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basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency.” Thus mathematically
the theory of normal modes and their frequencies

7 Cf. E. Wigner, Gétt. Nachr. (1930), p. 133.
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is just like the theory of electronic wave functions
and their energies : frequency can be plotted as a
function of wave vector, and sticking together of
two or more of these frequency bands will occur
at wave vectors k where G* has multidimensional
representations or where case (b) or case (c), as
defined above, occurs.

It is a pleasure for me to express my thanks to
Professor E. Wigner, who suggested this problem.
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The circumstances are investigated under which two wave functions occurring in the Hartree
or Fock solution for a crystal can have the same reduced wave vector and the same energy. It
is found that coincidence of the energies of wave functions with the same symmetry properties,
as well as those with different symmetries, is often to be expected. Some qualitative features
are derived of the way in which energy varies with wave vector near wave vectors for which
degeneracy occurs. All these results, like those of the preceding paper, should be applicable
also to the frequency spectrum of the normal modes of vibration of a crystal.

N previous papers, by Bouckaert, Smoluchow-
ski, and Wigner,! and by the author,? certain
properties of the wave functions - and energy
values of an electron moving in the periodic field
of a crystal were derived. These properties were
the properties necessitated by the symmetry of
the crystal and by the reality of the Hamiltonian.
The two questions to be discussed in this paper
are:

(1) In the solution of Hartree’s or Fock’s
equations for a crystal to what extent may one
expect to encounter accidental coincidences in
energy between two one-electron wave functions
with the same wave vector? By ‘‘accidental”
coincidences are to be understood coincidences
not necessitated by the symmetry and reality of
the Hamiltonian.

(2) If the energies of two or more bands
coincide at wave vector k, whether accidentally
or for reasons of symmetry and reality, how may
the energies of these bands be expected to vary
with wave vector in the neighborhood of k?

! Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50,

58 (1936), hereafter referred to as BSW.
2 Preceding paper, hereafter referred to as I.

The analysis necessary to answer these ques-
tions is rather tedious. Despite this and the fact
that it may not be of practical significance to
bother about too fine details in an approximate
theory, the discussion to be given below may be
of value in forming pictures of the energy band
structures of metals, especially of multivalent
ones. In particular, it is hoped that the complete
determination of energy as a function of wave
vector by interpolation from the results of cal-
culations of the Wigner-Seitz-Slater type will be
facilitated and made more reliable. The results
of this paper also apply, as did those of I, to the
frequency spectrum of the normal modes of
vibration of a crystal; however numerical cal-
culation of these frequencies has not yet ad-
vanced as far as has the calculation of electronic
bands.3

The notation to be used is the same as in L.
In addition, the symbol [ M?!, M?] will be intro-
duced to represent the subspace of Hilbert space
spanned together by any two linear manifolds
of wave functions M* and M?2.

3 Calculations for a simple cubic lattice have been made
by M. Blackman, Proc. Roy. Soc. A159, 416 (1937).
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1. PRELIMINARY DEFINITIONS

In order to discuss accidental energy coin-
cidences it is first necessary to group together
all those eigenfunctions which because of the
symmetry and reality of the Hamiltonian neces-
sarily have the same energy. If ¥’ is any eigen-
function with wave vector k and energy Ei(k),
application to ¥;® of the operations of the space
group and the operation K of taking the complex
conjugate will generate a linear manifold of wave
functions all eigenfunctions of H with energy
Ei(k). Such a linear manifold of eigenfunctions
which can be generated from an eigenfunction
with wave vector k will, if it is irreducible under
K and the space group, be designated by a
symbol Mi(k); of course it will in general contain
wave functions with wave vectors different from
k. Any Mi(k) will be called equivalent to Mi(k)
when the representation of the space group in
Mi(k) is equivalent to that in Mi(k). As ex-
plained in I, the representation of the space
group in Mi(k) may be irreducible (case (a)),
reducible into two inequivalent parts (case (b)),
or reducible into two equivalent parts (case (c)).

