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In the Hartree and Fock approximations the description of the electronic state of a crystal
can be made in terms of one-electron wave functions and one-electron energies, which have a
band structure. It is known that in addition to the "sticking together" of these energy bands
caused by the spatial symmetry of the crystal, additional "sticking" may be necessitated by
the fact that the Hamiltonian of the problem is real. In this paper a criterion is developed to
facilitate calculation of when and how such additional degeneracy will occur. The consequences
of the reality of the Hamiltonian are tabulated for a number of cases. It is pointed out that
the same "sticking together" of bands occurs in the theory of the frequency spectrum of the
normal modes of vibration of a crystal.

INCE much of the work now being done on
the electron theory of metals is based on the

theory of Brillouin zones, i.e. , on the picture of
almost free electrons or on the Hartree approxi-
mation with or without corrections for exchange,
it is desirable that the properties of the wave
functions and energy values occurring in this
type of approximation be clearly understood. An
important one of these properties, namely the
"sticking together" of energy bands because of
the symDIetry of the crystal, has recently been
discussed by Bouckaert, Smoluchowski, and
Wigner. ' Additional coincidences in the energies
of different wave functions are sometimes neces-
sitated by the fact that the Hamiltonian of the
problem is real, as these authors have also noted.
It has been shown by Hund' that for close-
packed hexagonal crystals important coincidences
in the energies of wave functions with the same
wave vector are necessitated by this reality
property. We may class as "accidental" any
coincidences in the energies of different wave
functions with the same wave vector which are
not attributable either to the symmetry or to the
reality of the Hamiltonian. In this paper a general
theory of coincidences due to the reality of the
Hamiltonian will be presented; accidental coinci-
dences will be taken up in the following paper.

In Hartree's equations for a crystal the one-
electron wave functions P; satisfy

(—h'j2mv'+ V)P, =E,P;,

' Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50,
58 (1936).

~ F. Hund, Zeits. f. Physik 99, 119 (1936).
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where V(r) is the potential of the positive nuclei
plus the potential due to the charge distribution
of all the electrons. The function V(r) has all the
periodicities and symmetries of the lattice. In
Fock's equations the P; satisfy

( —h'/2mV'+ V A) P, =E—,P, ,

where U is as above and A is the Fock exchange
operator. It is not hard to show that solutions of
Fock's equations exist for. which the operators
U and A have all the periodicities and symmetries
of the given lattice of nuclei, and for which the
operator A as well as V is real, i.e., takes every
real wave function into a real wave function. Let
us restrict ourselves to the consideration only of
those solutions of Fock's equations for which V
and A possess the symmetry and reality just
mentioned. Now all the considerations to be
made below apply to the eigenfunctions and
eigenvalues of any real Hamiltonian operator
commuting with the space group of the crystal.
The results of this paper will therefore apply to
the one-electron P; and Z; occurring in the
solution of Hartree's or of Fock's equations.

As is well known, the wave functions of an
electron moving in the trebly periodic force field
of a crystal can be taken to be eigenstates of the
three fundamental translations of the crystal
lattice, and as such may be written in the form
Ps=exp (ik r)uj„where u~ is a, periodic function
of position with the three periodicities of the
lattice. This equation leaves k undetermined by
2~ times any translation of the reciprocal lattice;
the shortest vector k with which a given wave
function can be written in this form is called the
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"reduced wave vector" of the wave function, or
in the following simply its "wave vector. " The
set of all vectors k having the property that no
vector of shorter length can be reached from any
of them by adding a vector 2x times a translation
of the reciprocal lattice will cover the interior and.
surface of a polyhedron called the first Brillouin
zone, for which the abbreviation B-Z will be used
hereafter. Any point k on the surface of the B-Z
is reachable from one or more other points k' of
the surface of the B-Z by 2m- times a translation
of the reciprocal lattice, and it will be convenient
to speak of any function exp (ik r)ui as pos-
sessing the same wave vector as another function
of the form exp (ik' r)ui. ,

' i.e. , two wave func-
tions will be said to possess the same wave vector
when they have the same eigenvalues of the
operations of the translation group of the crystal.

In &he following the terms "linear manifold"
and "subspace of Hilbert space" will be used
synonymously to denote the set of all linear
combinations of any given basic set of wave
functions, and the set of all linear combinations
of the wave functions of several linear manifolds
will be called the "subspace spanned by" these
manifolds. The symbol Q&, $2) will be used for
the scalar product JJJ'Pi*&&dr of any two wave
functions Pi and P2.

