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It is seen from Tables I, I I, and I I I than an appreciable
spin-spin dependence of tQe neutron-proton interaction
can be expected to arise as a result of using Eqs. (1) and
(9). This spin dependence is of the wrong sign to account
for the empirically known diR'erence in energies of the
singlet and triplet states of the deuteron. Its presence
suggests that the spatial dependence of spin dependent
forces is not wholly the same as that of the other forces.
The possibility of finding a simple equation in which the

empirical spin dependence will be a natural consequence
is still open. It is shown that the relativistic correction to
the kinetic energy is only a small part of the corrections
called for by invariance. The relativistic refinements made
so far in the combined theory of H2 and H3 are shown
to be questionable from this point of view, as well as on
account- of the possible presence of terms in relative
rnomenta which are not determined by requirements of
invariance alone.

2. INTRODUCTION AND SUMMARY

~HE effect of relativity on the energy of
the deuteron has been considered by

Blochinzew, ' by Margenau, ' and by Feenberg. '
The discussions of Blochinzew and Margenau
presuppose that the actual two-body problem
can be replaced by a suitable one-body problem
and that the latter can be treated by the Klein-
Gordon equation. These assumptions are incor-
rect. Feenberg's calculation takes into account
only corrections for the kinetic energy of the
two particles. In addition to these, however, it
is necessary' to consider also the terms in the
Hamiltonian which correspond to the interaction
of the orbits of the two particles and which are
formally of the same order of magnitude as the
pure kinetic energy effects. In the present note
the results of calculations which take these
terms into account, together with all terms of
the order v'/c', where v is the velocity of the
particles and c is the velocity of light, are
presented. Since the Hamiltonian to the order
v'/c' can be put into the form of a sum of two
relativistic Dirac Hamiltonians and an inter-
action energy also expressible by means of
Dirac's operators' the corrections to order v'/c2

corresponding to these forms are also given here.
When the motion of two particles is described

by means of Diracian equations there appears

among other terms an interaction between the
spins of the two particles which brings about. an
energy difference between their triplet and
singlet conditions. Calculations given below show
that this energy difference is of the same order
of magnitude although somewhat smaller than
that due to the usual spin dependent Heisenberg
force. In the equations used the order of the
triplet and singlet terms is opposite to the
empirical. Therefore, the spin dependence fol-
lowing from the equations used here cannot be
claimed to be the explanation of the Heisenberg
force. Nevertheless, the results suggest that a
suitable equation could be found in which the
Heisenberg force could be replaced by a rela-
tivistic correction term to the Majorana force.
Whether this is so or not, the fact that a' spin
dependence of the interaction energy of a
magnitude comparable with the empirical arises
out of relativistic Diracian equations indicates
that the spatial dependence of the spin dependent
force is probably different from that of the main
Majorana force and that further one should
consider in addition to energies of type (e&e2)

also energies of type (re~)(re), where v are the
Pauli spin operators for particles 2, 2 and r is
the vector from particle 2 to particle 2, =xi —r2.

Thus for Eq. (17.6) of reference 3 two spin
operators are involved only in the following terms

' G. Breit, Phys. Rev. 51, 248 (1937).Eqs. (16.1), (18.1),
(17.6), (18.2) are respectively Eqs. (1), (2), (1'), (2'). of
present paper.
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D. Blochinzew, Physik. Zeits. Sowjetunion 8, 270
,'1935); H. Margenau, Phys. Rev. 50, 342 (1936).' E. Feenberg, Phys. Rev. 50, 674 (1936).

5'f df dJ8=2'' —J— (ege2)— L"( ) —(r )(r )3+" f=
23Pc' 4M'c' rdr rdr



RELATI VISTI C EFFECTS FOR THE DEUTERON

For S terms this is equivalent to having a spin dependent potential of magnitude'

(i22/6M24 2) 441J(421422)

which depends on r differently from the dependence of Jon r, while for I', D, . terms still different
dependences result. The terms in (421422), («1)(«2) that are discussed here are not required directly
by invariance of order 2I2/c2. It is nevertheless interesting that they disappear only accidentally
when relativistic Diracian forms are used. One may expect that neutrino-electron held theories will
lead to Diracian forms that are invariant to order 2l2/c2 and it is therefore probable, although not
certain, that the (421422), («1)(r422) terms have reality. Wheeler's' and Wigner's' enumerations of
possible rotationally invariant interactions include such terms. The fact that they arise as rela-
tivistic corrections and are only somewhat smaller than the spin dependent Heisenberg part of the
force indicates that not only are they mathematical possibilities but that they most probably
correspond to reality.