Now the occurrence of an accidental coin-
cidence in energy means simply that for some
particular k two independent manifolds Mi(k)
and Mi(k) can be found whose energy values
coincide. Such an accidental energy coincidence
will be called for brevity a ‘‘contact,” and k will
be called a ‘“‘contact point.” Two kinds of con-
tacts may occur, according to whether M(k) and
Mi(k) are inequivalent or equivalent. These will
be discussed, respectively, in Sections 2 and 4.
In this paper we are not interested in all the
types of contacts which are possible with
specially chosen forms for the potential energy
function occurring in the Hamiltonian, but only
in those which may be expected to occur in the
Hartree or Fock solution for an actual crystal.
For example, it is not hard to find a potential
V="Vy(x, y, 2) for which the locus of the points
of contact between the two lowest energy bands
is a two-dimensional surface in k-space. How-
ever, almost any infinitesimal change which may
be made in the function V will give rise to a new
Hamiltonian whose spectrum has no contacts-at
all.4 For an actual crystal, the factors determin-

4 A simple example occurs when the potential is separable
in rectangular coordinates. A two-dimensional contact
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ing the potential energy function V are quite
unrelated to the conditions V must satisfy in
order that there exist a contact region of the
type just mentioned ; consequently it is safe to
assert that no actual crystal will be encountered
for which V has the form V,. In general, it will

_ be legitimate to characterize any property of a

contact or a contact region (e.g., the property of
the contact region being a two-dimensional
surface) as ‘‘vanishingly improbable” if it ceases
to exist after some infinitesimal change is made
in the form of the function V which does not
alter the symmetry of V. This concept will be
used principally in giving precise formulation to
the theorems of Section 4.

2. CoNTACTS OF INEQUIVALENT MANIFOLDS

The way in which contacts of wave functions
with different symmetry properties come about
is most easily seen by considering some particular
examples. Consider first the energies of two wave
functions whose wave vectors k lie in a plane of
symmetry in the B-Z. Let one of these, say ¢47,
be even with respect to reflection in this plane
and the other, ¥,7, be odd. Suppose it is known
that at some point k; of this plane the even func-
tion has higher energy than the odd, and that at
another point k, the odd has higher energy than
the even. Then, since the energy of the odd
function and the energy of the even function are
both continuous functions of wave vector in this
plane, there must be a curve in the plane along
which the two energies are equal. It must be
impossible to get from k; to ky without crossing
this curve. Therefore this curve must be a closed
ring about either k; or kg, or else it must extend
to infinity when energy is plotted as a periodic
function of wave vector in the infinite reciprocal
lattice space. It may happen, of course, that part
of this curve coincides with a line of symmetry
in the B-Z, along which sticking together of the
even band and the odd band is necessitated by
symmetry.

For another example consider the band struc-
ture of sodium. The graph of energy against %
region will occur when a crossing of energy curves occurs
in one of the one-dimensional problems to which the three-
dimensional problem is reduced, and it is well known that
almost any small perturbation will dissolve such a crossing

in one dimension. Cf. v. Neumann and Wigner, Physik.
Zeits. 30, 467 (1929).



ACCIDENTAL DEGENERACY

when k lies along a fourfold axis of the B-Z is
qualitatively as shown in Fig. 1. It is known®
that for k=0 the lowest state of the valence elec-
tron is the 3s-like state, which belongs, in the
notation of BSW, to the irreducible representa-
tion I'; of the full cubic group. The next lowest
state at k=0 arises from the atomic 3d level;
this splits in the crystal field into a triply degen-
erate level I'ys’ and a double degenerate one I';2.
For definiteness it will be assumed here that
I'ss’ lies lower, although the two are so close
together that the usual methods of calculation
ignore their separation altogether. At the corner
of the B-Z, G* is again the whole space group.
The lowest level is the 3p-like level I'ys, and the
3s-like level I'; comes next, a little higher. This
information alone suffices to determine the way
in which the curves should be drawn between
the end points 0 and 27 /d. For we may label the
different symmetry types of wave functions at
intermediate points by the irreducible representa-
tions A of the group of their wave vectors. The
form of the curves is determined by the fact
that the A belonging to any curve cannot change
suddenly at any place between 0 and 27 /d, and
the fact that each I' contains only certain repre-
sentations A. Note that I';s, which must connect
with I'y, lies higher than T'ys’, which must connect
with something at 27/d which is above TI'.
Therefore the curves of types A,’, Aj, must cross
at some intermediate point.