The coincidences among the energies of the
various eigenfunctions which are due to the
reality of the Hamiltonian of any problem have
been discussed by Wigner. ' These coincidences,
as well as those due to the spatial symmetry of
the Hamiltonian, turn out to be connected with
the properties of the various representations of
the spatial symmetry group of the Hamiltonian,
which for the present problem is the space group
of the crystal. Some mathematical theorems on
the irreducible representations of space groups
have been given by Seitz. 4 From references 1, 3,
and 4 the following facts may be noted:

The set of all operations of the space group which take
every wave function characterized by a particular wave
vector k into the same or another wave funct!on with the
same wave. vector forms a subgroup G" of the space group,
which may be called the "group of the wave vector. " If
one forms the subspace of Hilbert space spanned by a
manifold 0~ of wave functions with wave vector k which
reduces G~ together with the (M—1) other manifolds into

3 E. Wigner, Gott. Nachr. (1932), p. 546.
4 F. Seitz, Ann. of Math. 3'7, 17 (1936).

which 0~ is transformed by the operations of the space
group, this subspace will be transformed irreducibly into
itself by the whole space group. The set of wave vectors
occurring in an irreducible representation of the space
group may be referred to as the "star" of the represen-
tation.

For all wave vectors k except those lying in certain
planes, lines, or isolated points in the B-Z, the group G~

consists only of the translation group, so that for a par-
ticular k all representations of G" are equivalent and one-
dimensional. For wave vectors lying in certain planes but
avoiding certain lines and points, G" may consist of the
translation group plus a reflection or glide plane operation.
Further symmetry elements, leading to the existence of
multidimensional representations of G", may be present
when k terminates on certain lines or assumes certain
isolated values.

The conclusions of Wigner are based on the fact that
whenever the Hamiltonian of a problem is real, the com-
plex conjugate of any eigenfunction is also an eigenfunc-
tion with the same energy, The operation of taking the
complex conjugate is to be interpreted as an operation
which takes a wave function employed by one observer to
describe some state of the system into a wave function
which could be employed to describe the same physical
state by an observer whose space axes coincide with those
of the first, but whose time axis is oppositely directed.
Wigner shows that if in any linear manifold of eigenfunc-
tions the representation of the spatial symmetry group of
the Hamiltonian is irreducible and equivalent to a repre-
sentation by means of real matrices only, then the wave
functions of the manifold will, in general, have an energy
different from the energies of all other wave functions; an
irreducible manifold the representation in which cannot
be made real must however always have the same energy
as the complex conjugate manifold, which will be linearly
independent of it and in which the representation D* of
the symmetry group may be either equivalent or inequiva-
lent to the original representation D.s

It will be convenient to have a criterion by
which from a knowledge of the combination laws
of the group elements and their characters in any
irreducible representation it can be decided
whether that representation is inequivalent to its
complex conjugate, is equivalent but cannot be
made real, or can be made real. Such a criterion
can be obtained by using a theorem first proved.

by Frobenius and Schur. ' This theorem states
that if D is any irreducible representation of a
finite group G, of order N, and if xD(R) is the
character in D of the group element R, then

5 These statements are valid when, as in the present
case, the wave function does not contain spin. When spin
is included the time-reversal operation takes a more com-
plicated form.' Frobenius and Schur, Berl. Ber. (1906), p. 186.
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Zx~(T'1 = & if D is equivalent to a representa-
tion by means of real matrices,

if D and D* are inequivalent,
1

if D is equivalent to D* but not
to any representation consisting
entirely of real matrices.

Q exp (—ik (Qt;+t;)) = Q exp (—i(Q—'k+k) t;)
t» ti

=0 if Q 'kW —k+2m. g,

= v' if Q 'k= —k+2~g,

k, p, o t»

&«xp (—ik'(Qt'+tf)) tl'&) 3

where the operation Ii replaces the vector r by
(r —t;) and where p labels the different basis
functions when two or more have the same wave
vector k. The summatic n on k is, of course, over
all wave vectors in the star of D. Now

TABLE I.

J
C2
C2

C2, J
C2, J

RE'LATIoN 0 To D~

(a}
(a)

(a) (c}
(a)

(a) (b)

The summation in (1) is to be extended over all
elements T of G. The first possibility will from
now on be referred to as case (a), the second as
case (b), and the third as case (c).

