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A Stern-Gerlach experiment furnishes a convenient method of studying the velocity dis-
tribution in a molecular beam. In addition it is possible to obtain some information concerning
the behavior of the field gradient as a function of position. This method has been applied to a
beam of alkali atoms and shows that with low vapor pressure in the oven the Maxwell dis-
tribution law is fulfilled whereas at oven pressures such that the mean free path is much less
than the width of the oven slit a departure sets in. It is found that the field gradient is quite
uniform over almost half the trough height for deflections inside the trough. Toward the wedge

the gradient varies rapidly.

OMPARATIVELY little accurate work has
been done on the analysis of the distribution
in velocity of the molecules in a molecular beam.
Although several methods are available for dis-
persing the molecules according to velocity there
are certain serious difficulties associated with
each. Use of rotating slits or sectored disks, the
method used by several investigators! involves
the attainment of very high and constant periph-
eral speeds of the rotating parts. In addition
there is considerable loss of intensity in the
beam. Such work has yielded only qualitative
agreement with the Maxwell distribution law.
Experiments on deflection by inhomogeneous
electric fields® have yielded a dispersion insuf-
ficient for accurate velocity analysis. In order to
secure appreciable resolving power with this
method it would be necessary to use potentials
and gradients considerably greater than those
used in the past. The well-known method of de-
flection by an inhomogeneous magnetic field has
been successfully applied to the measurement of
atomic and nuclear magnetic moments as well
as to secure a beam of single-velocity atoms.?
However, no accurate extensive study has been
made for the purpose of determining the velocity
distribution in the beam. Particularly well
adapted to this work are the alkali metals for
whose detection we have the Taylor-Langmuir
gauge* by far the most sensitive, accurate, and
convenient molecular beam detector available.
1Stern, Zeits. f. Physik 2, 49 (1920); Eldridge, Phys.
Rev. 30, 931 (1927).
2 Estermann, Zeits. f. physik. Chemie B1, 161 (1928);
Scheffers and Stark, Physik. Zeits. 25, 452 (1934).

3 Rabi and Cohen, Phys. Rev. 46, 707 (1934).
4 Taylor, Zeits. f. Physik 57, 242 (1929).

A simple and rugged velocity analyzer of fair
resolving power, even though limited to the
alkalis will enable one to investigate several
rather interesting problems. One question which
almost every investigator in the molecular beam
field must have asked himself is whether the dis-
tribution in velocity in the beam is that of
Maxwell. It has been assumed that if the oven
pressure is low enough so that the mean free
path in the oven is large compared to the width
of the slit, this will be true. If it were not for the
need of greater oven pressures in many experi-
ments this would be a sufficient answer. When
high beam intensities are required the experi-
menter is immediately faced with the question of
just how large the mean free path must be in
order to preserve, approximately, the Maxwell
distribution. This can be answered only by a
velocity analysis of the beam.

THEORY OF THE ANALYZER

An essential condition for the satisfactory
operation of a velocity analyzer of the magnetic
type is that the gradient of the magnetic field
be very nearly constant over the height of the
beam, otherwise atoms of the same velocity may
suffer quite different deflections depending upon
how far they are from the center of the beam.
Taylor® has shown by direct measurement, that
in the so-called “Hamburg set-up” in which the
beam is sent through the field just at the edge of
the trough, this condition is very well realized,
provided the beam height is not much more than
one quarter of the height of the trough. We find

5 Fraser, Molecular Rays (Cambridge, 1931), p. 120.
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Fic. 1. Arrangement of the analyzer; ’, effective

source slit; S, defining slit; I, beam path in the field;
ly, beam path after traversing field; d, width of detector
wire; s, distance from center of detector wire to center of
undeflected beam.

no observable difference in the form of the in-
tensity curve for beam heights of 1.6 and 3.25
mm. The total trough height is 8 mm. We take
this to indicate a constant gradient over this
distance.

Let us consider the resolving power which may
be realized with a velocity analyzer of this type.
Fig. 1 represents the schematic arrangement of
the system. The beam is defined by slits S’ and
S’’, separated by a distance /o, and is detected by
a wire of diameter d free to move laterally in the
plane 0. In the region [, the atoms are accelerated
in a direction normal to that of their original
motion by an inhomogeneous magnetic field,
while the region I, is field free. In the absence of
an applied field the curve representing the
number of atoms crossing the plane 0 per unit
time between s and s+As will if the slits be cor-
rectly aligned, be a trapezoid whose width at
one-half its maximum height is

2a=((lo+li+12) /lo)w", (1)

where w" is the width of slit "’ (Fig. 2).

