The Third Spectrum of Cerium (Ce III)

HENRY NORRIS RUSSELL, Princeton University, Princeton, New Jersey ROBERT B. KING, Massachusetts Institute of Technology, Cambridge, Massachusetts AND

> R. J. LANG, University of Alberta, Edmonton, Alberta, Canada (Received June 24, 1937)

Thirty-three triplet and singlet terms of Ce III have been recognized, and account for 294 lines, including almost all of wave-length exceeding 2000A. The electron configurations 4f5d, 4f6p, $(5d)^2$, 4f6s, 4f6d, and 5d6s, have been almost completely identified. The last three show evidence of JJ coupling. Zeeman data by de Bruin and King confirm the classification. The lowest known level is 4f5d ${}^{1}G_{4}$ and the ionization potential from this to 4f ${}^{2}F_{24}$ of Ce IV is 19.5 volts. The $(4f)^{2}$ configuration may be lower, but has not been discovered, as its combinations lie in the infrared and the far ultraviolet. The ultimate lines must be in the infrared, as is probably the case for the third spectrum of most of the rare earths.

MANY strong lines of cerium in the ultraviolet evidently arise from doubly ionized atoms. A list of these was published by A. S. and R. B. King in 1932.¹ The first attempt to analyze the spectrum was made by Kalia,² who found a considerable array of energy levels. Almost all these are real, although their interpretation by means of electron configurations and terms requires change.

Recently de Bruin³ has published observations of the Zeeman effect, which he employs to correct Kalia's term designations (while confirming his energy levels). The g values, though somewhat perturbed, suffice for unequivocal identification of the term components.

The present work was begun more than three years ago. It is based upon the observations of the Kings at Mount Wilson and on measures with the vacuum spectrograph at Edmonton by Lang, and has resulted in the classification of all but a few weak lines with wave-lengths greater than 2100A, and many beyond this.

In the region of longer wave-length the lines fall into two classes, one sharp, the other diffuse. From general experience it was certain in advance⁴ that the former arise from transitions between low and middle energy-levels, and the latter from transitions between these and higher levels. It was soon found that the sharp and diffuse lines corresponded to transitions from Kalia's "low" levels to other groups lying on opposite sides of them, showing that these were really the middle levels and that Kalia's energy scheme was upside down.

The same correction has been made by de Bruin without, however, identifying the high levels or all the lower ones.

An extensive scheme of levels was thus developed. They should form a system of triplets and singlets. To group these into terms was not easy. As might be expected for so heavy an atom, the separations of the components are very wide; the interval rules are not even roughly obeyed; the various terms overlap extensively, and intersystem combinations are strong. Some tentative multiplets were picked out and confirmed by Zeeman observations. These measures [obtained by one of us (R.B.K.) in Pasadena] did not completely resolve any patterns and hardly permitted the calculation of exact g values; but they settled without doubt which levels had the larger inner quantum numbers and showed that the arrangement of the components was "normal" -as might have been assumed in advance, since Ce III is a two-electron system. It was not, however, till the analysis was far advanced that the actual J values could be determined.

It finally became clear that the lowest levels represented a group of triplet and singlet P D F G H terms, of which the lowest is the ¹G

¹A. S. and R. B. King, Astrophys. J. **75**, 40 (1932); Mt. Wilson Contribution No. 441.

² Kalia, Ind. J. Phys. 8, 137 (1933). ³ de Bruin, Proc. Kon. Akad. Wet. Amsterdam 40, 334

^{(1937).} ⁴ Astrophys. J. **75**, 44 (1932); Mt. Wilson Contribution No. 441, p. 5.

term. Above these and conspicuously isolated were a ${}^{3}F$ and ${}^{1}F$. The lowest of the middle terms was ${}^{3}F$, followed by ${}^{3}P$, ${}^{3}G {}^{3}F {}^{3}D$, ${}^{1}F$ and two ${}^{1}D$ and ${}^{1}G$ terms.

This unprecedented arrangement can be completely explained if the electron configuration of lowest energy is 4f5d, followed by 4f6s. The middle levels are then $5d^2$ and 4f6p, which account for everything, except one ${}^{1}S$ term predicted and not found (as usually happens). This analysis was completed long before the publication of de Bruin's work, which agrees completely in the assignment of the configurations 4f6s and 4f6p. His unclassified term X_4 is our $d^2 {}^{1}G_4$.

A considerable portion of the array 4f5d - 4f6p

Electron			LEVEL	g	Electron		/	LEVEL	p
CONFIGURATION	TERM	LEVEL	SEPARATIONS	OBS.	CONFIGURATION	TERM	LEVEL	SEPARATIONS	OBS.
4f5d	${}^{1}G_{4}{}^{0}$	0.00			4f6p	${}^{1}F_{3}$	47097.24		1.16
4f5d	${}^{3}F_{2}{}^{0}$ ${}^{3}F_{3}{}^{0}$ ${}^{3}F_{4}{}^{0}$	545.06 2225.60 3873.55	1680.54 1647.95		4f6p	${}^{3}D_{1}$ ${}^{3}D_{2}$ ${}^{3}D_{3}$	48654.50 48362.87 50338.35	-291.63 1975.48	$0.40 \\ 0.99 \\ 1.24$
4f5d	${}^{3}H_{4}{}^{0}$ ${}^{3}H_{5}{}^{0}$	1850.80 3084.50	$1233.70 \\ 1989.17$		4f6p	1G4	51271.60		1.05
	${}^{3}H_{6}{}^{0}$	5073.67			4f6p	${}^{1}D_{2}$	51278.60		1.08
4f5d	${}^{3}G_{3}{}^{0}$ ${}^{3}G_{4}{}^{0}$ ${}^{3}G_{5}{}^{0}$	2988.50 4560.03 6048.86	$1571.53 \\ 1488.83$		5d6s	${}^{3}D_{1}$ ${}^{3}D_{2}$ ${}^{3}D_{3}$	$\begin{array}{c} 60056.73 \\ 60732.25 \\ 62272.37 \end{array}$	675.52 1540.12	
4f5d	${}^{1}D_{2}{}^{0}$	3294.49			5d6s	${}^{1}D_{2}$	62556.2		
4f5d	${}^{3}D_{1}{}^{0}$ ${}^{3}D_{2}{}^{0}$ ${}^{3}D_{3}{}^{0}$	5645.27 6623.64 6849.73	978.37 226.09		4f6d	${}^3F_2{}^0$ ${}^3F_3{}^0$ ${}^3F_4{}^0$	86070.10 86382.36 88559.72	312.26 2177.36	
4f5d	${}^{3}P_{0}{}^{0}$ ${}^{3}P_{1}{}^{0}$ ${}^{3}P_{2}{}^{0}$	8300.30 8335.77 9364.66	35.47 1028.89		4f6d	${}^{3}D_{1}{}^{0}$ ${}^{3}D_{2}{}^{0}$ ${}^{3}D_{3}{}^{0}$	86315.47 86943.54 88800.69	628.07 1857.15	
4f5d	¹ F ₃ ⁰	9223.85			4f6d	${}^{3}G_{3}{}^{0}$ ${}^{3}G_{4}{}^{0}$	86463.55 86806.82?	$343.27 \\ 2093.58$	
4f5d	${}^{1}H_{5}{}^{0}$	12875.22				${}^{3}G_{5}{}^{0}$	88900.40		
4f5d	${}^{1}P_{1}^{0}$	15166.50	220.25	0.667	4f6d	${}^{3}H_{4}{}^{0}$ ${}^{3}H_{5}{}^{0}$	86765.35 87379.07	613.72 1867.48	
4/03	${}^{3}F_{3}^{0}$ ${}^{3}F_{4}^{0}$	16186.52 18198.60	228.25 2012.08	0.665 1.07 1.27	4f6d	${}^{3}H_{6}^{0}$ ${}^{3}P_{0}^{0}$ ${}^{3}P_{1}^{0}$	89240.55	1826.69	
4f6s	${}^{1}F_{3}{}^{0}$	18571.47		1.035		${}^{3}\bar{P}_{2}^{1}$	89425.35	1020.07	
$(5d)^2$	${}^{3}F_{2}$ ${}^{3}F_{2}$	37163.31	1498.32		4f6d	${}^{1}F_{3}{}^{0}$	88642.27		
	${}^{3}F_{4}$	40240.45	1576.62		4f6d	${}^{1}G_{4}{}^{0}$	88480.12		
$(5d)^2$	¹ D ₂	43612.74			4f6d	${}^{1}D_{2}{}^{0}$	88738.90		
$(5d)^2$	${}^{3}P_{0}$ ${}^{3}P_{1}$	44798.84 45396.93	598.09 1369.59		4f6d	${}^{1}H_{5}{}^{0}$	89946.60		
4f6 <i>p</i>	$^{3}P_{2}$ $^{3}G_{2}$	46766.52 44989 30	4173 93	0.87	54642	$ \begin{array}{c} 1^{0} \\ 2_{3^{0}} \\ 3_{1^{0}} \end{array} $	88455.93 88674.42 02288.61		
- <i>J ° K</i>	${}^{3}G_{4}$ ${}^{3}G_{5}$	49163.23 50916.11	1752.88	1.135 1.21	54021	$4_{2^{0}}$ $5_{3^{0}}$	92548.41 92744.25		
4f6p	${}^{3}F_{2}$ ${}^{3}F_{3}$ ${}^{3}F_{4}$	$\begin{array}{r} 45127.12 \\ 47984.35 \\ 48011.78 \end{array}$	2857.23 27.43	0.85 0.29 1.90			93097.15 94686.28 95890.54 97689.62		
$(5d)^2$	¹ G ₄	46780.19		1.06		1010	98907.75		