To apply this result to any space group let the
space group be replaced by a group containing
the same elements with the same combination
rules except that the vth power of any translation
operation is the identity. This group has only a
finite number of elements, so that the summation
on T in (1) can be carried out. If, as is usually
done, the representation space is made to consist
of all wave functions which are unchanged when
displaced by v times any fundamental translation,
all representations of the space group will be
identical with corresponding representations of
the finite group. Any element of the group which
belongs to the coset defined by any Q& into the
translation group is of the form Q, = Qot; where t;
is some operation of the translation group. So the
element QP = Qo'(Qo 't, Q~)t, belongs to the coset
defined by Q02. The summation over all elements

Q, of the group may be broken up into a summa-
tion on ti and a summation over the diRerent
cosets, which may be labeled by the corre-
sponding point group operations Q. If a basis is
chosen reducing the translation group,

~here g is any translation of the reciprocal
lattice. Also, since all the vectors of the star are
similar, all terms in the summation on k, which
is to be carried out last, are equal. So if h is the
order of the macroscopic symmetry group and M
the number of distinct wave vectors in the star
of D, (1) becomes

where in the summation on Q only those point
group operations Q are to be included which take
k into a v.ector equivalent to —k, and where Qo

may be any single space group operation be-
longing to the coset corresponding to Q. Only one
wave vector k of the star is to be used. The steps
in applying (2) are thus:

Determine an irreducible representation of G~.

Select those operations Q of the point group of the
crystal which take k to a vector equivalent to —k.

To each of the operations Q so chosen, there mill corre-
spond a coset in the space group; from each such coset
choose an operation Q0 of the space group arbitrarily.

Evaluate the character of each Q02 in the irreducible
representation of G~, and sum over the different Q0's.

Then, according to whether the result is h/M, 0, or —h/3f,
case (a), (b}, or (c) obtains for the irreducible representa-
tion D of the space group of which the above irreducible
representation of G~ is a part.

When k is a general point of the B-Z, G~ is the
translation group, and if an operation Q is
present taking k to a wave vector equivalent to
—k, it can only be. the inversion. In such case
QO2 is the identity, and the positive sign must
occur in (2). So for the general point of the 8-Z
either D and D* have different stars or else D can
be made real; time-reversal symmetry never
causes the energies of two wave functions with
the same wave vector k to coincide when k is a
general point of the B-Z.

Consider next what can happen when k is a
general point of some plane in the B-Z, so that
every operation Q which takes k to a point
equivalent to —k takes any other point k' of
this plane into one equivalent to —k'. The only
point operations Q which can take every point of
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TABz.E II.

J, 2S6
J, 2$6, 2$3) $2

$2) 2S3
2S4

J, $2) 2S4
2C2, 2S4

RELATION D TO DW

(a) « (b)
(a) or (b)
(a) or (b)
(a) or (c)
(a) or (b)
(a) or (b)

a plane into a point equivalent to its inverse are
the inversion J and the rotation C2 about a
twofold axis perpendicular to the plane. If no
such operation is present D and D* must of
course be inequivalent with different stars. When
D and D* have the same star their relationship is
easily verified to be as given in Table I. The first
column contains the coset representatives, one
for each point group operation taking k to a
vector equivalent to —k. All representations of
the space group belonging to the star of k are of
the type denoted by the letter in the second
column. In the third and last lines the first letter
refers to the case where k is in a plane inside the
B-Z, the second to the case where k is in a
boundary plane. The symbols J, C2 stand,
respectively, for an inversion and a pure rotation
through m. about some axis. The symbol C2 is
used for a twofold screw axis of such nature that
no operation C2t of the same coset as C2 is a pure
twofold rotation without an accompanying trans-
lation.

Table I shows therefore that: first, if a bound-
ary plane of the B-Z is perpendicular to a
twofold screw axis no element of whose coset is a
pure twofold rotation, then the energy bands
must stick together in pairs at the points of this
plane; secondly, under no other circumstances do
the symmetry and reality of II require that two
eigenfunctions with the same wave vector k
have the same energy when k is a general point of
a plane of symmetry.

When k is a general point of a line of symmetry
there are so many possibilities for the consti-
tution of the group G~ that it is not convenient to
list them all. When k is an interior point of the
B-Z, however, the situation is rather simpler
than when the line of which k is a general point
lies in a boundary plane of the B-Z. For such an
interior point it is not difficult to find out whether
representations of types (b) or (c) can occur.

Consider one of the terms (f»„, Qo'P»„) occurring
in (2). If this is not to equal +1, then either
Q'WZ, i.e. , the square of the point group
operation Q is not the identity, or else Qo' ——t,
where t is a translation in a direction not perpen-
dicular to k. The second possibility is excluded by
the fact that Q takes any vector in the direction
of k into one in the opposite direction (if k were a
point on the boundary of the B-Z this would not
have to be the case). Now it is easily verified that
the only operations Q which occur in any of the
crystalline point groups and which have the
properties, first, that Q'WE, and secondly, that
there exists a direction in space taken into the
opposite direction by Q, are the following:

Q=S4, giving Q'= C),
Q= S4 or S), giving Q'= C&.

