BEBt Bt BE (43)

I(k/E) = —(k/E In 2)/In (1 k/E). —(36)
Introducing the new variable X by (34), we
have:This is a rather rough approximation to the

theoretical spectrum curve, " giving too much
intensity for small (k/E) and too little for
larger (k/E) —hence underemphasizing the fluc-
tuations. Using (36), one can verify" by using
the functional equation,

O'P BP BP
+a + {b.i(a —1) I

—P =o (44)
8) Bt Bt 8)

On making the Laplace transformation,

The "straggling problem" was solved by Bethe ~2P
and Heitler" for the case

pt)(ti+tp; &)d&=d& pt)(t); &))u(tp; & —&i)D), (3&)
0

that

1
P = e"*F(t;s)ds,

2~z~ c
(45)

we see that (44) is satisfied provided
(38)

(s+Q)(~F/~t)+ {b /(9+1) l(s —1)F=o. (46)
w(t; )E)d), = e

—)'I),—'+«» Pdy/Z'(t /in 2).

We now proceed to show how P(t; E) can be
found for any spectrum which can be expressed The solution of (42) is then

as a power series,
)'('; &) = 0)& )& )J ~(~)

I(k/E) = Qa;(1 k/E) +', n) ——1, (39)
j=0

exp [»+b,t{(s+g) ' —(1+9) 'I jds (4&)

I(k/E) = b pIp(k/E) = (bpk/E) (1—k/E) '

or as a sum of a number of such series with
different values of a. We begin by finding P(t; E) = (I/2~&Ep)J{ p)(s)
P(t; E) for a spectrum of the form 0

~ exp [»+b,t{(s+a) ' —(&+a) 'I)d»

q) —1. (40)

For this spectrum, the probability that in dt an
electron's energy changes from e to a value in

~0 Bethe and Heitler, reference 2, p. 101; Heitler, refer-
ence 2, p. 225.

"The comparison between the theoretical curves and
(36) is given in reference 5, Fig. 1. The normalizing factor
of (36) relative to the other curves is smaller than ours by
about twelve percent. This figure also gives the straight
line (28 ), with the same difference in normalization.

I(k/E) = Qa;(1 k/E) +' =Qb; I—+;(k/E), (48)
j=0 j~0

with
J

b.+; = gag.
1=0

where the contour C and the function p)(s) may
be varied to fit the boundary condition at t=0.

Now our general spectrum (39) can be written
as a sum of spectra of the form (40):
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The essential thing to be remembered at this
point is that our fixed spectra assign definite
probabilities to given fraction@/ losses of energy,
independently of the actual value of the energy.
The order in which such fractional losses may
occur is entirely immaterial. Thus it makes no
diA'erence whether the electron is regarded as
having passed through thickness $ of a substance
whose BremsstrahINng spectrum is

I.= Z&-+ I.+i

or as having passed successively through thick-
nesses t of substances having the spectra b„I,
~a+&Ia+].p

' '
p ~a+nIa+n We can, accordingly,

evaluate the energy distribution by using (47)
to define the distributions I'; corresponding to
the spectra b +,I +,. and applying the boundary
conditions

Po(0; &) = 8(& &0); Pi(0; &—) =Po(i; &);
; P„(0;P) =P„ i(t; Z). (50)

The form of (48) is such that the boundary
conditions (50) are easily satisfied. The first of
these conditions is satisfied by q = 1 if C is
taken to be a path extending along the imaginary
axis from —i ~ to i ~; we agree to deform the
path if necessary to insure its passing to the
right of the singularity at —n. The rest of the
boundary conditions are satisfied if we obtain
each I'~ from PE 1 by inserting an additional
term in the exponent in the integrand. In the
limit m —+ ~, I„becomes the given spectrum (48),
and the desired solution is accordingly

Equation (51) therefore gives us a complete
formal solution of the "straggling problem. "
For computing actual values of P(t; 8) from

(51), the only feasible procedure seems to be
the saddle-point method. "This gives the asymp-
totic series

The quantities (54) are thus all functions of X/t
only.