TABLE I. Relative Terms in the Ce III Spectrum.

RUSSELL, KING AND LANG

					(5 <i>d</i>)2									4	f6p					
			${}^{3}F$			^{3}P		۱G	1D		³G			${}^{3}F$			3D		¹ G	1F	1D
4f5d	J	4	3	2	2	1	0	4	2 ·	5	4	3	4	3	2	3	2	1	4	3	2
$^{3}H^{0}$	6 5 4	4						12		100 9 5	75 2	20	40 5	100		15	n = 11 - 11		4 10	12	-
³ G ⁰	5 4 3	100† 10	100 10	80				15 15	[8]	[135] 2	30 30 15 2	[15] 30	12 20	25	35	15 5*	20		15 3 2	35	
${}^3F^0$	4 3 2	50 4	25 60 4	15 60	2d			6 4		15*	20	12 18	20 12	2 15 3	6 25	30 m	20 8	15	25	7 20	18
³ D ⁰	3 2 1		2		6 3	30 4	12	10	60		40	15	10	15 10d	[2] * [2] 18	10	12 25	10 15		20 20	3 15 [3]
${}^{3}P{}^{0}$	2 1 0		4		10 4	8 6	5		8			1		2	10	30	6 20	[8] 15* <i>12</i>		50	15 3
${}^1H^0$	5							15			80		10						400		
${}^1G^0$. 4	5						30			25	40	7	35*		15			30	12	
${}^{1}F^{0}$	3				30				30			8		6		35	[3]		18	4	18
1D0	2								50*			3		10		15*	20	12		8	35
$\frac{^{1}P^{0}}{4f6s}$					2							,			1		8				150
³ F ⁰	4 3 2				2 3			60 4		600	400 500	300 150	150 250	m 200 400	150 125	200 10	200 200	100	200 80	200 7 3	
$\frac{1F^0}{4f6d}$	3				3			80			6 k	ı	50	20		300			200	100	125
3H0	6 5 4									150 <i>h</i> m [2]	60h 3h	2h	2 <u>0</u> h	80 <i>h</i>							
³ G ⁰	5 4 3							6 <i>h</i>		30h	4h 20h	k* 1* 30h	10 <i>h</i>	20 <i>h</i>	10h		20h 4h	\$	[12] 1h	1h	
${}^{3}F^{0}$	4 3 2									20 <i>h</i>	* 2h 10h		4h 2h	3	10h 20h			1	2h 3h	6h	
³ D ⁰	3 2 1										4 <i>h</i>			2h	1	30 <i>h</i>	15h 4h	4h 6h	10h		
${}^{3}P^{0}$	2 1 0															30h	5 <i>h</i>	4h			2h
${}^1H^0$	5							8											70h		
${}^{1}G{}^{0}$	4																		10h	60 <i>h</i>	
${}^{1}F^{0}$	3																		4 <i>h</i>	20 <i>h</i>	2h
¹ D ⁰	2																			10 <i>h</i>	8 <i>h</i>

TABLE II. Intensities in multiplets of Ce III.

† Blend with Ce II. * Blend. *m* Masked. § May be accidental.

458

extends into the vacuum region, as far as 1950A. Lang's measures complete it, and leave very few lines of the super-multiplet missing.

The high levels, like the low, are odd. They can be matched in a fairly satisfactory way with the configuration 4f6d. The intensities are irregular (which is not surprising) and the assignments of some levels (such as that here called ${}^{3}G_{4}{}^{0}$) are uncertain, but the general scheme appears to be reliable. Later study revealed higher middle terms ${}^{3}D$, ${}^{1}D$ evidently from 5d6s, giving good multiplets, and combining with still higher levels (about 95,000) which probably belong to 5d6p—though they are not completely enough known to group into terms.

The scheme thus developed accounts for 294 lines including all those of any strength in wavelength exceeding 2000A. Under ordinary circumstances, it might be concluded that the spectrum was almost completely analyzed. But no evidence at all has been found of the $(4f)^2$ configuration. This might be expected to be very low—as 4f is nearly 50,000 cm⁻¹ below 5d in Ce IV. Failure to find it can be explained only by assuming that it is so nearly at the same level as 4f5d that the transitions between the two give lines lying exclusively in the infrared. In this case the $(4f)^2$ terms could be detected only by their combinations with 4f6d, which would have wave numbers of the order of 90,000. The 4f5f configuration should then be almost superposed upon 4f6d, and be observable only by the combinations with 4f5d—also far in the Schumann region. The spectrum of the cerium hot-spark in this region is very rich, but it has not yet been practicable to disentangle such combinations from it.

The lowest observed level, $df \, {}^{1}G^{0}$, may therefore not be the ground level, although all known strong lines of easy excitation have been accounted for. A similar situation exists in La III, where the $4f \, {}^{2}F$ term has not yet been found, and may be lower than $5d \, {}^{2}D$; and the same may happen in the third spectra of other rare earths. As the analysis of Ce III stands, it affords the first exception to Hund's rule that the lowest level of the ground configuration is that of highest L value among the terms of greatest multiplicity.

The term values finally adopted are given in Table I. The terms are grouped separately, in order of the lowest level in each—though the high odd levels, for which the term assignments are not always certain, might as well have been arranged in the order of the individual energy levels.

The usual custom of denoting the terms by letters has been deliberately avoided, since it is not certain whether the 4f5d group is the lowest

	4f5d			4 <i>f</i> 6 <i>p</i>			4 <i>f</i> 6s			(5 <i>d</i>) ²			5 <i>d</i> 6s	
Term	Ce III	La II	Term	Ce III	La II	Term	Ce III	La II	Term	Ce III	La II	Term	Ce III	La II
${}^{1}G_{4}^{0}\\ {}^{3}F_{2}^{0}\\ {}^{3}H_{4}^{0}\\ {}^{3}F_{3}^{0}\\ {}^{3}F_{3}^{0}\\ {}^{3}F_{3}^{0}\\ {}^{3}F_{4}^{0}\\ {}^{3}H_{5}^{0}\\ {}^{3}F_{4}^{0}\\ {}^{3}H_{6}^{0}\\ {}^{3}D_{1}^{0}\\ {}^{3}G_{5}^{0}\\ {}^{3}D_{2}^{0}\\ {}^{3}D_{3}^{0}\\ {}^{3}P_{2}^{0}\\ {}^{3}P_{1}^{0}\\ {}^{1}F_{3}^{0}\\ {}^{3}P_{2}^{0}\\ {}^{1}H_{5}^{0}\\ {}^{1}P_{1}^{0}\\ {}^{$	$\begin{array}{c} 0\\ 545\\ 1850\\ 2225\\ 2988\\ 3084\\ 3873\\ 4560\\ 5073\\ 5645\\ 6048\\ 6623\\ 6849\\ 8300\\ 8335\\ 9223\\ 9364\\ 12875\\ 15166\end{array}$	$\begin{array}{c} 0\\ 612\\ 1226\\ 1636\\ 3803\\ 1981\\ 2296\\ 2615\\ 4732\\ 3150\\ 4842\\ 5683\\ 5507\\ 5938\\ 6084\\ 6106\\ 7923\\ 6647\\ 11926\\ 10824 \end{array}$	${}^{3}G_{3}$ ${}^{3}F_{2}$ ${}^{1}F_{3}$ ${}^{3}F_{4}$ ${}^{3}D_{1}$ ${}^{3}G_{4}$ ${}^{3}D_{3}$ ${}^{3}G_{5}$ ${}^{1}G_{4}$ ${}^{1}D_{2}$	0 138 2408 2995 3022 3373 3665 4174 5349 5927 6283 6289	0 335 1757 1502 2338 2769 3081 1720 3950 3565 3769 5005	${}^{3}F_{2}^{0}$ ${}^{3}F_{3}^{0}$ ${}^{3}F_{4}^{0}$ ${}^{1}F_{3}^{0}$	0 228 2240 2613	0 227 1551 1626	3F_2 3F_3 3F_4 1D_2 3P_0 3P_1 3P_2 1G_4 1S_0	0 1498 3077 6449 7636 8234 9603 9617 —	0 1016 1971 10095 5249 5718 6227 7473	$\begin{array}{c} {}^{3}D_{1} \\ {}^{3}D_{2} \\ {}^{3}D_{3} \\ {}^{3}D_{3} \\ {}^{1}D_{2} \end{array}$	0 675 2216 2500	501 1197 1856 0