In the presence of a field, atems having a
velocity v will give rise to a precisely similar dis-
tribution but shifted bodily by an amount

s=(1/2m)u0H/3S)(l2+20l).  (2)

Atoms of velocities v and v+Av will then give
rise to a distribution represented by the super-
position of two such trapezoids, the separation
of their centers being

As=(2s/v)Av. (3)

If a detector of width d is now run across this
pattern its response will measure the total in-
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Fic. 2. Distribution of intensity in (4) undeflected
beam; (B) deflection pattern of atoms with velocity v;
(C) deflection pattern of atoms with velocities v+Av.

tensity in the pattern between the limits s-+3d
and s—1id, where s is the position of the center
of ‘the wire. A sufficient condition for resolution,
if d is less than 2a, is that As be greater than
(2a+d). In this case

V/AV =2s/(2a+d). (4)

With the apparatus to be described, the resolving
power obtained for a typical curve is about 13 in
the region of the most probable velocity of the
Maxwell distribution characteristic of 450°K.
Clearly the resolution increases as the velocities
decrease. As the dispersion increases the intensity
decreases correspondingly. We see from (2) that
the gradient is the most easily adjusted param-
eter, so that in order to study any particular
velocity range one may choose a value of the
gradient to compromise between convenient
intensity and sufficient resolving power.

Inspection of (1) and (2) shows that to design
the instrument for high resolving power one must
use narrow slits, as long a path in the field as is
possible, and reduce the constant @ by making /o
comparible to I;+1.. Very little will be gained by
increasing I, much above /; since a gain in de-
flection will be offset by an increase in a.

In order to obtain a calibration curve for the
instrument (velocity vs. deflection) we have used
as a source an oven operating at a vapor pressure
so low that the Maxwell velocity distribution is
certainly realized. The form of the intensity dis-
tribution curve to be expected may be calculated
if the displacement of the beam by the field is so
small that the gradient of the field may be
assumed to be constant. If, by suitable choice of
parameters, a curve of the computed form may
be fitted to the data, it appears to be a reasonable
inference that the gradient is essentially constant.
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Fi16. 3. Plan of apparatus. Oven position O and parts marked S and C are used only
in connection with work described in the following paper.

However it seems desirable to see to just what
extent a small variation in the gradient may be
concealed by a suitable choice of parameters,
i.e., of the effective or apparent gradient and of
the constants introduced by finite width of slits
and detector wire.

Consider the form of the distribution to be
expected if we assume, not a constant gradient
but merely that atoms of velocity v passing
through the field suffer a deflection  and write

v=F(n). ©)

For the number of atoms which, in the absence
of field, pass through the plane of the detector
within a region of width d¢ at ¢ and which have
velocities within dv at v let us write

N@)P(¢)d&d.

P(§) gives the form of the undeviated beam.
For the present we will assume merely that it is
symmetrical about £=0. Both N(v) and P(§)
are normalized to unity. In the presence of a
field these atoms will be deflected a distance 3
given by (5) and the number of atoms crossing
the plane of the detector in ds at s will be given by

f=to
I'(s)= f Fs+5P(Hdeds,  (6)
£E=0

where F(s+§¢)=N(v)dv in which v has been
expressed explicitly in terms n=s+4¢ by means
of (5).

Expanding F(s+£) about £=0 by Taylor’s
series and remembering that because of the

symmetry of P(¢) all odd moments vanish, we
obtain

nes F¥0(s)
I'(s)= Eﬂ . M(2n), 7

where

-+oo
M(2n) = f np(8)dt

—

is the 2nth moment of the field free distribution.
The detector wire of width 26 with its center
at s measures

a+b
I"(s)= f 1(s)ds, )

which may be written

n=m r=0 M(2n) b%¥t1
I's)=% e
n=0 =0 (2n)! (2r41)!