The distribution (51), (53) has been obtained
for the spectrum"

I(k/P) = 1, (28')

which corresponds to the approximation (28)
mentioned near the end of Section II. This
spectrum gives less than the theoretical intensity
for small (k/8) and more for larger (k/8), and
hence overemphasizes the fluctuations; accord-
ingly we may regard the distribution obtained
from (28') and that obtained from (36) as
placing limits on the expected distribution. (28')
is used for some purposes both by Carlson and
oppenheimer4 and by Bhabha and Heitler. 5

Using (28') one finds that"

with

~ =(2~f"(f)) '* g=(l /~)f+f(l)
~ = —(5/24) {f"'(f)I'/{f"(I) I' (54)

(,)fiv(f )/ {f (i)

and so on; here g is the coordinate of the saddle-
point, defined by

P(f P) = (1/2iriE ))I e"*+'«*&ds (51)
f(s) = —y —(d/dt) ln I'(s) = —y —+(s);

~ =.577216. (56}

with

f(&) =Zb-+ {(&+~+i) ' (1+~+i) 'I. —
j'=0

The series (52) converges for all values of s
except s = —u —j, provided Za; converges, which
is true for any function I which remains finite
for (k/E) —+0. If our spectrum is given not as a
single series of the form (39), but as a sum of
such expressions, we have only to replace f(s) in

(51) by the sum of the corresponding expressions
of the form of (52).

The +(s) function and its derivatives have been
tabulated very fully. '4 The values of A, g, and 8&

are given in Table VI.
~

62
~

nowhere takes
values greater than about 0.005, while

~
83

~

sometimes exceeds 0.01. Hence one uses only the
correction bi/t, and the results are presumably in

error by less than 0.005k '.
'2 Courant-Hilbert„Methoden der Math. I'hysik, second

edition (Springer, 1931), p. 455."VAittaker and watson, Modern A nalys7s, fourth
edition, p. 241.

'4 H. T. Davis, TaMes of the II~gher Mathematical, Fgnc-
tions, Vols. I and II (The Principia Press. Bloomington,
Indiana).
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In Fig. 2 distribution curves EOP(t; E) plotted
against E/Eo are shown for the thickness"
t =0.693 and for three different spectra:

Curve 1, given by (38), for the spectrum (36).
Curve 2, given by Table VI, for the spectrum

(28').
Curve 3, for the spectrum

I(k/E) =2(k/E). (57)

Carlson and Oppenheimer at one point in their
calculations are obliged to make an approxima-
tion which is equivalent to using this spectrum.
It badly overemphasizes the fluctuations. For
this spectrum, (51) can be evaluated analytically,
the result being

P(t; F) =e 2&{t&(E—Eo)
+E —

'(2t/&&) lI (2[2th]'*) j. (57')

of some interest to investigate the possibility of
using a large amount of very accurate data to
give a detailed check on the theory. This can
most readily be done by considering the problem
already mentioned at the beginning of this
section: Given (empirically) the distribution
P(t; E), to find the spectrum I(k/E).

This problem can be solved by obtaining a
relation between the moments of the energy
distribution,

-~ ~0

{(E/Eo) j Av
= (E/Ep) P(t; E)dE

0

P(t; E)Eoe & "+'&"d'A, (58)
p

and those of the spectrum:

For this particular thickness curve 1, which
underemphasizes the fluctuations, is simply a
straight line; for smaller thicknesses it would
show a singularity for (E/Eo) =1 and a zero
for (E/Eo) =0, and vice versa for greater thick-
nesses. Curve 2, which overemphasizes the fluc-

tuations, has a singularity at each end; for t &1
it would show a zero at (F/Fo) = 1. The behavior
of curve 2 near (F/Eo) =1 is in fact given by

E,P(t; E) =(2~t)-*'s'«-»(l&/t)'-&

(1 —1/12t+ i )«&1, (56')

Pn= (1 k/. E:)"I(k—/J )d(k/E). (59)

By (51) and (58) we obtain

{(E/Eo) "
j A, ———(1/2&ri) (z n —1—) 'e't&'&dz

I (60)

In all cases where I does not vanish for (k/E) ~0,
one can show that f(z)~ ~as z~—~, ~arg z~

—&r/2. Thus the expression (60) equals just the
residue at s=n+1:

(61)

f(n+1) = Pa&P {(n+1+&&.+j ) ' —(1+n+j ) 'j-
L=p 2'=- I

as one finds on making suitable approximations
to +(f) and its derivatives. In curve 3 the

Using (52' and (49', we obtain
fluctuations are enormously greater than the
upper limit given by curve 2; one-fourth of the
distribution is contained in a 8-function singu-
larity at (E/Eo) =1.