TABLE III. Levels in each configuration measured from lowest level within it.

—in which case the rules assign to its terms the letters a, b, c,—or next to the lowest when they get the letters z, y, x. The electron configurations —which are securely known in this relatively simple spectrum—are used instead. In the abbreviated form fs = 4f6s, fp = 4f6p, fd = 4f5d, $d^2 = (5d)^2$, and $f \cdot d = 4f6d$.

The *g* values derived by de Bruin are added for completeness.

The intensities of the combinations between the terms of the configurations d^2 , fp, and fd, fs, $f \cdot d$ are given in Table II. King's estimates are in Roman figures, Lang's in italics. As the two are on different scales, all the lines in a given multiplet have been recorded (when possible) on the same system.

The relative arrangement of the levels belonging to the same configuration is strikingly similar in La II and Ce III. Table III gives the levels in each configuration, measured from the lowest level within it, in the order in which they appear in Ce III. The order in La II is very nearly the same. The discordance for $d^{2,1}D$, $ds^{1}D$ arises from a well-known perturbation in La IIwhere there is also a perturbation between $fd^{3}F_{4}$, $fd^{3}G_{4}$. The $(4f)^{2}$ configuration in La II extends from $e^{3}H_{4}$ at 55107 to $f^{3}P_{2}$ (62506) and $g^{1}S_{0}$ (69505). The corresponding terms in Ce III should be more widely spaced, and range over about 12,000 units (not counting the ${}^{1}S_{0}$). If their median were more than about 10,000 units away from that of 4f5d, some of the combinations should be observable in the deep red.

The general arrangement of the terms in the fd, fp, and d^2 configurations indicates an approximation to LS coupling, as Condon and Shortley⁵ have shown to be the case for La II. The fs and ds groups, however, approach JJ coupling, and the same is true for 4f6d. Here the singlets, and the component of highest J in the triplets, lie between 88480 and 89946, while the other components of the triplets are all between 86070 and 87598. The means for the groups, 88971 and 86747, differ by 2224, while the separation of the parent $4f^2F$ term in Ce IV is 2253.⁶ For 4f6s the corresponding difference is 2193.

The application of a Rydberg formula to the

corresponding components of the 4f5d and 4f6d terms gives values for the upper limit ranging from 173800 to 170400, with mean 172500, and for the lower limit 171900 to 168800, mean 170500. This corresponds to an ionization potential of 21.0 volts from $fd^{1}G_{4}$ of Ce III to $f^{2}F_{24}$ of Ce IV.

It is however certain that the Rydberg denominator n^* increases considerably from 5dto 6d. The increase Δn^* in the comparable case of La II has been estimated as 0.15,⁷ though it may be as great as 0.20. Taking the mean of the nine levels with limit ${}^2F_{3i}$, and of the nine with limit ${}^2F_{2i}$, we find easily with the aid of the Rydberg tables⁸

Limit	2F31		2F21
mean for $5d$	6289		3984
mean for 6d	88971		86747
n^*	2.5142		2.5133
	3.6642		2.6633
Terms	156240		156357
	73557		73593
Limit	162529		160341
Level in Ce IV	2253		0
I.P.	160276		160341
Mean	160308	=	19.77 volts

If Δn is assumed to be 0.20, the I.P. is 157450 or 19.42 volts. The f^2 configuration may be as much as a volt lower than fd, but not two volts. The approximate value 20 ± 1 volts may therefore be adopted. This is lower than any other third ionization potential except that of La III (19.1).

The isoelectronic sequence Ba I, La II, Ce III, is of unusual interest. In Ba I the lowest configurations are $(6s)^2$ and 6s5d; in La II, $(5d)^2$ and 5d6s; in Ce III, so far as known, 4f5d and 4f6s. These three spectra, though similar in nature, are all very different in detail. The next member of the sequence, Pr IV, will have $(4f)^2$ as the low configuration, and again be quite different.

A list of all the classified lines of Ce III is given in Table IV. The first column gives the wave-length according to King and King; the second, the decimal part from Lang's unpublished measures; the third, King's intensity in the spark in air; the fourth, Lang's intensity in the vacuum spark, or, in a few cases, in the spark in nitrogen (denoted by parentheses) or in air (by brackets). Next follows the wave number

⁵ Shortley, Phys. Rev. 37, 1025 (1931).

⁶ Lang, Can. J. Res. A14, 127 (1936).

⁷Russell and Meggers, Nat. Bur. Stand. J. Research 9, 664 (1932).

⁸ Princeton, 1934.