F2n+2r(s), (9)

in which the term bM(0) F(s) gives the form of the
distribution curve for infinitesimal widths of slit
and detector. In any region in which the remain-
ing terms are small we may evaluate them using
for the function (5) that form appropriate for the
case of a rigorously constant gradient. Now
fortunately these terms do become small as s
becomes large, and it is only for large s that the
question of constancy of gradient becomes serious.
Writing (9) in the form

bM(0)F(s)=1"(s)
n=c r=w0 M(2n) b+l
2n! (2r+1)!

F2n+2r(s) (10)

n=1 r=1
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and integrating, we have
5M(0) f F(s)ds= f I"(s)ds—AI", (11)
0 0

where the integral on the left-hand side repre-
sents the integrated intensity which would be
observed in an apparatus with infinitesimal
width of slits and detector. Consequently those
values of s and v for which

f N(v)dv

(o]

bM(O)st(s)ds

=— (12)
B M(0) f F(s)ds f N()dv

must satisfy the equation v=f(s).
If we assume the atoms in the beam to have
the Maxwell distribution of velocities

N(v)dv= Ny exp[ —mv*/2KT Jv*dv= Nie *xdx,

where x=mv?/2KT =1v/v,2,

the integral on the right side of (12) is merely
e*(x+1) while the quantity on the left may be
obtained by graphical integration of the ob-
served intensity distribution curves. AI” can
be calculated only approximately, however its
value proves to be of the order of one-half to
two percent of S I'(s)ds over the useful range
of the intensity curve, so that an approximate
evaluation is sufficient. The series for AI”" con-
verges so rapidly for large s that only the first
term is appreciable.

APPARATUS

The apparatus is illustrated schematically in
Fig. 3. The chamber walls are of brass tubing
closed on the ends with brass disks sealed with
wax. The system is divided into two parts, an
oven chamber and a beam chamber, which are
pumped independently. Communication between
the two is through slit .§’. During runs the
pressure in the beam chamber is ‘‘flat” as re-
corded on a McLeod gauge with a constant of
3.6 X107 while in the oven chamber the gauge
may read from 2 to 6 X10~"mm Hg. The oven is
similar in design to that used in other experi-
ments with alkali beams.? The oven slit jaws are
of rectangular cross section, 2 mm thick.
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The beam is effectively defined by slits .S’ and
S”’, the oven slit being considerably wider than
either of them. By defining the beam in this
manner scattering which occurs in the beam
itself as well as by foreign gases in the oven
chamber does not cause appreciable broadening
of the beam with consequent loss in resolving
power.

The magnetic field is produced by an electro-
magnet with Stern-Gerlach type pole pieces
made of Armco iron. These pole pieces are held
in position inside the vacuum system by a pair
of bronze rings to which they are bolted. The
slit-holders are carried on a brass tube which
slides into one of the bronze rings in such a way
that it may be removed for cleaning and be re-
placed without disturbing the alignment. The
oven supports are attached rigidly to the slit
unit. In this way the beam always traverses the
same region of the magnetic field. Fig. 4 illus-
trates a side view of the pole piece unit with the
slit unit in place.

The slit widths used were 0.15 mm for the
oven, 0.022 mm for S/, and 0.024 mm for S”.
Slits S’ and S are each formed by a pair of
knife edged jaws. A pair of brass stops set into
the trough pole piece limits the height of the
beam to 3.25 mm. The distance between S’ and
S’ is 5 cm, the length of pole pieces 7.5 cm, and
the path from the end of the pole pieces to the
detector 13 cm. The angle of the wedge pole
piece is 77°, the trough height, 8 mm; the
distance of the vertex of the wedge from the
plane of the trough 4 mm.

The detector wire is pure tungsten 0.002"
diameter, maintained at 45 volts above ground
potential. The atoms after ionization are col:
lected by a nickel plate connected to the grid of

|

F1c. 4. Side view of slit and pole piece units.
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GALVANOMETER DEFLECTION

30.
WIRE POSITION

(a)

40 30
WIRE  POSITION

(b)

FiG. 5. (a) A. Intensity distribution in typical undeviated beam. B. Intensity distribution in deflection pattern, magnet
current 6 amp. C. Graphical integral of B as a function of s. (b) Same as (a) but for magnet current 9 amp.

an F. P. 54 vacuum tube amplifier. As beam
intensities vary over a factor of 500, the amplifier
sensitivity is varied by using several grid leaks
whose resistances range from 108 to 2 X109~ so
that in any single run only potentials less than
0.05 volt are applied to the grid. In this region
the response of the amplifier is quite linear. The
detector wire is carried eccentrically on a conical
spindle bearing which can be rotated externally
by means of a ground glass joint. A telemicro-

scope with an ocular micrometer magnifying 80

times is used to measure the position of the
detector wire. The observed galvanometer deflec-
tions are corrected for amplifier drift and
residual ion emission of the wire by cutting off
the beam after every few readings with a mag-
netically operated shutter.

