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therefore is clearly that our modified line is due
to the helium only. These considerations render
unnecessary a control experiment with vacuum
in place of helium.

Huge difference between the electron velocities
in the solid and vapor states

Before closing we wish to call especial attention
to the enormous difference between the electron
velocities in the solid state and those in the vapor
state which the results of this paper, together
with our previous work, clearly indicate must
exist. In carbon, for example, the maximum of
the electron velocity distribution curve is dis-
placed to velocities 60 percent higher than in the
free atom, an excess which our present results
force us to take seriously as a real effect. See Fig.
8, reproduced from one of our papers. "

This speeding up of the electrons applying, let
us say, to four electrons per atom as in carbon
represents an enormous positive increase in
electronic kinetic energy in the solid state as
compared to the vapor state. For carbon we
compute the increase to be in excess of 3X10'
joules per gram. There is of course an even
slightly greater fall in electron potential energy

caused by the proximity of positive nuclei in the
solid state so that the net energy of the solid
state is lower than the vapor state by the familiar
required amount. Thus this profound difference
between the two states is entirely masked in all
conceivable methods of observation save the
broadening of the modified line which alone
affords a direct measurement of the electron
velocities in the scattering material independent
of their potential energy.
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By using variation functions which take into consideration the instantaneous interaction
of the electrons, momentum distribution functions and intensity distributions in the Compton
line are computed for helium and molecular hydrogen, neglecting small relativity and binding
corrections. The half-value breadths are expressed in terms of l/2P * where l is the wave-length
displacement from the center of the shifted line and 2P *= (X~'+),2 —2) jX„cos x)&. X~ and P .are
the primary and scattered wave-lengths and x the scattering angle. The absolute breadth of the
line may therefore be computed for any P & and X. For helium and molecular hydrogen the values
of l/23* at half-maximum are 10.8 and 8.5, respectively.

INTRoDUcTIQN

HERE have been many theoretical inves-
tigations of the shape of the Compton

line differing from one another both in the
treatment of the scattering process itself and in

the electronic configuration assumed to exist
before scattering has occurred. ' ' However, in no

' J. W. M. DuMond, Rev. Mod. Phys. 5, 1 (1933);
Phys. Rev. 33, 643 (1929).' G. E. M. Jauncey, Phys. Rev. 25, 314, 723 (1925);
P. A. Ross and Paul Kirkpatrick, Phys. Rev. 45, 223
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calculation has the interaction of the electrons
found suitable representation, for the Hartree
functions or hydrogen-like wave functions with
screening constants which have heretofore been
used introduce only an average perturbing effect
of the electrons upon one another. Since com-
putations of the Compton line shape have been
most successful for gases, it is natural when
attempting a more rigorous investigation to turn
to the simplest elementary gases containing two
electrons, namely helium and molecular hy-
drogen. For these substances it is not necessary
to depend upon the Hartree or screening-con-
stant-type wave function since variation func-
tions containing interaction terms explicitly have
been developed, the most accurate of which lead
to energy values for the ground state which are
correct within experimental error. Line shapes
for helium and molecular hydrogen are here com-
puted from some of the less accurate of these
variation functions which nevertheless approx-
imate the true wave functions much more closely
than do the Hartree or the hydrogen-like screen-
ing-constant type. By reason of the greater
accuracy possible in these calculations as com-
pared to calculations on other gases or solids, the
line shapes for these two gases probably offer the
best opportunity to compare in a quantitative
fashion theory and experiment. '

GrENERAL METHOD

The variation function chosen to describe the
He or H2 system is here represented by
p(r&, 8~, r2, 62), where r&, 8~ are polar coordinates
of the first electron, r2, 82 of the second electron
with respect to the same origin. Azimuthal angles
do not appear in any of the variation functions
used. A(P~, O~ ,'r2, 82), the mixed wave function
in the polar coordinates of the first electron in
momentum space and the position coordinates
of the second electron, can be obtained from this
p by the following Dirac transformation,

(1934); F. Bloch, Phys. Rev. 46, 674 (1934); F. Schnaidt,
Ann. d. Physik 21, 89 (1934);W. Franz, Zeits. f. Physik 90,
623 (1934); 95, 652 (1935); G. Burkhardt, Ann. d. Physik
26, 567 (1936); Kirkpatrick, Ross, and Ritland, Phys. Rev.
50, 928 (1936).

'The complete experimental results of DuMond and
Kirkpatrick (Phys. Rev. , this issue) on scattering in He
demonstrate the feasibility of such a comparison and its
importance in determining the position of the shifted line
accurately.