λ King	λ Lang	INTE	NSITY	WAVE NUMBER VAC.	WAVE I	Number -c	MULTIPLET DESIGNATION
		King	Lang		King	Lang	
3543.999 3504.596 3497.755 3470.894 3459.374 3459.374 3459.374 3454.368 3443.609 3427.332 3412.334 3398.910 3395.735 $3356.410^{1, 2}$ 3353.262 3336.742 3280.78 3269.129 3267.92 3267.92 3244.950 3234.161^{3} 3228.564 3210.48 3168.02 3163.644 3147.05 3143.956 3142.551 3141.247 3122.93 3121.548 310.516 3106.974 3085.089 3076.82 3057.575 3057.214 3056.556 3055.585 3031.559 3022.736 3002.736 3011.493 2977.258 2923.84 2931.558 2927.258 2923.84 2931.558 2927.258 2923.84 2931.558 2927.258 2923.84 2907.064 2847.3 2845.19 2847.3 2845.19 2840.7 2833.868 2822.648 2806.3 2802.408 2801.824 2795.158		$\begin{array}{c} 80\\ 100\\ 60\\ 300\\ 200\\ 150\\ 125\\ 4\\ 20\\ 50\\ 6\\ 150\\ 125\\ 4\\ 20\\ 50\\ 6\\ 150\\ 1\\ 2\\ 2\\ 6h\\ 4\\ 3\\ 7\\ 400\\ 3\\ 25h\\ 2\\ 300\\ 200\\ 250\\ 4h\\ 400\\ 200\\ 200\\ 250\\ 6h\\ 100\\ 200\\ 5b\\ 200\\ 6h\\ 100\\ 200\\ 125\\ 600\\ 500\\ 8\\ 200\\ 8\\ 50\\ 15\\ 15\\ 100\\ 10\\ 80\\ 100\\ 30\\ 25\\ 15\\ 15\\ 100\\ 10\\ 80\\ 100\\ 30\\ 25\\ 15\\ 80\\ 3h\\ 10\\ 1h\\ 8\\ 8\\ 1\\ 10s\\ 10s\\ 8\\ 1\\ 10s\\ 10s\\ 10s\\ 10s\\ 10s\\ 10s\\ 10s\\ $		$\begin{array}{r} 28208.68\\ 28525.83\\ 28525.83\\ 28525.83\\ 28581.62\\ 28802.80\\ 28898.71\\ 28940.59\\ 29031.01\\ 29168.88\\ 29297.08\\ 29412.79\\ 29440.28\\ 29785.21\\ 29813.17\\ 29960.77\\ 30471.81\\ 30580.40\\ 30591.72\\ 30593.59\\ 30308.26\\ 30911.03\\ 30964.61\\ 31139.02\\ 31556.36\\ 31600.00\\ 31766.62\\ 31797.88\\ 31812.09\\ 31825.30\\ 32026.13\\ 31600.00\\ 31766.62\\ 31797.88\\ 31812.09\\ 31825.30\\ 32026.13\\ 32011.96\\ 32026.13\\ 32139.71\\ 32176.35\\ 32365.04\\ 32491.68\\ 32696.18\\ 32700.04\\ 32707.08\\ 32717.47\\ 32976.76\\ 33040.28\\ 33073.01\\ 33196.48\\ 33618.17\\ 33904.93\\ 33954.0\\ 34101.60\\ 34151.70\\ 34174.75\\ 34191.62\\ 34388.92\\ 34787.89\\ 34937.50\\ 35085.17\\ 35110.7\\ 35136.73\\ 35192.3\\ 35277.11\\ 35417.33\\ 35623.6\\ 35673.11\\ 35680.54\\ 35765.63\\ \end{array}$	$\begin{array}{c} -0.04\\ +0.06\\ +0.03\\ +0.02\\ +0.07\\ -0.01\\ -0.02\\ +0.03\\ +0.11\\ -0.09\\ -0.03\\ +0.15\\ -0.07\\ +0.40\\ -0.08\\ +0.01\\ +0.05\\ -0.07\\ +0.40\\ -0.08\\ +0.01\\ +0.05\\ -0.02\\ +0.05\\ +0.04\\ +0.05\\ -0.04\\ +0.03\\ -0.02\\ +0.14\\ +0.03\\ -0.02\\ +0.18\\ +0.03\\ -0.02\\ +0.12\\ +0.18\\ +0.03\\ -0.02\\ +0.12\\ +0.18\\ +0.02\\ +0.12\\ +0.18\\ +0.03\\ -0.02\\ +0.12\\ +0.18\\ +0.03\\ -0.02\\ +0.12\\ +0.18\\ +0.03\\ -0.02\\ +0.12\\ +0.18\\ +0.03\\ -0.02\\ +0.12\\ +0.18\\ +0.03\\ -0.02\\ +0.12\\ +0.18\\ +0.03\\ -0.02\\ +0.12\\ +0.18\\ +0.03\\ -0.02\\ +0.12\\ +0.03\\ +0.03\\ -0.01\\ +0.03\\ +0.03\\ -0.01\\ +0.03\\ +0.03\\ -0.01\\ +0.03\\ +0$		$ \begin{array}{c} fs^1F_{3}^0 & - d^2^1G_4 \\ fs^1F_{3}^0 & - fp^1F_3 \\ fs^3F_{4}^0 & - dp^1F_3 \\ fs^3F_{4}^0 & - fp^3F_2 \\ fs^3F_{4}^0 & - fp^3F_2 \\ fs^3F_{2}^0 & - fp^3F_2 \\ fs^3F_{2}^0 & - fp^3F_2 \\ fd^3P_{2}^0 & - d^2^3F_3 \\ fs^1F_{3}^0 & - fp^3F_4 \\ (fs^3F_{4}^0 & - fp^3F_4 \\ fd^1P_1^0 & - fp^3F_2 \\ ds^3D_8 & - 5_3^0 \\ fs^3F_{5}^0 & - d^2^3P_2 \\ fs^3F_{5}^0 & - fp^3F_3 \\ fs^3F_{5}^0 & - d^2^3P_2 \\ fs^3F_{5}^0 & - fp^3F_3 \\ fs^3F_{5}^0 & - fp^3G_4 \\ fs^3F_{5}^0 & - fp^3G_4 \\ fs^3F_{5}^0 & - fp^3G_5 \\ fs^3F_{5}^0 & - fp^3G_4 \\ ds^3D_1 & - d_2^0 \\ fs^3F_{5}^0 & - fp^3G_4 \\ ds^3D_1 & - d_2^0 \\ fs^3F_{5}^0 & - fp^3G_4 \\ ds^3D_1 & - fg^3G_5 \\ fs^3F_{4}^0 & - fp^3G_4 \\ ds^3D_1 & - fg^2G_5 \\ fs^3F_{5}^0 & - fp^3G_4 \\ ds^3D_1 & - fg^2G_5 \\ fs^3F_{5}^0 & - fp^3G_4 \\ ds^3D_1 & - fg^2G_5 \\ fs^3F_{5}^0 & - fp^3G_5 \\ fs^$

TABLE IV. Classified lines of Ce III.

¹ This line is due to Ce II and masks the expected line of Ce III.
 ² Parentheses in last column denote that line is masked.
 ³ Near strong line of Ce II.