Here C2 and C3 stand for two- and threefold
proper rotations, and S3, S4, and S6 for three-,
four-, and sixfold rotations followed by reflection
in a plane perpendicular to the axis of rotation.
It is easily established that when k is a general
point of a line of symmetry inside the B-Z the
positive terms in (2) must always overbalance
the complex and negative terms, except in the
six cases listed in Table II. This means that if k
is a point of this type whose star contains —k, all
representations of the space group belonging to
this star are of type (a) unless the set of point
operations Q taking k to —k is exactly. one of the
sets listed. In all the cases'listed some of the
representations having the star of k are of type
(a) and some are of one of the other types; for
this reason (a) is always included in the second
column.

It can be seen that for all the rows of Table II
except the last G~ is cyclic. So we can say that
when k lies along a three-, four-, or sixfold axis,
only case (a) can occur if G' is not cyclic, i.e. ,

only case (a) can occur if a reflection plane passes
through .the axis. Further, if the space group
contains an inversion, only case (a) can occur if k
is along a twofold axis.

In conclusion it should be pointed out that the
results listed above have consequences not only
for the electronic energy spectrum of the crystal,
but also for the frequency distribution of its
normal modes of vibration. For it can be shown
that the normal modes of a crystal correspond to
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basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency. 7 Thus mathematically
the theory of normal modes and their frequencies

~ Cf. E. Wigner, Gott. Nachr. (1930), p. 133.

is just like the theory of electronic wave functions
and their energies: frequency can be plotted as a
function of wave vector, and sticking together of
two or more of these frequency bands will occur
at wave vectors k where G' has multidimensional
representations or where case (b) or case (c), as
defined above, occurs.

It is a pleasure for me to express my thanks to
Professor E. Wigner, who suggested this problem.
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The circumstances are investigated under which two wave functions occurring in the Hartree
or I'ock solution for a crystal can have the same reduced wave vector and the same energy, It
is found that coincidence of the energies of wave functions with the same symmetry properties,
as well as those with different symmetries, is often to be expected. Some qualitative features
are derived of the way in which energy varies with wave vector near wave vectors for which
degeneracy occurs. All these results, like those of the preceding paper, should be applicable
also to the frequency spectrum of the normal modes of vibration of a crystal.

"N previous papers, by Bouckaert, Smoluchow-
- - ski, and Wigner, ' and by the author, ' certain
properties of the wave functions and energy
values of an electron moving in the periodic field
of a crystal were derived. These properties were
the properties necessitated by the symmetry of
the crystal and by the reality of the Hamiltonian.
The two questions to be discussed in this paper
are:

(1) In the solution of Hartree's or Fock's
equations for a crystal to what extent may one
expect to encounter accidental coincidences in
energy between two one-electron wave functions
with the same wave vector? By "accidental"
coincidences are to be understood coincidences
not necessitated by the symmetry and reality of
the Hamiltonian.

(2) If the energies of two or more bands
coincide at wave vector k, whether accidentally
or for reasons of symmetry and reality, how may
the energies of these bands be expected to vary
with wave vector in the neighborhood of k?

' Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50,
58 (1936), hereafter referred to as BSW.' Preceding paper, hereafter referred to as I.

The analysis necessary to answer these ques-
tions is rather tedious. Despite this and the fact
that it may not be of practical significance to
bother about too fine details in an approximate
theory, the discussion to be given below may be
of value in forming pictures of the energy band
structures of metals, especially of multivalent
ones. In particular, it is hoped that the complete
determination of energy as a function of wave
vector by interpolation from the results of cal-
culations of the Wigner-Seitz-Slater type will be
facilitated and made more reliable. The results
of this paper also apply, as did those of I, to the
frequency spectrum of the normal modes of
vibration of a crystal; however numerical cal-
culation of these frequencies has not yet ad-
vanced as far as has the calculation of electronic
bands. 3

The notation to be used is the same as in I.
In addition, the symbol LM', 3P] will be intro-
duced to represent the subspace of Hilbert space
spanned together by any two linear manifolds
of wave functions M' and M'.

' Calculations for a simple cubic lattice have been made
by M. Blackman, Proc. Roy. Soc. A159, 416 (1937).