2. ORDINARY INTERACTIONS

In reference 3 there were considered two forms of the Hamiltonian for two particles:

I&= —4:(421pl) —4'(422p2) —(pl+ p2) M4:2 —J+-', (421422)J——',-(421r) (422r) (dJ/rdr),

~(421pl) c(422p2) (Pl+p )M2& plP2 J 2 (421422)J 2 (421r) (422r) (dJ/«r)

which when reduced to equivalent Pauli forms give, respectively,

(&)

(2)

pl'+ p2' p14+ p24 &f J
H= 2Mc' —J+ — + ([rX (2p2 —pl) ]421—[rX (2pl —p2) j422) + p, p,2' 8M'c' 43Pc' 2M'c'

f 3' I4 rdf 52f' 'p'p' . (p ——p) —
.

— (p —p) — (&3+4 )
2M'c' 4iM'c' AM'c' dr 8M'c'

4242 df 122r2 d (df )
['r'+r'~1~2 —(«1)(«2) j— —

I
I. (')

42IPc' rdr 8M2c2 dr I.rdr)

p' p'J+2p Jp +Jp ' p' k J
II= 2Mc' J+p + — — + [V IJX p']424 — plp2

8M'c' 8~3c2 4~2c 2 2~2c2

f l2 f' rdfi rdf
I

5f+
I (p -p)- I5f+'o +

23Pc' 4i3f'c' & dr ) 83Pc' dr dr 4rdr)

In Eqs. (I), (2) the quantities 42, P are the usual Dirac matrices, the momenta are denoti d by P,
and the indices I, 2 refer to the two particles. In Eqs. (I'), (2') the notation is similar. The quantities
42 are Pauli's two row square matrices. Summations are understood for x'Pl'. Also

f=dJ/rdr

The nonrelativistic approximation to the deuteron equation is

DP+(M/h')(E+ J)/=0.

(2 I I)

By using this equation, terms in Eqs. (I'), (2') which occur in addition to 2Mc2 —J+(P12+P22)/2M

4 J. A. Wheelqr, Phys. Rev. 50, 643 {1936).
~ E. WigIIer, Phys. Rev. 51, 106 (1937).
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may be said to be of relativistic origin. Inspection of Eqs. (1'), (2') shows that there are among them
terms explicitly involving momenta. In classical analogy these terms depend on the velocity. In
addition there are also present terms which do not depend explicitly on the velocity. Their eR'ects

are not easily distinguishable from J because from an empirical point of view they can be considered
as part of J. The expectation values of the terms are

I 4(P('+P~')4dr = — —I~(E+~)'4'dr =—
8~3(.2$ 4cVc2~

na (D+E)(E+D E/n—a) —0.15m c',
4Mc'(1+ na)

„~
"0L(P('+&~')~+ J(P~'+P~') j4dr =—

8M2c2~

( (D+E) (Dna E)—
ii &J~&dr= 0.31mc2,

2M2c2~ 2Mc' (1+na)

k2
I Pp, Jp,&dr= it J(~g)'d r=

23Pc'~ 23Pc2~

D(E+D)na 2E
&+ +

2Mc'(1+ na) Dn'a' Dna
0.09ntc2,

1
Il f Tp(pgpdr=-

2+f2(-2J
( (D+E) (Dna E)—

ii QJhfdr= 0.3)m(',
2%2(2~ 2Mc'(1+na)

1 (. l(-'
i (1'P 2F(D+I:) na(D+F) (E+D/2)

/fr"x'P ''Pg"/dr= ——= ii /fr~ dr= 0.22m(. ',
2M'(' (Jr' 3fc'o(g iVc'(1+na. )

Pg'+Pp4 O'6 J D+E
J

4dr=- na(D+E) +3E+
8M'c' 4M'c' 4iVc'(1+na)

0.08mc2,

i" df
II pr—r(p..—p, )fd r =

4iM2c'~ dr

2m.k' d l' dP)
I f—le—l«

iV'c'J dr & dr )
E(1—na) (D+E) na(D+E) (E+D/2)

+ 0.34m c',
Mc'na Mc'(1+ na)

5E(D+E) —1..l4mc2.
5k SA' i. dP

I /fr(p. p, )/dr .=——
ii pf dr =—

y 3Pc2~ 23Pc2~ dr

The numerical values are for a=2.3X10—"cm, E= —4.3mc'. In these formulas the second ex-
pression in each case refers to Eq. (3) while the last refers to the case of a constant. J=D through'
0 (r (a and J'=0 for r)a (square well). The quantity n is the reciprocal length

n = ( —ME/0') *'. (4')