-

λ King	λ Lang	INTE	NSITY	WAVE NUMBER VAC.	WAVE I	Number — c	Multiplet Designation
		King	Lang		King	Lang	
2788 2774.473 2768.339 2754.912 2748.936 2743.736 2741.688	66	8s 150 80 50s 60s	2	35849.0 36032.26 36112.10 36288.10 36366.98 36435.90 36463.11	$-0.01 \\ 0.00 \\ +0.09 \\ +0.08 \\ -0.13 \\ f + 0.04$	[-0.2]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 2730.069\\ 2719.329\\ 2717.22\\ 2705.026\\ 2694.857\\ 2686.74\\ 2685.99\\ 2681.03\\ 2675.6\\ 2675.08\\ 2673.3\\ 2672.857\\ 2671.9\\ 2668.69\\ 2663.80\\ 2662.836\\ 2658.6\\ 2658.6\\ \end{array}$		$\begin{array}{c} 60s \\ 60s \\ 10 \\ 2 \\ 6s \\ 10h \\ 10h \\ 2h \\ 2h \\ 4h \\ 4h \\ 10s \\ 1 \\ 8h \\ 10h \\ 30s \\ 3h \end{array}$		$\begin{array}{c} 36618.29\\ 36762.90\\ 36791.44\\ 36957.28\\ 37096.73\\ 37208.80\\ 37219.18\\ 37288.04\\ 37363.7\\ 37370.97\\ 37395.8\\ 37402.05\\ 37415.4\\ 37460.45\\ 37529.21\\ 37542.79\\ 37602.6\\ 37602.6\\ \end{array}$	(+0.15 + 0.04 - 0.11 + 0.09 - 0.09 + 0.10 + 0.28 + 0.05 - 0.08 - 0.0 + 0.19 - 0.2 + 0.15 + 0.12 + 0.15 + 0.12 + 0.5		$ \begin{array}{l} (fp^3G_5 - f \cdot d^3H_5^{0}) \\ fd^3F_2^0 - d^2 {}^3F_2 \\ fd^3D_3^0 - d^2 {}^1D_2 \\ fd^3P_1^0 - fp^3F_2 \\ ds^3D_2 - 9_2^0 \\ fd^3P_0^0 - d^2 {}^3P_1 \\ fp^1G_4 - f \cdot d^3F_1^0 \\ fp^3G_4 - f \cdot d^3F_4^0 \\ fp^1G_4 - f \cdot d^3F_4^0 \\ fp^1G_4 - f \cdot d^3F_4^0 \\ fp^1D_2 - f \cdot d^1F_3^0 \\ fp^1D_2 - 2_2^0 \\ fd^3P_2^0 - d^2 {}^3P_2 \\ fd^3P_2^0 - d^2 {}^3P_2 \\ fp^3D_1 - f \cdot d^3F_2^0 \\ fp^1G_4 - f \cdot d^3F_2^0 \\ fp^1G_4 - f \cdot d^3P_2^0 \\ fp^1G_2 - f \cdot d^1D_2^0 \\ fp^1G_4 - f \cdot d^3P_2 \\ fp^3G_4 - f \cdot d^3P_4 \\ fp^3G_4 -$
$\begin{array}{c} 2656\\ 2655.71\\ 2654.48\\ 2649.418\\ 2639.57\\ 2634.08\\ 2631.88\\ 2629.773\\ 2624.86\\ 2623.83\\ 2622.753\\ 2621.151\\ 2620.68\\ 2615.93\\ 2614.58\\ \end{array}$	77	20h 6h 50 4 4h 30h 4 3 4h 4s 15 2h 60h 3h	[12]	37628.5 37643.53 37660.97 37732.92 37873.69 37952.62 37984.34 38014.77 38085.92 38100.87 38116.52 38139.81 38146.66 38215.93 38235.66	$\begin{cases} -0.08\\ -0.06\\ 0.00\\ +0.34\\ +0.30\\ +0.02\\ +0.05\\ -0.08\\ +0.17\\ +0.19\\ -0.05\\ +0.24\\ -0.09\\ +0.09\\ +0.16 \end{cases}$	-0.3	$ \begin{array}{r} f\rho^{1}G_{4} & -f \cdot d^{3}G_{5}^{0} \\ f\rho^{3}G_{5} & -f \cdot d^{3}G_{4}^{0} \\ f\rho^{3}G_{4} & -f \cdot d^{3}G_{4}^{0} \\ f\rho^{3}D_{1} & -f \cdot d^{3}D_{1}^{0} \\ fd^{3}P_{2}^{0} & -f\rho^{1}F_{3} \\ fd^{1}F_{3}^{0} & -f\rho^{1}F_{3} \\ f\rho^{3}D_{2} & -f \cdot d^{3}G_{5}^{0} \\ fd^{3}F_{3}^{0} & -d^{2}3F_{4} \\ f\rho^{3}F_{3} & -f \cdot d^{3}F_{2}^{0} \\ fd^{3}F_{2}^{0} & -d^{2}3F_{3} \\ fd^{3}D_{3}^{0} & -f\rho^{3}G_{3} \\ fd^{3}D_{3}^{0} & -f\rho^{3}G_{3} \\ fd^{3}D_{3}^{0} & -f\rho^{3}G_{3} \\ f\rho^{3}G_{4} & -f \cdot d^{3}H_{5}^{0} \\ ds^{3}D_{2} & -f \cdot 0_{1}^{0} \end{array} $
$\begin{array}{c} 2611\\ 2610.91\\ 2608.114\\ 2605.3\\ 2604.078\\ 2603.646\\ 2601.32\\ 2600.408\\ 2599.18\\ 2596\end{array}$	42	4h 150h 2h 4s 400 4s 20h 30h	[2]	38276.6 38289.40 38330.44 38371.8 38389.85 38396.22 38430.55 38444.02 38462.19 38503.1	$\begin{array}{r} +0.36\\ 0.00\\ +1.2\\ +0.20\\ -0.16\\ -0.20\\ +0.07\\ -0.15\end{array}$	-0.8	$egin{array}{rll} fd^3D_3{}^0&-fp^3F_2?\ fp^3D_1&-f\cdot d^3D_2{}^0\ fp^3G_5&-f\cdot d^3F_4{}^0\ fp^3F_4&-f\cdot d^3F_4{}^0?\ fd^3H_4{}^0&-d^2^3F_4\ fd^1H_6{}^0&-fp^1G_4\ fd^3P_1{}^0&-d^2^3P_2\ fp^3D_2&-f\cdot d^3G_4{}^0{}^4\ fp^3D_3&-f\cdot d^3G_4{}^0{}^0\ fd^3D_2{}^0&-fp^3F_2 \end{array}$
$\begin{array}{c} 2591.19\\ 2588.58\\ 2584.87\\ 2579.17\\ 2578.34\\ 2577.828\\ 2575.06\\ 2569.21\\ 2566.02\\ 2566.02\\ 2563.450\\ 2557.628\\ 2554.3\\ 2553.28\\ \end{array}$	76 22 28	$ \begin{array}{r} 15h \\ 2 \\ 70h \\ 6 \\ 30s \\ 80h \\ 20h \\ 4 \\ 4h \\ 2h \\ 6 \\ 30h \\ 1 \\ 12s \\ \end{array} $	12 [3] 3	$\begin{array}{c} 38580.78\\ 38619.68\\ 38675.10\\ 38760.57\\ 38773.04\\ 38780.75\\ 38822.43\\ 38910.82\\ 38944.02\\ 38959.19\\ 38959.19\\ 38998.24\\ 39087.01\\ 39137.9\\ 39153.57\\ \end{array}$	$\begin{array}{c} +0.11\\ -0.01\\ +0.7\\ -0.25\\ -0.25\\ -0.04\\ -0.20\\ -0.14\\ 0.00\\ +0.03\\ +0.01\\ -1.1\\ 0.00\\ \end{array}$	-2.0 +0.2 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE IV—(Continued).

⁴ Either this is a coincidence or the level $f \cdot d^3G_4^0$ is wrongly identified.