A (P&, 0), r2, A)
GO 1P 2T

exp [—(27ri/k)P, rl]
ay=0' 0y-0 yy —p

~ @(rq, 8q, rm, 82)rq sin Pqdrqdlgdlpg (1)

(No azimuthal angle enters in A as none enters in

p.) Here, P~ and r& are the vectors whose end-

points lie at (P&, 0&), (r&, 8&), respectively. All

the transformation integrals which must be
evaluated may be written down immediately by
using the general expression for the momentum
wave functions of a hydrogenlike atom, Y„&,
given by Podolsky and Pauling. 4 Those functions
which will be used here are:

(2)

Y2yp = —4z cos 0
(1+i')'

where |'~——2~P~ao/Z'h, Z' =effective nuclear
charge and ap = radius of first Bohr orbit in

hydrogen, the subscripts in T„&' referring to the
quantum numbers, n, l, m. 1'& will be used in

place of P~, in the explicit functions of P~
developed later for He and H~. The momentum
distribution function B(P~, O~) can now be
found by integrating the modulus squared of
A (P„O~, r2, 8g). Thus

B(P, 0) =2m. ~ t AA*r22 sin 82dr2d82 (3).
f2=0' /2=0

The subscripts have been dropped in B(P, 0) for
the electrons contribute equally to the mo-
mentum.

Since for this case of scattering by field-free

gases, all orientations of the molecule are equally
probable, the function B(P, 0') must be aver-

aged over the angle 0 to obtain the radial
momentum distribution function, C(P):

C(P)= f B(PH) Bin 8d8. ,' 0=0

4 Boris Podolsky and Linus Pauling, Phys. Rev. 34, 109
(1929).
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TABLE I. Variation functions for the normal IIe atom. e
—2's~ntluwc

nlm
(6)

Zr L —(UNITS RH hc) Oj ERROR (t even)

1 1.6875
2 1.850
3 1.69
4 1.822

0 0
0 0.112
0.142 0
0.126 0.089

5.695
5.755
5.754
5.784

1.93
0.91
0.92
0.40

DuMond' has shown that the shape of the
Compton line can be computed from such a
momentum distribution function or vice versa,
the formula for the intensity y as a function of
wave-length displacement l from the center of
the shifted line being

c mc

0. being the fine structure constant. Since the
constant of integration k is arbitrary, all constant
factors multiplying p, A, 8, and C are omitted.

It should be mentioned that DuMond's
formula for the intensity distribution in the
modified line does not consider the generally
small effect due to binding and relativistic cor-
rections. However, for the case of scattering
from helium and the hydrogen molecule, binding
and relativistic corrections to the shape are less
than the error in the calculations due to the use
of a variation function as an approximation to
the true wave function. The error produced in
the half-width itself is negligible since the cor-
rections to the intensity corresponding to a
given absolute value of I are nearly equal, though
of opposite sign, on either side of the maximum.

Scattering from helium

The variation functions developed by Hyl-
leraas' for He are of the form

in which l =X2—X& —(It/nsc) (1—cos y), 2k" = (X,'
+X~' —2K~X, cos x&)l, X, =X~ for /=0. X~ and X2

are initial and scattered wave-lengths and y is
the scattering angle. C(P) has been replaced by
C(l/2X*) where

in which s=(r&+r2)/ao, t= (r~ r—2)/ao, aou=r12
= interelectronic distance, ao ——radius of first
Bohr orbit. Since a @ which involves the first
power of u cannot be transformed in finite terms
to the mixed wave function, variation functions
which may be represented by

@=e e"(1+c t'+c,u')

are used here. In Table I appear the four vari-
ation functions of this type together with the
energy values to which they lead and the per-
centage difference from the true value.
—78.605 ev= —5.8074 RH, hc. The first of these
is due to Kellner' and is a hydrogen-like screening
constant type function. The second is due to
Hylleraas' and the third and fourth have been
developed by the author using Hylleraas'
formulae. "" The terms in u' were included in an
effort to compensate for the missing linear u
term which is primarily responsible for the
accuracy of Hylleraas' energy calculations. The
third function describes the actual electronic
system well since it represents a He atom with
electrons in two different orbits with effective
nuclear charges 2.15 and 1.19 corresponding to
almost complete shielding of the outer one and
slight negative shielding of the inner one. The
second function, in comparison, although it now
introduces the interelectronic interaction, repre-
sents this interaction as being much stronger
than is actually the case. Consequently, of the
two functions, the third probably corresponds
more closely to the actual state of the system
although the energy E calculated from the two
functions is about the same. To check the effect
of adding further integrable terms, values of B
resulting from many different combinations of
u', u4, t', t4, s, s' were computed. The most
accurate value of the energy obtained in this
way was only 0.1 percent better than the fourth
variation function above. In view of the rapidly
increasing complexity of the algebra entering
into the evaluation of the integrals, it was not
considered that the inclusion of further terms

' Egil A. Hylleraas, Skrifter det Norskc Vid. -ak. Oslo, I
Nat. Nuturw. Klasse 1932, p. 107.