Considerations of the same sort apply to any
path of points in the B-Z whose G* contains
rotations or reflections, provided the path is such
that all the representations of the space group
vary continuously along the path and bear the
same relationships to their complex conjugates.
The order in energy of the different types of
manifolds M (k;), M(k), at the end points may
necessitate contacts of inequivalent manifolds at
intermediate points. And if either end point,
say ki, has a G of which the G* of the inter-
mediate points is a subgroup, the types of
manifolds at intermediate points which can
connect with any M (k;) can be determined group-
theoretically, with due regard for the conse-
quences of time-reversal symmetry.

5 Approximate values for the energies of the different
eigenfunctions at the center and corner of the B-Z can be

%btained from J. C. Slater, Phys. Rev. 45, 794 (1934),
ig. 1.
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Calculations made for more complicated
metals show such contacts of inequivalent mani-
folds of eigenfunctions along axes of symmetry
in the B-Z.® Naturally, however, not all such
contacts which occur can be predicted from a
knowledge of the energies of the different mani-
folds at the two ends of the axis.

3. VARIATION orF ENERGY NEAR CONTACTS

If all the wave functions which have wave
vector k and a single energy Ei(k) are known, the
neighboring energies of the wave functions which
have a wave vector (k-+x) in the neighborhood
of k can be determined to the first order in « by
perturbation theory. For, since any

Yr=exp (Zk-r)uy
where u;, has the periodicities of the lattice,

exp (—ik-r)Hy,= { —h?/2mV?
—ih?/mk-V4+h2k2/2m~+ Viue=Emu, (1)

and the term —i4#4%/mx-V can be treated as a
perturbation. Eq. (1) holds when the Hamil-
tonian H is of the Hartree type; when we are
interested in the solution of Fock’'s equations
we must introduce the exchange operator —A4

6 H. M. Krutter, Phys. Rev. 48, 664 (1935), (copper);
Manning and Krutter, Phys. Rev. 51, 761 (1937), (cal-

cium).
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into H, and this means that
—Ar=—exp (—ik-1)4 exp (ik-1)

must be added to the operator in the brackets.
There is then an added perturbation —x-34/dk.

It will be convenient in the following to use
the symbol mi(k) for the linear manifold spanned
by the wave functions #; which can be obtained
by multiplying by exp (—tk-r) those wave
functions ¢y, of Mi(k) which have wave vector k.
If Mi(k) and M7(k) have the same energy, the
neighboring energies at (k-+x) are determined
to within terms of the order of «? by the solution
of a secular equation involving the matrix
elements of <V (for the Hartree case) in
[mi(k), mi(k)].

When two wave functions ¥4, Y47, and nomore,
have the same k and the same energy, the solu-
tion of the second order secular equation gives
for the energy separation 8E at (k4x) of the
two bands which come into contact at k

SE(k+x) =[(x-£)2+4|x-g[ 2] +0(k?), (2)

where the vectors f and g are defined, for the
Hartree case, as

f= —ih?/m[ (us, V) — (wi?, V) ],

g =i m (s, Vi), 3)

and for the Fock case are these quantities plus
matrix elements of d4;/9k.