-

	λ Lang	Inte	NSITY	WAVE NUMBER	WAVE N	Number – c	Multiplet Designation
	2	King	Lang		King	Lang	
2547.92 2544.39 2539.43 2537.6 2532.040 2522.11 2517.6 2515.77 2514.864 2504.454 2503.605 2497.56	90 37 42 70 02 06 72 85 45 60 53	$ 5h \\ 3h \\ 20h \\ 2h \\ 100 \\ 4h \\ 1h \\ 4h \\ 4s \\ 6s \\ 10 \\ 60 \\ 2 2 $	$ \begin{array}{c} 1 \\ [8]\\ 10 \\ [3]\\ 18 \\ 0 \\ [5]\\ [12]\\ 4 \\ 5 \\ 20 \\ \end{array} $	39235.93 39290.36 39367.10 39395.5 39481.98 39637.42 39708.4 39737.30 39751.62 39916.84 39930.37 40027.01	$\begin{array}{r} +0.14 \\ +0.52 \\ -0.19 \\ -1.0 \\ +0.13 \\ -0.04 \\ -1.2 \\ +0.13 \\ -0.04 \\ +0.05 \\ -0.09 \\ -0.09 \\ -0.09 \end{array}$	+0.4+0.9-0.1-2.6+0.5+0.7+0.9+0.1+0.10.0+0.4	$\begin{array}{c} f\rho^{3}D_{2} & -f\cdot d^{3}P_{1}^{0} \\ fd^{3}P_{2}^{0} & -f\rho^{3}D_{1} \\ f\rho^{3}F_{4} & -f\cdot d^{3}H_{5}^{0} \\ f\rho^{3}G_{4} & -f\cdot d^{3}F_{4}^{0} \\ fd^{3}D_{1}^{0} & -f\rho^{3}F_{2} \\ f\rho^{3}G_{4} & -f\cdot d^{3}D_{3}^{0} \\ f\rho^{1}F_{3} & -f\cdot d^{3}G_{4}^{0} \\ f\rho^{3}G_{4} & -f\cdot d^{3}G_{6}^{0} \\ fd^{3}D_{1}^{0} & -d^{2} {}^{3}P_{1} \\ fd^{3}D_{2}^{0} & -d^{2} {}^{3}P_{2} \\ fd^{3}D_{3}^{0} & -d^{2} {}^{1}G_{4} \\ fd^{3}P_{1}^{0} & -f\rho^{3}D_{2} \\ fd^{3}P_{1}^{0} & -f\rho^{3}D_{2} \end{array}$
2490.35 2484.31	32 30	5s	0	40142.89 40240.48	+0.01 +0.03	+0.3 +0.2 +0.4	$ \begin{array}{c} f d^{3} D_{2}^{\circ} - d^{2} {}^{\circ} F_{2}^{\circ} \\ f d^{1} G_{4}^{\circ} - d^{2} {}^{3} F_{4} \\ f d^{3} D_{2}^{\circ} - f \phi^{1} F_{2} \end{array} $
2405.00	50	50	15	40318.53	$\begin{cases} +0.28 \\ -0.20 \end{cases}$	$+0.3 \\ -0.2$	$ \begin{array}{r} \int d^{1}D_{2}^{0} - d^{2} {}^{1}D_{2} \\ \int d^{3}P_{1}^{0} - f p^{3}D_{1} \end{array} $
2477.31 2472.71 2471.81 2470.00 2465.49 2460.86	30 68 85 96 83	$ \begin{array}{r} 40 \\ 4 \\ 15h \\ 150 \\ 4h \\ 2s \end{array} $	12 [15] 5 20 [8]	40354.17 40429.24 40443.96 40473.59 40547.62 40623.91	$\begin{array}{r} 0.00 \\ -0.03 \\ -0.19 \\ -0.01 \\ -0.32 \\ -0.33 \end{array}$	+0.1 +0.4 -0.9 +0.6 +0.2	$egin{array}{rll} fd^3P_0^0&-fp^3D_1\ fd^3G_4^0&-fp^3G_3\ fp^3F_4&-1^0\ fd^3D_2^0&-fp^1F_3\ fp^3F_4&-f\cdot d^3F_4^0\ fd^3G_3^0&-d^{21}D_2 \end{array}$
$\begin{array}{c} 2454.37\\ 2444.93\\ 2441.69\\ 2439.87\\ 2431.51\\ 2430.31\\ 2428.68\\ 2423.20\\ 2418.44\\ \end{array}$	35 88 62 82 45 25 63 10 37	50s 10h 20h 250 300 60 15s 10h 10h	15 5 7 30 35 15 10 12 9	$\begin{array}{r} 40731.32\\ 40888.57\\ 40942.82\\ 40973.36\\ 41114.22\\ 41134.52\\ 41162.13\\ 41255.21\\ 41336.40 \end{array}$	$\begin{array}{c} -0.01 \\ -0.05 \\ -0.16 \\ -0.33 \\ -0.28 \\ -0.10 \\ +0.08 \\ -0.03 \\ -0.03 \end{array}$	+0.3 +0.8 +1.0 +0.5 +0.7 +0.9 +1.0 +1.6 +1.2	$\begin{array}{rcl} fd^3G_5{}^{0} & -d^2{}^1G_4 \\ fp^3F_4 & -f\cdot d^3G_6{}^{0} \\ fp^3F_2{}^{0} & -f \cdot d^3F_2{}^{0} \\ fd^3F_2{}^{0} & -fp^3D_3 \\ fd^1F_3{}^{0} & -fp^3D_3 \\ fd^3D_3{}^{0} & -fp^3F_4 \\ fd^3D_3{}^{0} & -fp^3F_4 \\ fp^3F_2{} & -f\cdot d^3F_3{}^{0} \\ fp^3F_2{}^{-} & -f\cdot d^3G_3{}^{0} \end{array}$
2417.11	09	30h	10 <i>d</i>	41359.14	$\left\{ \begin{array}{c} +0.45 \\ -1.57 \end{array} \right.$	+0.8 - 1.2	$\begin{array}{r} fp^{1}F_{3} - 1^{0} \\ fd^{3}D_{2}^{0} - fp^{3}F_{3} \\ HC \end{array}$
$\begin{array}{c} 2415.74\\ 2411.06\\ 2410.41\\ 2408.15\\ 2406.31\\ 2404.44\\ 2400.72\\ 2398.76\\ 2397.66\\ 2397.66\\ 2395.10\\ 2393.00\\ \end{array}$	67 00 32 05 32 40 71 79 06 88	60h 6h 30h 20h 6h 10h 8h 3s 60 2h	15 10 12 12 10 7 8 8 8 25 3	41382.60 41462.92 41474.10 41513.02 41544.76 41577.06 41641.48 41675.51 41694.62 41739.18 41775.81	$\begin{array}{c} -0.28 \\ +0.44 \\ -0.15 \\ -0.12 \\ -0.27 \\ -0.12 \\ -0.18 \\ -0.23 \\ -0.19 \\ -0.05 \\ -0.24 \end{array}$	+0.9 +1.4 +1.4 +1.6 -0.4 +0.6 0.0 -0.7 +0.7 +1.9	$egin{array}{cccccccccccccccccccccccccccccccccccc$
2390.7	51	1	2	41816.0	$\begin{cases} -1.5 \\ -0.4 \\ -0.00 \end{cases}$	+1.8 +2.9	$\begin{array}{rcl}fp^{\circ}G_{3} & -f\cdot d^{\circ}G_{4}\circ f\\fp^{3}F_{2} & -f\cdot d^{3}D_{2}^{0}\\fa_{1}G & 0\end{array}$
2380.23 2385.11 2382.33 2380.18 2378.48 2377.53 2377.13 2373.44 2372.39 2371.15 2367.81 2362.58 2350.16 2337.71 2330.19 2329.92 2327.95 2324.37 2318.70	$ \begin{array}{c} 11\\ 08\\ 30\\ 14\\ 43\\ 48\\ 06\\ 29\\ 35\\ 13\\ 79\\ 52\\ 10\\ 66\\ 15\\ 87\\ 91\\ 32\\ 68\\ \end{array} $	3h 15 30 200 6 40 50 6h 300 4s 30s 40 200 25 4 6s 3 50 200	$ \begin{array}{c} 5 \\ 10 \\ 12 \\ 30 \\ 10 \\ 18 \\ 18 \\ 7 \\ 35 \\ [3] \\ 15 \\ 20 \\ 35 \\ 12 \\ 6 \\ 4 \\ 15 \\ 30 \\ \end{array} $	$\begin{array}{c} 41894.32\\ 41993.99\\ 41962.90\\ 42000.80\\ 42030.82\\ 42047.61\\ 42054.68\\ 42120.06\\ 42138.70\\ 42160.74\\ 42200.20\\ 42313.66\\ 42537.26\\ 42763.77\\ 42901.77\\ 42906.74\\ 42943.05\\ 43009.18\\ 43114.34\end{array}$	$\begin{array}{c} +0.09\\ +0.05\\ -0.02\\ 0.00\\ -0.04\\ -0.14\\ -0.07\\ -0.15\\ +0.08\\ -0.04\\ +0.05\\ +0.07\\ +0.25\\ +0.07\\ +0.25\\ +0.10\\ +0.20\\ -0.05\\ -0.03\end{array}$	$\begin{array}{c} +2.2 \\ +0.6 \\ +0.5 \\ +0.7 \\ +0.7 \\ +0.7 \\ +1.1 \\ +2.5 \\ +0.8 \\ +0.3 \\ +0.4 \\ +1.2 \\ +1.1 \\ +1.0 \\ +1.0 \\ +1.0 \\ +0.9 \\ +0.3 \end{array}$	$\begin{array}{c} d^2 \cdot G_4 &- 2_3 \circ \\ fd^3 P_2 \circ &- fp^3 P_2 \\ fd^3 G_0 \circ &- fp^3 F_4 \\ fd^3 G_3 \circ &- fp^3 G_3 \\ fd^3 D_2 \circ &- fp^3 D_1 \\ fd^1 F_3 \circ &- fp^1 G_4 \\ fd^1 F_3 \circ &- fp^1 D_2 \\ d^2 \cdot G_4 &- f \cdot d^3 G_5 \circ \\ fd^3 G_4 \circ &- fp^3 F_2 \\ fd^3 G_4 \circ &- d^2 \cdot 1 G_4 \\ fd^3 F_3 \circ &- fp^3 G_4 \\ fd^3 F_3 \circ &- fp^3 G_5 \\ fd^3 F_3 \circ &- fp^3 G_5 \\ fd^3 F_3 \circ &- fp^3 G_5 \\ fd^3 F_1 \circ &- d^2 \cdot 1 G_4 \\ fd^3 F_1 \circ &- fp^3 G_5 \\ fd^3 F_1 \circ &- fp^3 G_5 \\ fd^3 F_1 \circ &- fp^3 G_5 \\ fd^3 F_1 \circ &- fp^3 G_4 \\ fd^3 F_1 \circ &- fp^3 G_1 \\ fd^3 F_1 \circ &- fp^3 D_1 \\ fd^3 G_5 \circ &- fp^3 G_4 \end{array}$

TABLE IV—(Continued).