The spectrum problem

For the comparison of limited amounts of
energy loss data with theoretical predictions, the
use of calculated distribution curves —such as
those of Fig. 1—for a few simple cases should
suSce; in fact, the data so far published' provide
only material for comparison with Eq. (33),
which gives just the mean loss. It is, however,

'~This is approximately equal to the thickness (0.35
cm of lead) used by Anderson and Neddermeyer (reference
1);it makes (E/B0)Ay —2 and not very many of the particles
produce secondary pairs. The error b2/t' in curve 2 is
about one percent.

= —Qa&Q(1+o+I+j) ', n~1. —(62)
l=p j=p

On the other hand one has by (39) and (59):

Accordingly,

p. = Pa&/(1+&&.+I+n)
l=p

(63)

ln {(E/Eo)"jav ln {(E/Eo)"+"}A„=tt&,„(64).
This solves the problem of obtaining the mo-
ments of the spectrum in terms of those of the
energy-loss distribution.
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This same result (64) can be obtained by in-
tegrating the diffusion equations for {(E/Ep) ")A„.

These may be shown to be

(d/«) {(E/Eo) ) Av+ {(E/Eo) ) Av
= (tt/Eo)

(&/«) {(E/Eo) ') A + (1+A~) {(E/'Eo) ') A

2(—P Eo) {(E,'Eo) )"
(65)

(&/«) {(E/E. )-)"
+ (1+@1+ +~--~) {(EIEo)") A

= — (P/E. ) {(E/E.)"-')"
Neglecting the right-hand members, we at once
get (64). At first sight one is tempted to suppose
that by integrating without this neglect one
could give a correct account of the effect: of
ionization loss. This is not so, for the construc-
tion of (65) corresponds to letting particles
acquire negative energies after being stopped,
instead of discarding them from the distribution
(e.g. , (E)A„~ P for t~—~). The problem of
allowing correctly for ionization seems to be a
very dificult one; it would in any case not be
consistent to do so while retaining the approxi-
mation of a Bremsstrahlz~ng spectrum inde-
pendent of the energy.

There is apparently no way to obtain the
spectrum I(k/E) itself from the values of the p„
except by direct numerical computation. The
most elegant available method seems to be the
use of an expansion in Legendre polynomials.

TABLE VI.

/0

09

I

O.g
I

06 /0

Setting

we have

I(k/E) = Pc„P„(1.—2k/E),
n=.-o

(66)

co= po

ci =3(2@i po)
c, =5(6pg 6p, +—y )o
c3 7 (20p3 30@2+12@g

—pp)
c4 9(70@4 140'——3+90p2—20@i+go)—

(67)

FrG. 3. Distributions in fractional energy loss for t = 0.693
(~0.35 cm Pb), calculated for certain simple forms of
spectrum (see text). Curve 3 is to be thought of as contain-
ing the contribution 0.25 B(F-—E0), besides the part shov n.

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.6
3.0
3.4
3.8
4.2
4.6
5.0

1.9980
1.0035
.6736
.5091
.4108
.3451
.2990
.2643
.2367
.2151
.1973
~ 1698
.1496
.1340
.1217
~ 1116
.1032
.0962

—1.0878
.2953
.1983
.5746
.8840

1.1503
1.3862
1.5996
1.7952
1.9768
2.1466
2.4584
2.7407
3.0003
3.2421
3.4691
3.6827
3.8861

—0.0848—.0881—.0912—.0934—.0945—.0950—.0950—.0942—.0932—.0920—.0,908—.0884—.0860—.0836—.0812
—.0788

.0764—.0740

From the size of the coefficients in (67) it is
evident that extremely accurate knowledge of
the p's is required for a reliable determination
of the c's; a reasonable procedure in practice
would be to calculate the c„as far as they de-
crease steadily with increasing n, and neglect the
rest. It is this practical difhculty in the use of
(64) which gives importance to our analytic
solution of the "straggling problem" and the
construction of various comparison curves: from
a purely formal point of view, the derivation of
(64) directly from (65) could be regarded as a
solution of both problems at once.

The writer wishes to thank Mr. L. M. Fussell
for assistance with the numerical computations.