When the degeneracy at k is threefold it is
less simple to give an explicit formula for the
energies of the three bands at (k+x). It is,
however, possible in most cases to derive a
criterion which will tell us whether, for a given
direction of %, the separation of every pair of
the bands is of the order of « as k—0, as in (4),
Fig. 2, whether two of them have a separation
of the order «?, as in (B), or whether all the
separations are of the order «%, as in (C). To do
this we start from the following fact:7 if a third
order secular equation det (H,,—N\d,,)=0 with
H,, real and equal to H,, possesses two coincident
roots A=X\;, then the equation obtained by
setting to zero the minor of any element in
det (H,,—\é,,) must have \; as a root. Con-
versely if every minor has \; as a root, the secular
equation must have \; as a double root, since in

7 Burnside and Panton, Theory of Egquations, Vol. II,
p. 66.
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this case the derivative of the secular deter-

minant with respect to A will have X\, as a root.
Now the condition that the minors of Hie, His,
and H,; have the same root turns out to be the
same as the condition that for u2v=1, 2, 3 the
root of the minor of H,, be also a root of the
minor of (H,,—N\). This condition is

IIIZIII3IIZ3H11 _EI-122-Z'1132 = H12IIl3II23ZI22
_'H232H122=I{121:113I{23H33_HISZII232- (4)

So when none of the three quantities 12, His,
H,; vanishes, the satisfaction of (4) implies that
all minors of the secular determinant have a
common root, and thus that the secular equation
has a dauble root. When (4) is satisfied by virtue
of the vanishing of two of the three nondiagonal
elements, however, two of the nondiagonal
minors vanish identically in N\. In this case it
cannot be concluded that the principal minors
have a root in common, since concerning one of
the principal minors nothing more is known than
that it has a root in common with a polynomial
which vanishes identically. To insure that all the
principal minors have a common root it will be
sufficient to use the conditions that for u, », ¢
all different and running from 1 to 3 the minor
of (H{,,—M\) have a root in common with that
of H,,. These are

(1122 +II33) (HZSHH _'III3I{12)fI23
— (HysH 11— H13H1s)? (5)
—11232(11221{33 —I1232) = 0,
Permutations of this=0.

Thus the satisfaction of (5) as well as (4) insures
existence of a double root except in the trivial
case where Hip=H3=H,3=0.

In the present case the matrix elements FH,,
will be the matrix elements of —3#42/mx-V or of
—th?/mx-V—x-04;/0k. The criteria (4), (5),
will be applicable if a basis can be found in
[mi(x), mi(k)] with respect to which all these
matrix elements are real.

In order to apply (2), (4) and (5) it is necessary
to know what restrictions are placed on the
matrix elements of the vector operator iV, or of
dA:/0k, by the fact that all the basis functions
Yr are eigenfunctions of a real Hamiltonian I
which has the symmetry of the crystal. These
restrictions can be obtained in a straightforward
manner from the fact that the three components
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of the vector operater in question are pure
imaginary operators plus the fact that they form
a basis for a representation of the space group
which is characterized by wave vector zero and
which therefore is simply the point group repre-
sentation for a polar vector. For the various
cases which will be needed later on the most
general forms consistent with the spatial and
time-reversal symmetry restrictions, which the
matrix elements of an imaginary Hermitian
polar vector operator F can assume, are listed in
Tables I to IV. The basic wave functions to
which these matrix elements are referred have
been chosen as follows:

All the basis functions have the same wave vector k.

Each basis function is an eigenfunction of some opera-
tion in G¥, as is indicated explicitly in connection with each
of the tables.

When an inversion J is present in the space group, the
phases of the basis functions are so chosen that the opera-
tion JK takes each basis function into itself, K being the
time-reversal operator which takes every function into its
complex conjugate.

When no inversion is present but a twofold rotation C,
or C, is included among the operations Qo which take k
into a wave vector equivalent to —k, the phases are to
be so chosen that C:K or C.K takes each basis function
into itself.

When neither an inversion nor a twofold axis is included
among the Qu), the phases of the basis functions do not
matter.