λ King	λ Lang	INTENSITY		Wave Number Vac.	WAVE N	Number -c	Multiplet Designation
		King	Lang		King	Lang	
2317.40 2315.91 2312.83 2302.14 2300.70 2298.75 2287.85 2282.25 2277 2272 2268.22 2266.95 2266.95 2266.95 2264.91 2250 2249.31 2244.18 2243 2242.35 2241.30 2238.69 2236.95 2234 2225.12 2222.06 2218.10 2227.88 2225.12 2222.06 2218.10 2227.88 2225.12 2222.06 2218.10 2217.88 2225.12 2220.07 2203 2203.22 2199 2105 2190 2107 2003 2203.22 2199 2195 2190 2184 2183.8 2183 2180.70 2169.55 2166.95 2166 2165 2164 2151 2145 2164 2155 2164 2155 2164 2155 2164 2155 2164 2151 2145 2140 2136 2124 2122 2112 2111 2109 2107 2095 2090 2089 2086	$\begin{array}{c} 33\\ 773\\ 061\\ 667\\ 77\\ 18\\ 52\\ 81\\ 15\\ 72\\ 802\\ 201\\ 16\\ 75\\ 88\\ 44\\ 905\\ 700\\ 97\\ 70\\ 910\\ 422\\ 820\\ 100\\ 98\\ 561\\ 702\\ 604\\ 45\\ 71\\ 994\\ 36\\ 43\\ 409\\ 98\\ 589\\ 9\\ 9\\ 8\\ 589\\ 19\\ 498\\ 55\\ 9916\\ \end{array}$	$ \begin{array}{c} 100\\ 8\\ 8\\ 100\\ 80\\ 20\\ 30s\\ 6\\ \\ 25\\ 10s\\ 50\\ 15s\\ 8s\\ 80\\ 10\\ 8\\ 4\\ \\ 50\\ 40\\ 125\\ 100\\ 12s\\ 2\\ 8\\ 6\\ \\ 1\\ 100\\ 6\\ 20\\ \end{array} $	$\begin{array}{c} 20\\ 7\\ 7\\ 25\\ 20\\ 10\\ 12\\ 8\\ 3\\ 2\\ 20\\ 15\\ 2\\ 20\\ 3\\ 18\\ 15\\ 2\\ 20\\ 3\\ 18\\ 15\\ 2\\ 20\\ 3\\ 15\\ 15\\ 15\\ 12\\ 20\\ 40\\ 20\\ 15\\ 12\\ 20\\ 40\\ 20\\ 15\\ 12\\ 20\\ 4\\ 4\\ 4\\ 13\\ 15\\ 12\\ 20\\ 4\\ 4\\ 4\\ 5\\ 15\\ 12\\ 20\\ 4\\ 4\\ 4\\ 13\\ 15\\ 12\\ 20\\ 4\\ 4\\ 20\\ 15\\ 12\\ 20\\ 4\\ 4\\ 4\\ 13\\ 15\\ 12\\ 20\\ 4\\ 4\\ 4\\ 13\\ 15\\ 12\\ 20\\ 4\\ 4\\ 4\\ 13\\ 15\\ 12\\ 20\\ 4\\ 4\\ 4\\ 13\\ 15\\ 12\\ 2\\ 30\\ 2\\ 3\\ 30\\ 15\\ 12\\ 2\\ 5\\ 2\\ 25\\ 3\\ 1\\ 8\\ 9\\ 2\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 3\\ 3\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 2$	$\begin{array}{r} 43138.53\\ 43166.28\\ 43223.76\\ 43424.45\\ 43424.45\\ 43424.45\\ 43425.62\\ 43488.48\\ 43695.65\\ 43802.86\\ 43893.8\\ 43984.8\\ 44073.77\\ 44098.46\\ 44112.7\\ 44138.18\\ 44430.2\\ 44444.26\\ 44545.85\\ 44556.0\\ 44582.20\\ 44603.08\\ 44659.81\\ 44734.0\\ 4475.1\\ 44867.30\\ 44689.81\\ 44734.0\\ 44775.1\\ 44867.30\\ 44871.73\\ 44927.38\\ 44927.38\\ 44927.38\\ 44927.38\\ 44927.38\\ 44927.38\\ 44927.38\\ 44927.38\\ 44927.38\\ 44927.38\\ 44927.38\\ 44927.38\\ 4455.66.1\\ 45760.4\\ 45248.2\\ 45220.4\\ 45248.2\\ 45220.4\\ 45248.2\\ 45290.05\\ 45361.6\\ 45373.91\\ 45452.7\\ 4552.5\\ 45636.1\\ 45760.4\\ 45777.4\\ 45787$	$\begin{array}{c} +0.03\\ -0.13\\ +0.07\\ +0.13\\ -0.14\\ -0.04\\ +0.11\\ \end{array}$ $\begin{array}{c} 0.00\\ 0.00\\ -0.05\\ +0.02\\ +0.12\\ +0.12\\ +0.12\\ +0.12\\ +0.12\\ +0.12\\ -0.05\\ \end{array}$ $\begin{array}{c} +0.05\\ +0.09\\ +0.09\\ +0.10\\ -0.06\\ -0.04\\ -2.3\\ +0.37\\ -0.46\\ \end{array}$	$ \begin{array}{c} +1.3 \\ +3.2 \\ +1.9 \\ +1.7 \\ +1.6 \\ +1.5 \\ +1.4 \\ -0.1 \\ +1.3 \\ +1.2 \\ +1.3 \\ +1.5 \\ +1.4 \\ +1.3 \\ +1.2 \\ +1.1 \\ +1.2 \\ +1.5 \\ +1.1 \\ +1.2 \\ +1.1 \\ +1.2 \\ +1.1 \\ +1.2 \\ +1.1 \\ +1.2 \\ +1.1 \\ +1.2 \\ +1.1 \\ +$	$ \begin{array}{c} fd^3H_4^0 - fp^3G_3\\ d^2 ^1G_4 - f^2 ^1F_3\\ fd^3G_4^0 - fp^3F_3\\ fd^3G_4^0 - fp^3F_3\\ fd^3G_4^0 - fp^3F_3\\ fd^3H_6^0 - d^2 ^1G_4\\ fd^1D_2^0 - fp^1F_3\\ fp^3D_1 - 4_2^0\\ fs^1F_3^0 - ds^1D_2\\ fs^3F_4^0 - ds^3D_3\\ fs^3F_4^0 - fp^3F_3\\ fd^3F_4^0 - fp^3F_3\\ fd^3F_4^0 - fp^3F_3\\ fd^3F_4^0 - fp^3F_2\\ fd^3F_2^0 - fp^3G_2\\ fd^3F_2^0 - fp^3G_4\\ fd^3D_2^0 - fp^3G_4\\ fd^3D_2^0 - fp^3G_4\\ fd^3D_2^0 - fp^3G_5\\ fs^3F_4^0 - fp^3G_5\\ fs^3F_4^0 - fp^3G_5\\ fs^3F_4^0 - fp^3G_5\\ fd^3F_4^0 - fp^3G_4\\ fd^3G_4^0 - fp^3G_5\\ fd^3F_4^0 - fp^3G_5\\ fd^3F_4^0 - fp^3G_4\\ fd^3G_4^0 - fp^3G_5\\ fd^3F_4^0 - fp^3G_4\\ fd^3G_4^0 - fp^3G_4\\ fd^3G_4^0 - fp^3G_4\\ fd^3G_4^0 - fp^3G_4\\ fd^3F_4^0 - fp^3G_4\\ fd^3F_4^0 - fp^3G_5\\ fd^3F_4^0 - fp^3$

TABLE IV—(Continued).