' G. W. Kellner, Zeits. f. Physik 44, 91 (1927).
7 Egil A. Hylleraas, Zeits. f. Physik 54, 347 (1929).
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P xylo'

10 12 14

F&G. 2. Intensity distribution of the Compton line as a
function of P =l/2X* where L =displacement from the center
of the shifted line, 2k*=(x1'+P,' —2xIx, cos g), & 31 and x,
being the initial and scattered wave-lengths and cos g the
scattering angle. Ordinates are in arbitrary units and the
curves are normalized to the same area.

half-value breadth may be taken as proportional
to ( —Z) &. For systems which may be considered
to be hydrogen-like with all electrons in the
same shell, this method will be exact since in
this case Z ~Z" and P~ should be proportional
to Z', which is obviously true from a considera-
tion of the simple form which y assumes for the
hydrogen-like case.

A more accurate comparison may be made on
the basis of the momentum distribution function,
Fig. 1, for in general, Pq corresponds closely in
value to the most probable P. Thus, assuming

TABLE II. Half-value breadths.

that P~ as calculated from the first variation
function is correct and that the half widths are
directly proportional to the most probable P's,
approximate half widths are found which, with
no attempt to adjust the constant of propor-
tionality, fit to a few percent as is seen from the
last column of Table II.

Since the variable is I =l/2) *Z'u and the line
shapes are plotted as functions of l/2Ã*=P, the
half-value widths that should be compared are
P~/Z'. Values of P~ (the half-value breadth) and
P~/Z' are tabulated in Table II. If (P~/Z') is
plotted as a function of the corresponding energy,
it is seen to be an approximately linear function
of the energy over a range which is long in com-
parison to the error in the energy computed from
the fourth variation function and in considera-
tion of the probable unreliability of the second
variation function. Consequently, the extra-
polated value of (P~/Z') =5.99X10 ' correspond-
ing to E= —5.8074 RH, hc may be assumed. By
using the value Z'=1.818 which occurs in the
most accurate of the Hylleraas functions, the
value P~ ——10.8X10 ' is then found, which is the
best value that can be calculated from these
variation functions. This method would not be
valid if the constants did not enter into the
variation function linearly.

In Fig. 2, y as a function of l/2K*=/=v/c is
plotted. From such a curve, the line shape for
any scattering angle and any incident wave-
length can be computed by a proper choice of )*
(Eq. (5)). LFor example, the half-width in He at
lb'= 710 X.U. , x= 180' is 15.8 X.U.] All curves
are reduced to the same area since the total
number of scattering electrons is constant. The
two curves for He correspond to the first and
fourth variation functions, and show clearly that

P~ X108

12.67
12.08
11.24
11.38

1.69
1.85
1.69
1.82

~0 XPl/Z'

7.50
6.53
6.65
6.25

P~ calculated from most
probable P

12.67
11.91
10.87
11.02

FrG. 3. Coordinates for the hydrogen molecule.
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the line whose shape is computed from the more accurate function is narrower than the line
derived from the simple hydrogen-like screening constant function.

Scattering from molecular hydrogen

A variation treatment for the hydrogen molecule has been carried out by James and Coolidge'
using terms in u to introduce the electronic interaction as Hylleraas did for He. However, the ex-
ponential of (r~~+ra~+r~q+ra2)/res, occurs in all the variation functions making impossible the
evaluation of the transformation integral in finite terms. (See Fig. 3 for coordinates. ) Consequently,
a function of the ionic-polarization type studied by Weinbaum' which permits the direct evaluation
of all integrals but that for y has been chosen.

This variation function is

P = [ups~(1) +au2pg(1)][utes(2) +0u2 ps(2) ]+[utsg(2) +02 pg(2)][ulss(1) + 0'u2 ps(1)]

+c }[ui.q(1) +ou2 p~(1)][ui.~(2) +o u2 p~ (2)]+[uiss(1) +ou2ps(1) ][ui.s(2) +ou2 ps(2) ]I, (11)

in which 0 =0.07, c=0.176, and ui.z (1) represents a hydrogen-like 1s wave function for electron (1)
about nucleus A which carries a charge Z', etc. Thus

ups~(1) =exp (—Z'r~~/ao), u2p~(1) = (rA&Z'/ao) cos 0~~ exp ( Z'r~&/ao), —

6A] = angle between r~B and rA~, measured from rA] to r~B.