Table I gives the matrix elements of a vector
operator F of the type described above in the
subspace spanned by two wave functions ¥ and
¥, Each matrix element of F is a vector. In the
first three rows the manifolds Mi(k), Mi(k),
to which ¥4% ¢4, belong cannot be inequivalent ;
in the last two, however, the functions ¥i¢, Y17,
may be both even with respect to reflection in
the plane of symmetry, both odd, or one even
and one odd. The symbol listed first in each of
the columns for F;; refers to the case where both
are even or both odd, the second symbol to the
the case where one is even and the other odd.
The symbol 1 means that the vector in question
must be perpendicular to the twofold axis (or
perpendicular to the normal to the reflection
plane) but is otherwise unrestricted. The symbol
|| means that the vector must be parallel to this
axis. As in I, C, stands for a twofold screw axis,
and S; stands for a glide plane. In the column
headed ‘‘case” Mi(k) and Mi(k) are classified
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according to their time-reversal properties, as in
Table I of I; some of the possibilities are however
omitted from the present table.

Tables II, III, and IV apply along various
symmetry axes of the B-Z for simple, body-
centered, and face-centered cubic crystals. An
inversion is assumed to be present in the space
group. Tabulated is the vector (¥1?, Fy:?) for the
different possible representations of G* to which
¥i* and ¥’ may belong. The notation for these
representations is that of BSW. The quantities p
are arbitrary real numbers, and the €'s are unit
vectors. Table II is for points k on a twofold
symmetry axis ; here e is parallel to the axis of Cs,
€, is perpendicular to the axis of C; in the plane
taken into itself by JC,%, and ¢ is perpendicular
to the axis of C; and to €,. Table II1 is for points
k on a threefold axis. It is supposed that one of
the three symmetry planes JC; passing through
the axis has been singled out; 4+ and — refer,
respectively, to eigenfunctions even and odd
with respect to reflection in this plane; € is
parallel to the axis of Cj, €, is perpendicular to
the axis of Csin the plane of the JC, selected, and
& is perpendicular to the axis of C3; and per-
pendicular to the plane of the JC,. Table 1V is
for points k on a fourfold axis. It is as before
supposed that one of the two symmetry planes
JC, containing the axis has been chosen; + and
— refer to eigenfunctions even and odd with
respect to reflection in this plane; e is parallel
to the axis of Cy, €, is perpendicular to the axis
of C4 in the plane of the JC. selected, and e
is perpendicular to the axis of C, and to the JC,.

Table II, given for the representations X of
the group possessed by points on a twofold axis
inside the B-Z may be used also for the repre-
sentations of the groups belonging to the general
points .S, Z, G, D, of lines in the boundaries of
the B-Z of Figs. 2, 3, and 4 of BSW. The groups
of Z and of D do not contain the same operations
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as the other two; for these the ¢'s must be ori-
ented relative to the corresponding symmetry
planes.

From (2), (3), and the two last lines of Table I
we can calculate 6E for points in k-space near a
curve of contact of even and odd wave functions
in a symmetry plane. When no inversion is
present in the space group we may expect that
as we go out from any point k of the contact
curve the energy separation §E(k+x) is of the
order « for any direction of x not in the plane
of symmetry. This is because it can safely be
assumed that the real and imaginary parts of g
do not vanish simultaneously at any point of
the curve. When an inversion is present however
-the real part of g always vanishes, and since
there will in general be points of the curve at
which the imaginary part of g vanishes, we may
expect sometimes to find points on the curve
where 8E(k+x) is of the order «* when x is per-
pendicular to the plane. Whether an inversion
is present or not, $E(k+x) may be expected to
be of the order x when « is in the plane and per-
pendicular to the curve.