CALIBRATION OF THE ANALYZER

Figures 5(a) and (b) represent two typical
experimental curves taken with magnet currents
of 6 and 9 amperes. The small triangles are
points of the undeviated beam, the circles those
of the velocity spectra, while the solid curves
marked C represent the results of graphical
integration. If corresponding to any value of x
we calculate the value of e~*(x+1) we may pick
the corresponding value of s from the curve.
This procedure may be used to obtain values of
s as a function of x. The short horizontal dashes

represent the ordinates for x=1 namely, 0.7359.
The corresponding values of s are the absgissas
of the intersections, or the s,’s. For a constant
gradient (5) takes the form (2), from which it
is evident that the product sx should be constant.
A plot of sx against s is given in Fig. 6. Curves 4
and A’ are for the beam defined vertically by
stops 3.25 mm high and deflected toward the
trough. These curves show the gradient to be
constant to within one percent. Curve A’
represents sx under the same conditions (oven
pressure 0.004 mm Hg, 9 amperes magnet
current) but deflected toward the wedge. The field
gradient is evidently not constant on this side.
As constancy of the gradient greatly simplifies
the interpretation of the results we have used the
beam deflected toward the trough exclusively.
Curve D shows the result of a run made with the
beam limited to a height of 6 mm. Clearly the
gradient at the upper and lower extremes varies
rapidly, the average being roughly represented
by curve D. Curves B and C show the effect of
increasing the oven vapor pressure until the
mean free path becomes smaller than the width
of the oven slit. B was taken with an oven
pressure of 0.13 mm Hg, (m.f.p. ~0.04 mm)
while C was taken at 1.4 mm Hg (m.f.p. ~0.003
mm) while in both the beam stops were the same
as in case A. The difference is no doubt due to a
departure from the Maxwell distribution. This
point will be discussed in more detail later.
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It has frequently been assumed that the in-
tensity distribution in the observed deflection
pattern may be represented by the well-known
formula of Stern.®

IO 3/ (s+a’)
IOII(s) =Zl[e“y(y+ 1)]311/(3-—11’)‘ (14)
One may readily show that for s large enough so
that only the first term in AI” is appreciable this
equation should be valid. It gives the density of
atoms incident upon the plane of the detector if
the intensity in the undeviated beam is constant
over a breadth 24’ and zero outside this region.
It is merely (6) with P(¢)=3a’ for |¢| <a' and
P(£)=0 for |£] >a'. In this case the integration
may be carried out and gives (14). Instead of
integrating, we may expand as we did in the
general case and obtain the Stern formula in a
form more convenient for comparison with (9):

This gives

, n=co M (2”)
L= T ——F). (15
n=0 n!
1 1
v ) 40" 30 20 o
WIRE POSITION
F1G. 6. Product sx as a function of s:
A Beam height 3.25 mm, oven pressure 0.004 mm, magnet
current 6 amp.
A’ Beam height 3.25 mm, oven pressure 0.004 mm, magnet
v _current 9 amp.
A’’ Beam height 3.25 mm, oven pressure 0.004 mm, magnet
current 9 amp. (wedge).
B Beam height 3.25 mm, oven pressure 0.13 mm, magnet
current 6 amp.
C Beam height 3.25 mm, oven pressure 1.4 mm, magnet
current 9 amp.
D Beam height 6 mm, oven pressure 0.004 mm, magnet

current 9 amp.

6 Stern, Zeits. f. Physik 41, 563 (1927).
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I’ = nim M(Zn) p2r—n)+1 . o
(S)_ﬂvé){rmo 2n! 2(v—n)+1]! (9)-16)

If the undeviated beam is a rectangle of width
2a this becomes

(b*+a?)
I'(s)= bl F(s) +TF2(S)
a*+-b*+10a%?
=]+
5!
expanding (15)
a’2F2 a’4

I"() = F(s) F——() +—F¥(s) -+, (17)
3! 5!