The quantity r», the internuclear distance, although not occurring in the variation function, enters
in the calculation of the transformation integral. The experimental value, 0.7395A, of rgB is taken
instead of 0.77 which corresponds to Weinbaum's function. This reduces the dissociation energy by
a few percent, but gives a more accurate representation of the actual structure of the molecule. Z' is
taken to be 1.19 since most variation functions of this general type lead to this value. p may be
rewritten as

in which

p=ag[uisg(1)+u2pA(1)]+a [suiss(1)+ou2ps(1)]

ag = u its(2) +o'u2 ps(2) +cu1sg(2) +clTu2 pA (2),

az = ulsz (2) +0'u2 pz (2) +cu1ss(2) +co'u2ps(2),

and a~ and aB are therefore functions of the second electron's position alone. Since the transformation
integral, Eq. (1), was expressed in terms of coordinates with but one origin, it is necessary to change
its form slightly. Noting that p splits up into two parts containing position variables with A and 8
as origin, and taking (x~&, y~&, s~&), (xa&, ya&, sa&) to be rectangular Cartesian coordinates of the first
electron with respect to A and 8, the s-axis lying in the direction of the line AB, then the trans-
formation integral becomes

CO ~oo co

A(P„, P„„P„,xAQ ' ' 'sB2) =h aq exp [(7ri/h)rqsP„]
XAq=o~y~q= SAq=o

Xexp [—(2pi/h)P& r»] [ iszu(1)+ 2 gu(1p)]d Ag xdyAy dsAg+as exp [—(~i/h)r~sP. ,]
QO CO ~oo

J [ursa(1)+u2ps(1)] exp [—2pi/h) P& rs&]dxa&dyBglzBi
XB]=0 P'By=0 2Bj =0

Since these integrals are exactly those for 1s and 2s hydrogen-like atoms, the mixed wave functions
can at once be written out in polar coordinates by use of Eq. (2).

' H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).' S. VJeinbaum, J. Chem. Phys. j., 593 (1933).
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A(Pg, OI, rAg ' ' 'IBAD) =[ay exp [(7ri/h)r~sP~ cos O~]

+as exp [—(7'/k)rqsPq cos OI]][(1+iP)~ —4ioI'q cos Oq] ~ (1+i P) 3. (12)

Here 8AI ——angle between rA. ~ and rA~, etc. , while 0=polar angle in momentum space of the first
electron. Integrating over rA, 8a~ and O~, it follows that A(P~. .PD~) becomes

( X i 16 32X0~ 16) '0'
c(i) = (1+/) ' (1+i')'~ 1+—sin (fi) ~+ o'—I'+ —cos (fi')+ (f'—I' —2) sin (fi), (13)

fi » f' f'l
in which I = 27rPao/Z'h as before, f= Z'res/a p = 1.67, X = 2p(pc+ 1+c')/(4c/p+ 1+c') = 0.857,
where p=2(e~/f')(1+a') [polynomia! in 0. and f]

It is seen that in order to find y it is necessary
to evaluate indefinite integrals of the form

sin (fi)

(1+V)"

As a simplification, all integrals of this type were
taken together and integrated graphically with
an error of less than 1.percent. For purposes of
comparison the resulting y curve was normalized
to the same area as for two hydrogen atoms, or
for a He atom and plotted with the He curves in

Fig. 2.
Many other variation functions which it is

possible to integrate have been studied by
various investigators, but as each is of essentially
different character from every other, and since
the difference between any two is not merely a
term in a polynomial as in the case of the
helium, and the change in ) is consequently of a
complicated nature, they would not provide
basis for an extrapolation such as was carried
out for helium. Accordingly it has not seemed
worth while to calculate line shapes for these
functions.

Interpolating on the y curve (Fig. 2), the

value 8.50X10—'=P» is found for the half-value
breadth of the line in H~. Since the half-width in
atomic hydrogen is only 7.50&&10 ', the more
accurate calculation leads to a broader line. This
is not surprising in view of the change in the elec-
tronic configuration which occurs wheh two
hydrogen atoms are brought together to form a
molecule. The most important change which
affects the momentum distribution is in the effec-
tive nuclear charge Z'. Because of the finite sepa-
ration of the atoms and the interaction of the
electrons with each other, Z' does not approach
the value 2 as it would for independent electrons
but increases to 1.19, according to the variation
functions used. This Z' is near to the value 1.13
of the ratio of the two half-widths calculated
above and would probably agree more closely if
the assumption of the experimental value of r~~
had not invalidated the virial theorem in this
case. It is interesting to note that the ratio of the
most probable P's calculated as in the case of
helium is 1.12, checking closely the actual ratio
of the half-widths.

The author is indebted to Dr. Linus Pauling
for valuable criticisms during the course of this
investigation.