For contact points on a symmetry axis where
m? and m’ are each one-dimensional we may
expect that SE(k-+«) is always of the order «
when x is not perpendicular to the axis, and
when « is perpendicular to the axis is of order
k2 or « according to whether the table requires
x-g to vanish or not. It may be noted too from
(2), (3), and Table IV that at points near a
fourfold axis the energy separation of two bands
which stick together everywhere on the axis
(representation Aj;) is always of the order of the
square of the distance from the axis; likewise,
from Table III, the separation of two bands
which stick together everywhere on a threefold

TaBLE .
REAL PART IMAGINARY
Qo Case| Fi;or Fj; Fij PARrT Fyj
None (G¥the | (b) Unre- Unre- Unre-
translation stricted stricted stricted
group alone)
J (a) Unre- Unre- 0
_ stricted stricted
Csor Cp (@) L 1 I
Cy, Jor Cy, J | (a) L 1,0 0, Il
None (G¥the | (b) L L, 1l 1,1
translation
group_plus
Sz or Sz)
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axis (representation A;) is of the order of the
distance from the axis, except near points of the
axis where p3; vanishes.

Consider finally the energy wvariation near
contacts of Az with one of the other A's, or Aj
with one of the other A’s. For a contact of Aj
with one of the other A’s it is easily verified by
use of Table IV with (4) and (5), or alternatively
by solving the third order secular equation
explicitly, that the energy separation of any pair
of the three bands may be expected to grow
proportionally to « as we go out from a contact
point k to (k+x) (except when « is in the direc-
tion of the axis). In other words, the situation is
as in (4) of Fig. 2, for every direction of «x
except along the axis. For a contact of A; with
one of the other A’'s the secular equation ob-
tained from Table III is more complicated, and
since it cannot readily be solved explicitly, (4)
and (5) must be used. The result is best described
with reference to Fig. 3. The plane of the drawing
is a plane through the contact point k and normal
to the axis of C3, and the three lines are the inter-
sections of this plane with the three symmetry
planes JC,. When the projection of x on the
plane of the drawing points in one of the three
directions shown by the full lines and the angle
between x and the axis of C; has a certain value
6, we may expect dE(k-+x) between one pair
of the three bands to be of the order «%. We may
also expect 6E(k+x) between a pair of the bands
to be of the order «* when the projection of x on
the plane of the drawing points-in the direction
of one of the dotted lines and the angle between
the axis of C; and « is (wv—86). Thus for these
directions of x the situation is as in (B) of Fig. 2;
for all other directions of x, except along the
axis, 6 E(k+x) is on the order «, and the situation
is as in (4) of Fig. 2.

4. CoNTACTS OF EQUIVALENT MANIFOLDS

In this section it will be shown that situations
exist in which two energy bands touch at general
points in k-space and cannot be separated by
any perturbation, and some properties of con-
tacts of this sort will be given. More precisely
stated, it will be shown that the existence of
wave vectors k for which the energy of some
Mi(k) coincides with the energy of some Mi(k)
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equivalent to it is not a vanishingly improbable
phenomenon in the sense of Section 1.

Consider first the case of a crystal without an
inversion center. For simplicity the Hartree case
only will be considered, as the reasoning proceeds
identically in the Fock case. Suppose the poten-
tial V(r) of such a crystal to have a form pos-
sessing a twofold axis of symmetry, but no other
symmetries except its translational periodicities.
Suppose further that at some point k on the
axis the energy of the wave function unchanged
by the twofold rotation crosses the energy of the
wave function which changes sign on rotation.
This is a perfectly possible state of affairs. By
the same method as was used in constructing
Tables I to IV it can be verified that the only
restriction placed on the vectors f and g defined
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in (3) by the symmetry and reality of the
Hamiltonian are that f must lie in the direction
of the axis and the real and imaginary parts of g
must be perpendicular to the axis. It will there-
fore certainly be permissible to assume that the
three vectors f, the real part of g, and the
imaginary part of g are not coplanar at the
contact point k, i.e., there will certainly exist
potential functions V(r) for which a contact
occurs at a point on the axis where these vectors
are not coplanar. Now let the potential be
changed to a form possessing no symmetry at
all except the translational periodicity, by addi-
tion of a term vU(r). The function U(r) is a
fixed unsymmetrical periodic function, and v is
an infinitesimal positive number. Treating this
term as a perturbation we may calculate its
effect on the energies of wave functions whose
wave vectors are near to k, by solving a second
order secular equation. The result is similar
to (2):

SE= {[6Eo+v(Ui— U) 12 +4|vU;| 2}t +R  (6)

where 0E is (E‘(k’)— E‘(k’)) after the perturba-
tion, 8E, is this quantity before perturbation,
and where for sufficiently small v the remainder
R satisfies | R| <2Av?with 4 independent of k’ in
the neighborhood of k. All the quantities on both
sides are to be evaluated at the same point k’.