	λ Lang	λ Intensity Lang		WAVE NUMBER VAC.	WAVE D	Number —c	MULTIPLET DESIGNATION
		King	Lang		King	Lang	
2083	34		35	47984.5		$\begin{cases} +0.1 \\ +0.4 \end{cases}$	$fd^{1}G_{4}^{0} - fp^{3}F_{3}$ $fd^{1}D_{2}^{0} - fp^{1}D_{2}$
2082	16		7	48011.7		-0.1	$fd^1Ga^0 - fb^3Fa$
2077	89		15	48110.3		+0.9	$fd^{3}F_{2}^{0} - fp^{3}D_{1}$
2074	59		4	48186.9		-0.2	$fd^3H_5^0 - fp^1G_4$
2070	41		2	48284.1		+1.0	$fd^3G_3^0 - fp^1G_4$
2061	71		15	48487.8		+0.2	$fd^3H_4^0 - fp^3D_3$
2042	82		18	48936.2		+0.5	$d^{2} D_{2} - 4_{2}^{0}$
2037	96		18	49052.8		-0.2	$fd^{3}F_{3}^{0} - fp^{1}D_{2}$
2037	43		5	49065.6		+0.3	$fd^3H_4^0 - fp^3G_5$
2033	39		25	49163.1		-0.1	$fd^1G_4^0 - fp^3G_4$
2022	77		10	49421.2		+0.4	$fd^3H_4^0 - fp^1G_4$
λVac							
1986	55		15	50338.5		+0.1	$fd^1G_4^0 - fp^3D_3$
1963	74		14	50923.2		+0.1	$d^2 {}^3P_2 - 9_2^0$
1950	39		30	51271.8		+0.2	$\int fd^1G_4^0 - fp^1G_4$
1940	72		2	51368.5		+0.9	$\int d^3P_2^0 - ds^3D_2$
1933	41		3	51/22.1		+1.1	$fd^{3}P_{1}^{0} - ds^{3}D_{1}$
1932	08		ò	51/57.7		+1.3	$\int d^3 P_0^0 - ds^3 D_1$
1912	30		5	52293.1		+0.4	$d^2 {}^{3}P_1 - 9_2{}^{0}$
1908	40		10	52597.7		+1.2	$\int d^{3}P_{1}^{0} - ds^{3}D_{2}$
1800	00		10	52009.0		+0.7	$a^{2} \circ r_{4} - 3^{2} \circ r_{4}$
1885	01		8	52908.9		+1.2	$\int d^{\circ}F_{2}^{\circ} - ds^{\circ}D_{3}$
1875	01		0	53332 5		+1.0	$\int d^3 F_3^{\circ} - ds^{\circ} D_3$
1871	46		ŝ	53434 2		+11	$\int d^2 \Gamma_3^2 = ds^2 D_2$
1855	81		3	53884.8		+2.3	$\int d^3 D_2^0 = ds^3 D_1$
1855	68		ĭ	53888.6		+1.8	$d^{2} {}^{3}F_{2} - 4_{2}^{0}$
1848	97		18	54084.2		+1.6	$d^{2} {}^{3}F_{2} - 5^{0}$
1848	07		- 9	54110.5		+1.9	$fd^3D_{2}^0 - ds^3D_2$
1844	30		(6)	54221.1		+0.7	$fd^{3}P_{1}^{0} - ds^{1}D_{2}$
1837	78		8	54413.5		+2.0	$fd^{3}D_{1}^{0} - ds^{3}D_{1}$
1836	99		20	54436.9		+1.4	$d^2 {}^3F_3 - 6_2^0$
1836	64		20	54447.3		+1.5	$d^{2} {}^{3}F_{4} - 7_{3}{}^{0}$
1815	18		7d	55091.0		+4.0	$fd^{3}D_{1}^{0} - ds^{3}D_{2}^{2}$
1813	98		4	55127.4		+2.1	$d^{2} {}^{3}F_{2} - 3_{1}{}^{0}$
1805	46		9	55387.6		+2.5	$d^{2} {}^{3}F_{2} - 4_{2}{}^{0}$
1804	25		10	55424.7		+2.1	$fd^3D_3^0 - ds^3D_3$
1799	11		2	55583.0		+2.1	$d^{2} {}^{3}F_{2} - 5{}_{3}{}^{0}$
1796	89		18	55651.7		+1.6 +3.0	$ \begin{array}{rcrcr} d^2 \ {}^3F_4 & - \ 8_4{}^0 \\ f d^3 D_2{}^0 & - \ ds^3 D_2 \end{array} $
1747	31		3	57230.9		+2.0	$d^{2} {}^{3}F_{3} - 8_{4}{}^{0}$
1712	32		8	58400.3		+1.5	$fd^{3}F_{4^{0}} - ds^{3}D_{3}$
1709	17		8	58507.9		+1.3	$fd^{3}F_{3}^{0} - ds^{3}D_{2}^{0}$
1680	30		4	59513.2		+1.5	$fd^3F_2^0 - ds^3D_1$
	[-

TABLE IV—(Continued).

from King's data when available, otherwise from Lang's; then the residual o-c from the value computed from the terms of Table I; and finally the multiplet designation.

There is a small systematic difference between King's and Lang's wave-lengths. For convenience King's have been adopted as a standard for the present purpose, and the term values derived from these when possible (for all levels except $ds^{1}D_{2}$).

The differences in wave number are summarized in Table V in the sense Lang minus =

TABLE V. Summary of wave number differences.

WAVE NUMBER	No.	MEAN cm ⁻¹	Av. Resid
39000-40000	13	+0.1	+0.6
40000-41000	14	+0.4	0.3
41000-42000	20	+1.0	0.5
42000-43000	14	+1.0	0.4
43000-44000	11	+1.4	0.6
4400045000	18	+1.8	0.4
45000-46000	14	+1.7	0.3
46000-48000	17	+1.1	0.4
48000-50000	10	+0.3	0.4
50000-54000	14	+1.0	0.5
5400059000	13	+1.8	0.3

λ	Obs. Z E	Calc. Z E	λ	Obs. Z E	Calc. Z E
3543	(0) 1.11	(0) 1.10	2927	$(w_2) 0.98w_2$	(0.44) 1.16
3504	(0.34) 1.1570 a	(0.32) 1.10	2925	(πv_{2}) 0.98	(0) 0.83*
3497	(0.70) 1.31 $w_{\rm A}$	(0.70) 1.16	2923	(0) 1.17	(0) 1.10*
3470	$(0.55) 0.9970_{2}$	(0.51) 0.97	2907	(70) 1.18	(0) 1,00*
3459	(70_1) 1.50	(0) 1.44	2873	(u_1) 1.31 u_2	(0) 1.50*
3454	(πv_{0}) 1.47 πv_{0}	(0) 1.32	2861	(w_2) 1.27 w_2	(0) 1.50*
3443	(w_2) 1.19 w_1	(0) 1.07	2849	(0) 1.17w	(0) 102
3427	$(w_2) = 0.76w_1$	(0.28) 0.74	2802	(2) 1.23 w_{2}	(0.86) 0.92*
3398	(0) 1.04w	(0.22) 0.99	2801	$(?)$ 1.41 w_2	(0.67) 1.15*
3395	(0) 1.27 w_2	(0) 1.17	2774	(2) 1.54	(0) 1.50*
3353	(0.57) 1.15 w_2	(0.60) 1.18	2768	(w_2) 1.16	(0) 1.12t
3228	(0.44) 1.23 w_2	(0.45) 1.20	2754	$(w_1) 0.83w_1$	(0) 0.73^{+}
3147	(0.48) 1.16 w_3	(0.53) 1.14	2748	(0) 1.35	(0) 1.25*
3143	(0.27) 1.07 w_1	(0.31) 1.01	2743	(0) 1.18	(0) 1.08*
3141	(0) 1.18	(0) 1.12	2730	$(w_1) 0.79$	(0) 0.67*
3121	(w_2) 1.35 w_2	(0) 1.24	2719	(0) 1.50	(0) 1.68*
3110	(0) 1.36	(0) 1.32	2672	(?) 1.43	(0) 1.50*
3106	(0) 1.20	(0) 1.15	2662	$(\hat{w}_2) 0.75w_4$	(0) 0.50*
3085	$(0.62) \ 0.88w_4$	(0.58) 0.82	2649	(w_2) 0.86 w_4	(0) 0.82†
3057.5	(0) 0.80	(0) 0.80	2603	(w_2) 1.06	(0) 0.90†
3057.2	(0) 1.18	(0) 1.07	2578	(w_2) 1.24 w_2	(0) 1.00*
3056	(0) 1.06	(0) 0.94	2532	(w_1) 1.09 w_2	(0) 0.98†
3055	(0) 1.16	(0) 1.09	2483	$(?)$ 1.25 w_1	(0.44) 1.25†
3031	(0) 1.31	(0) 1.23	2470	(?) $1.13w_3$	(0) 1.15†
3022	(?) 1.35	(0.73) 1.16	2454	(?) 1.67	(0) 1.48†
2931	(0) 1.08	(0) 1.00*	2431	(?) $1.69w_4$	(0.62) 1.12†
					· · ·

TABLE VI. Zeeman effects in Ce III.

* Theoretical blended pattern. † Theoretical value used for one g; other g observed.

King. The values computed from the adopted terms (being on King's scale) have been used to extend the comparison into the vacuum region. The maximum difference corresponds to 0.09A near $\lambda 2300$. The last column gives the average deviation, without regard to sign, of an individual difference from the group mean. The general average of these residuals is ± 0.44 cm⁻¹, which corresponds to ± 0.027 A at $\lambda 2500$, and ± 0.014 A at $\lambda 1800$.

A considerable series of measures of the Zeeman effect, made at Pasadena by one of us (R.B.K.), is summarized in Table VI. The first column gives the wave-length (for identification in Table IV); the second, the observed Zeeman

pattern; and the third, the computed patterns for blends, according to the formulae of Shenstone and Blair.^{9, 10} These have been derived from de Bruin's g values when available. For many other lines the data do not suffice to determine separate g values for both the terms involved, and the theoretical positions derived from Lande's formulae are tabulated (and marked with an asterisk). These suffice to show that no very serious deviations from normal g values occur.

We are indebted to Miss Moore for valuable aid in preparing and checking the tables.

⁹ Shenstone and Blair, Phil. Mag. 8, 765 (1929).

¹⁰ Russell, Phys. Rev. 36, 1590 (1930).