Either by means of Eqs. (4) and Eqs, (17.3), (17.4) of reference 3 or by direct calculation using the
spherical symmetry of 5 states one obtains the expectation values

A2

(n~n~)~= I~ I 4~~4 J(&4)' (2/3)(nin. ) L4~—~4+~(&—4')'j I dr,
2~2c2J

A2 (dJ dP
( r)( r)f= II

—re~4 '0 r(&4)—' -(2—/3—)( )&—d. —
2M2c2~ dr df

Here ((r((rz) stands for the expectation value of the corresponding operator. For a, square well

(ning)J =—
Mc'(1+ na)

(E+D)(Dna+E/na) 2 E(E+D)
+12 p

3 3fc20(0,
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E(D+E)
(nor) (n~r) f=—, [1+(na) 'D/2E+ -', (1+na) (&r,&r,)].Mc'(1+ na) na

(5' )

According to Eq. (17') of reference 3, the sum of corrections of order v'/c' that correspond to Eq.
(1) is

P14+P24
(~E) i = — — +k(nin2) ~—

2 (nor) (n~r)f,
SM'c2 43Pc'

(6.1)

and according to Eq. (18) of reference 3, the sum of similar corrections that correspond to Eq. (2) is

P'' P''~+2 p'~p'+
(~E) = E — +

i=1, 2 8~3C2
—

2 (n&n&) J-k(nor) (nmr)f (6.2)

From these formulas and the Eqs. (5) the corrections can be computed. One finds

( rdJ
(&iE) &

——
I Ephor 3J(~p)—' p'D J [pA—p —(vp—)']—(2/3) (&r«r2)lp 6J dr|

4M'c'~ (lr
(7.1)

�

52 r(LJ
(&iE)2= ' (E 2J)4~4+—3-f(&4)' 4'&i-f —[4&F4— (&4)'] —&Ir

4M'c'& dr
(7.2)

For square wells these become

(D+E)[4Dn'a'+E(n'a'+ 3na+8) ] 2E(E+D)
(~E)i=- +1&2

&

4Mc'(1+ na) na 32Vc'nc
(8.1)

D+Ii (1 na 1 )
(&iE) ~ = —Dna, +L'i +

Mc'(1+ na) E 4 4 nai
(8.2)

By using these formulas the numerica1 values in TABLL II. Relativistic corrections for J=Ae "' computed

Tbl Ia e were o taine . e va ues or ave a )($0—13c and A 7Z3
bt' d Th I f 'Sh by using numerically integrated eave functions, for n '~Z.3

TABLE I. Relativistic corrections for square wells. Energies
in units of mc'. (AI() i 'S

—0.025

(d, I'")i iS

—0.34

L (3S) —Li('S)

0.32 0.26
amc2ie2 =

1S
1S,

gi'i (3S) gi (1S)

0.50 0.7 5 1.00 1.25 1.50

—0.023 —0.034 —0.026 —0.020 —0.016—2.45 —0.82 —0.39 —0.22 —0.14

2.43 0.79 0.36 0.20 0.12

1.47 0.50 0.24 0.14 0.09

2.00

—0.012—0.067

0.06

0.05

minimum in the range shown and go through

zero at nu 0.29. The deuteron energy was taken
to be —4.35mc2 in this and in Table II.

Collecting terms of order v2/c2 that contain
the p, explicitly in Eqs. (1), (2) one obtains for
a square well

D+E —

f 7 3nai 3 (D+E)E — 3~' 13 p3 3 i
(~E), = E( -+

(
—Dna =

jVc'(1 +na) (4 4 ) 4 Mc'(1+ na) 16na 4 (2

D+E f'11 3 3nai 5
(~E)& =, Ei + + I+—D«

Mc'(1+na) E 4 na 4 & 4

(D+E)E, C 5~'i 1 1 p 5 1i
i
—+-+I ——

1
a+

Mc'(1+na) 0 16 ) na 4 (m2 2)

(8 3)

(8.4)
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where the first three terms of the series

2 ( 4i (32 8 i
4n2a2 na ( e&) (e4 3m'&J

(8.5)

have been used. It is curious that the coefficients in the square bracket of Eq. (8.4) are small and that
the first three terms of the series in the square bracket partly cancel each other for a = 2.3 X 10 "cm;
For this range of force (AE)z' is practically negligible. For the same range (AE)&' ———0.58mc'.