Suppose now that after the potential has been
changed to (V+4wU) no contact occurs in the
neighborhood of the original contact point k.
Then the energy separation 8E must have a
minimum at some point in the neigborhood of k.
It can be verified from (6) that the point at
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which this minimum occurs must be one at
which both the inequalities

[8Eo+o(Uu—Uy) | <44v?, | Uy <24v (7)

were satisfied. At this minimum after the per-
turbation the gradient of §E must be zero in
every direction, i.e., f must vanish, and so f must
be coplanar with the real and imaginary parts of
g. Now a necessary and sufficient condition that
these three vectors be coplanar is that the lower
bound of the quadratic form (x-f)2+44]|«-g|? for
all vectors x of unit length and varying direction
be zero. This lower bound depends only on the
subspace [#f #7] and is independent of the
choice of basis functions u?, #/ within it. Before
the perturbation this lower bound was not zero
at k, and since the subspace [u?, 7] must
vary in a continuous manner with k’, there must
be a finite neighborhood of k in which this
lower bound was >e>0. It will therefore be
possible, whatever the form of the function U(r),
to find a v small enough to insure that the lower
bound of the quadratic form remains >0 after
the perturbation at every point at which the
inequalities (7) were satisfied. For such a small
value of v the supposition that no contact occurs
after the perturbation is therefore untenable:
after the potential has been changed to the form
(V+42U) there is still a contact at some point
near k, and since the Hamiltonian no longer
possesses any but translational symmetry, this
contact is a contact of equivalent manifolds Mi(k)
and Mi(k).

For a crystal with an inversion center a
similar argument can be constructed, which need
only be given in outline. Let a potential function
possessing an inversion center and a symmetry
plane be made into a potential function possess-
ing an inversion center but no symmetry plane
by addition of a small unsymmetrical per-
turbation vU. If a closed curve of contact of the
even with the odd wave function in the sym-
metry plane exists before the perturbation, a
closed curve of contact must persist after the
perturbation, if the perturbation is sufficiently
small. This is because if any portion of the curve
disappeared there would have to have to be a
whole line of points after the perturbation at
which f practically vanished. It can be seen from
the second line of Table I that this means that
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f and g must be practically collinear at these
points, and this is impossible if these vectors were
not collinear at the corresponding points of the
curve of contact before the perturbation.

The preceding paragraphs, although they are
not intended as complete proofs and leave
unanswered numbers of questions which may
come to mind, will, T hope, suffice to make
plausible most of the theorems which will now
be stated. The proofs of these are too lengthy to
be given here;® they are based upon the type of
perturbation considerations which have been
used in this section and in the preceding one.
The theorems are:

For erystals without an inversion center, con-
tacts of equivalent manifolds k), M7(k) may
occur for isolated points k, and such contacts
cannot be destroyed by an infinitesimal change
in the potential function V. Such contact points
k may lie in a symmetry plane in the B-Z or in
a plane perpendicular to a twofold axis, provided
the representation of the space group in each of
the manifolds Mi(k), Mi(k) is irreducible, i.e.,
provided case (a) occurs; in such case no in-
finitesimal change in V preserving the symmetry
of the crystal can cause the contact point to
move out of the plane. Except for this possi-
bility, it is vanishingly improbable for a contact
point to lie in a plane or line of symmetry in
the B-Z.