If a'?=a%+-b? these will evidently not differ until
the third term becomes of importance. It should
perhaps be pointed out that under these circum-
stances the breadth of the observed undeviated
beam at half-maximum intensity is a, not
(@*+b?)% For any other form of P(§) the higher
moments will be larger than for the rectangle,
so that the comparison is for the most favorable
case.

The solid curve of Fig. 7 shows the calculated
intensity while the circles show the observed
points for the velocity spectrum of Fig. 5(a).
For the evaluation of the intensity (14) was used
in the region of the maximum while the first two
terms of (17) were used for larger s. The higher

o 100 80

P=.004

— %[a(m)]:::

3
T

© OBSERVED POINTS

b ] °
t e}

- 1 I 1 4

0 0

A0 30
WIRE POSITION

Fi1G. 7. Comparison between calculated and observed
intensities for spectrum of Fig. 5(a). Points labeled 4, B,
C, E and F represent deflections of (3)7%, (2)73, 1, (2)3, (3)}
and 2 times v,.
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terms in (17) are negligible when s >s,/3. s, was
evaluated by the use of (12).

Unless s, >20a the error introduced by assum-
ing a rectangular form for P(¢) becomes sig-
nificant in the region of the maximum. The
agreement between the observed and calculated
values is well within the experimental error for
$>5/3. The difference is slightly higher for
smaller s but this is probably due to the error
introduced by the use of the Stern formula in
this region. A trapezoidal distribution improved
the fit in the one case for which the necessary
calculations were carried out. Its principal effect
was to shift the peak of the curve about 1/10
division farther from the center. With a higher
gradient and consequent increased resolution

(s«=45) the fit is satisfactory even in the region-

s=54/3.

The uncertainty in the observed points due to
fluctuations in oven pressure and to electrical
disturbances affecting the amplifier ranges from
about one percent near the maximum to about
ten percent beyond 2s,. In runs made with
several values of the field gradient at oven
pressures of 0.01 mm (potassium) and 0.04 mm
(sodium) there is no evidence of systematic devi-
ation from the Maxwell distribution, the cal-
culated curves fitting- the observations in sub-
stantially the same way as in Fig. 7. At the
higher pressure (0.04 mm Hg) the mean free
path in the oven is approximately equal to the
width of the oven slit. This slit has the form of a
canal 0.15 mm wide by 2 mm long so that one
might very well expect forward scattering to
produce some deviation from the Maxwell dis-
tribution.

EFrFeEcT oF OVEN PRESSURE ON
VELocCITY DISTRIBUTION

At higher pressures the effect of forward
scattering becomes clearly evident. A distinct
departure from the Maxwell distribution is
shown by the velocity spectrum in Fig. 8. Here
we have a curve taken with an oven pressure of
1.4 mm. At this pressure the mean free path is

V. W. COHEN AND A. ELLETT
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F1G. 8. Comparison of calculated and observed distribu-
tions for oven pressure of 1.4 mm Hg.

about 0.003 mm. The solid line represents the
distribution as calculated for the appropriate
temperature, assuming a Maxwell distribution.
Clearly there is a deficiency of slow atoms. One
might, at first glance, suppose that a better fit
might be produced by assuming a smaller value
for s,. However, if one were to fit a theoretical
curve in the region of s,, the peak would occur
at P which is clearly outside the limits of error.”
At oven pressures of 0.13 and 0.5 mm deviations
from the Maxwell distribution are observed but
to a less extent than at the higher pressure. If
one were to attempt to measure the atomic mag-
netic moment from the observed intensity dis-
tribution of Fig. (8) using the method of equal
intensities,® the error introduced would range
from 2 percent for points chosen near the
maximum, to about 7 percent for points taken
at three-tenths of the peak height.

From the above results one can draw no certain
inference concerning the distribution from a slit
of different form. If it were desired to preserve
the Maxwell distribution at high beam pressures
one would expect that the use of narrow knife-
edged slits would tend to eliminate forward
scattering.

7 This would also imply a change in calibration, amount-

ing to 13 percent. A recheck of the calibration failed to
reveal any such error. :