It should be noted that the relativistic correction to the energy of the deuteron or any other
nucleus with atomic weight )1 is not unique. Thus (AE)&', (DE)&' are as justifiable corrections as
(AE)q, (AE)2 so far as invariance of the equations is concerned. However the (dE)' do not have a
simple obvious counterpart in a Diracian form and may from this point of view be regarded as less
probable. It should also be noted that terms in relative velocities such as —(3'/4iM'c')(r(p2 —p&))

may be added to the Hamiltonian without destroying its invariance. These terms are not negligible.
Thus for a=2.3)&10 "cm

f(r(p2 —p, )) = —1.14mc', (r(p, —p, )) =0.34mc'.
4i~'c' 4iM'c' dr

Since these values are of the same order of magnitude as (AE)~ and (DE)~ and are larger than the
absolute value of the correction to the kinetic energy —(p, '+p2')/83IPc'= —0.15mc' one must
regard the relativistic corrections made so far in the combined theory of H', H' as uncertain' not
only because they do not take into account terms like Jp&pm/23Pc' that are essential for invariance
but also because the requirement of invariance does not suffice to fix all the parts of the Hamiltonian
that contain the velocity explicitly.

It can be shown that
3. ExcIIAN(.".E INTERAcTIoN

H= —c(n,p, ) -c(n,p, ) —(P,+P,)iVc —JP +-, (n,n, )JP ——,(n, r)(n, r)fP
Z

I([(p2—p~) Xe~] r)(n2r)f+f(nor)(r [(pi —
pm) Xem]+([(p~ —pi) Xei] n~) J

4Mc

+J(«[(p~ —p~) Xe~]) IP" (9)

is invariant to order v'/c'. Here P™is the Majorana exchange operator which exchanges in this
equation only the space coordinates. There are other equations but the above was used because
it is analogous to Eq. (1). The proof of the invariance of this equation will be given in another
paper. One finds for the expectation values

(n&n2) JP~= I IfJ&P+J(VP)' (2/3)(eie~)[—PJ&$ —J(gP)'] Idr'c'J
(D+E)E 2 (D+E) (Dna+E/na)

+ (ele2) (9.1)
3fc'na 3 3Ic'(1+na)

pdJ dP 2 df
(n~r) (n, r)fP =

I
— 2P +rPDP+r(—~P)—' (e&e2)g dr—— —

2M'c'~ dr dr 3

(D+E)E D 2
n'a'+3+4na+2n'a'+ (e&ep) (1+na)—, (9.2)

3fc'na(1+ na) 2E 3

'W. Rarita and R. D. Present, Phys. Rev. 51, 788 (1937).
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z——I(C:(p&—pi) Xei] r)(e2r)f+f(e|r)(r L(pi —p:) &&eml+(L(p2 —pi) Xeij e~)g
4)Vr.

dJ dP
+J(e|.L(p& —p2) Xe2j) }P = (cia&) I L

—4~4+(&4)'j~——4—d
33Pc' dr dr

2 D+E Dna+E/na E
=-(eadem), +— (9 3)

3 Mc' 1+na na

and the whole correction is obtained by a formula similar to Eq. (6.1). For a square well this is

(D+E)(2Dna+E(8i'na+9+5na) j D+E Dna+E/na E
(~E)- =- + (eie2) +-

4M'c'(1+ na) 3fc' 1+oa 3+a

TABI.E III. Relativistic exchange corrections for Eg. (0).

'S

0.50

2.08

0.82

0.58

1.00

0.36
{&)exc

Z...( S)-Z...( S)

—2."16 —0.73 —0.45

4.84 1.31 0.8 1.

For E,= —4.3nzc', a=2.3&10—"cm, ma=0. 533,
D=56 1mc' . one obtains from Eq. (10) (AE),„,
=0.58mc' for the '5 state and —0.73mc' for
the '5 state. Other values are given in Table III.

The spin dependence of the interaction fol-

lowing from Eq. (9) is greater than that corre-
sponding to Eq. (1). By using a range of force
only somewhat smaller than the accepted range
it is possible to have the spin dependence equal
in magnitude but opposite in sign to the empirical
value 5mc'. Eq. (9) is only one of many possible

forms of invariant equations. It is therefore
possible, although not certain, that the empirical
spin dependence can be explained as a conse-
quence of a simple interaction between particles
obeying Dirac's equation. Such an explanation
would not be an ultimate one but would be
useful in indicating the sort of held theory that
should be used for explaining the interaction
between heavy particles.

The relatively large magnitude of the spin-spin
interactions obtained here indicates that: (a) The
spatial dependence of spin dependent forces is
likely to be different from the forces averaged
over all spin directions. (b) The determination
of the magnitude of the Heisenberg force from
the empirically known spin dependence of the
deuteron energy is questionable.
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