For a crystal whose space group consists only
of its translation group the total number of
distinct points k of the B-Z at which the energies
of two given bands < and j come into contact
must be a multiple of four, i.e., any other number
is vanishingly improbable. (Time-reversal sym-
metry requires that —k be a contact point if k
is a contact point, hence merely that the number
of contacts be a multiple of two; the restriction
to multiples of four is therefore rather note-
worthy.) Since any crystal of higher symmetry
can be made into one of such low symmetry by
an infinitesimal change in the form of the poten-
tial V, this implies a restriction on the number
of contact points for any crystal without an
inversion center.

8 They are contained in a dissertation submitted to the
faculty of the department of physics at Princeton Uni-
versity, 1937. The proofs are there given for the Hartree
case, but may easily be generalized to the Fock case or to
the frequency spectrum of normal modes of vibration.
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For crystals with an inversion center, contacts
of equivalent manifolds Mi(k), Mi(k) may occur
at all points k of an endless curve, or of a number
of such curves, in k-space. These contact curves
cannot be destroyed or broken by any infini-
tesimal change in the potential V' which pre-
serves the inversional symmetry. Itis vanishingly
improbable for such curves to lie in planes of
symmetry in the B-Z; however a contact curve
may pass through a symmetry axis at a point
where necessary degeneracy or contact of
inequivalent manifolds occurs.

Suppose that for a crystal with an inversion
center a contact of inequivalent manifolds
Mi(k), Mi(k) occurs at a point k on a sym-
metry axis, and suppose that mi(k) and mi(k)
are each one-dimensional. Then if the vector g
(proportional in the Hartree case to (¥4, iVy?))
does not vanish, a curve of contact must pass
through k. This curve may be a curve of contact
of equivalent manifolds of the type just described,
or it may be a curve of contact of inequivalent
manifolds in a plane of symmetry. Naturally if
there is no such symmetry plane in the space
group, the former alternative must hold.

For a crystal whose space group consists only
of its translation group plus an inversion, three
types of contact curves may occur, which are
most easily described when energy is considered
as a trebly periodic function of wave vector in
the infinite reciprocal lattice space. The first
type is a simple closed circuit which is distinct
from the circuit obtained from it by the inversion
k— ~k. The second type is a simple closed circuit
which either coincides with the inverse circuit
or can be brought into coincidence with it by 2
times a translation of the reciprocal lattice. The
third type is a curve extending periodically to
infinity. Now consider any energy band 7, and
the band j next above it. For each of the eight
distinct points k, (r=1 to 8) of the B-Z whose
G*r contain the inversion let the numbers
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N+(k,, 2), N—(k., 72), of odd and of even eigen-
functions &' be counted which have energies
E'(k,) < Ei(k,). Now the quantity

} 3 [Nk i)~ (ks )]

is an integer, and according to whether this
integer is odd or even the number of circuits of
the second type along which contact between the
bands 7 and j occurs must be odd or even. Since
any crystal with an inversion center can be made
by an infinitesimal change in the form of V into
one whose space group is merely its translation
group plus the inversion, this implies certain
restrictions on the numbers of contact curves
which may occur for crystals of higher sym-
metry. Prediction of the existence of curves of
contact of equivalent manifolds may therefore
be possible from a knowledge merely of the
energies of the different M'(k,) at the eight
points k,.

For a crystal without an inversion center, the
energy separation 8E(k-+x) in the neigborhood
of a point k where contact of equivalent mani-
folds occurs may be expected to be of the order
of k as k—0, for all directions of «.

For a crystal with an inversion center, the
energy separation 8E(k’) at a point k’ near a
curve of contact of equivalent manifolds may be
expected to be of the order of the distance of k’
from the curve.

All kinds of contacts of equivalent manifolds
except the ones described above are vanishingly
improbable. In particular, the occurrence of
isolated points of contact of equivalent manifolds
for crystals with an inversion center is vanish-
ingly improbable.
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fessor E. Wigner for his interest in this work, and
to Dr. L. P. Bouckaert and Dr. R. Smoluchowski
for some interesting discussions.



