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The Lattice Energies and Transition Temperatures of Caesium Chloride and
Ammonium Chloride*
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The lattice energies of CsC1 and NH4C1 are calculated for both the CsCI type and NaCl type
lattices, and the temperatures of transition between these two crystal forms determined from
the equality of the free energies. This requires the computation of the elastic constants and
proper frequencies. ln determining the lattice energies, use is made of the method of Born and
Mayer, four constants in the lattice energy expression being evaluated from experimental data.
To obtain results consistent with known lattice constants, compressibilities and heats of
transition, it is found necessary to multiply the van der Waals constants derived by Mayer by
about 3.5 and to make the constant coefficient in the repulsion term for nearest like ions about
0.6 that for nearest (unlike) ions. Some success is attained in computing transition tempera-
tures comparable with those known from experiment, but the temperature dependence found for
the proper frequencies appears to be faulty.

INTRQDUcT Ioiv

XPERIMENT shows that at normal tem-
peratures CsC1 and NH4C1 are stable in the

CsC1 type lattice, which is body-centered, and at
higher temperatures in a simple lattice of the
NaC1 type. The transition temperatures are
184.3'C for NH4Cl, ' and about 445'C for CsC1.'

According to thermodynamics the form with
the lowest free energy is stable. At low tem-
peratures the free energy is practically equal to
the total energy or to the negative lattice energy,
—U, plus the zero point energy of the vibrations,
so that at such temperatures the stable form is

that which has the highest lattice energy. The
stability of another form at higher temperatures
requires that it have the lower free energy at
those temperatures or, essentially that it have a
higher entropy.

The free energy calculations require a knowl-

edge only of the difference of lattice energies in

the two forms and of the proper frequencies
(acoustic and optical) of the lattices. To deter-
mine the difference of lattice energies, the shape
of the potential energy curve must be known.

*A dissertation submitted in partial fulfillment of the
requirements of the Ph. D. degree at The Johns Hopkins
University.' P. W. Bridgman, Am. Acad. Proc. 52, 91 (1916);F. E.
C. Schemer, Proc. Roy. Acad. Sci. Amsterdam 18, 446
(1915)~

2 G. Wagner and L. Lippert, Zeits. f. physik. Chemic
31B, 263 (1936); S. Zemczuzny and F. Rarnbach, Zeits.
f. anorg. allgem. Chernie 65, 403 (1910),

The calculation of the frequencies requires also
the computation of the elastic constants.

The lattice energy of the normally stable body-
centered type has been calculated for NH4C1 by
Bleicir, ' and for CsCI by Huggins and Mayer. 4

Born and Mayer, ' Wasastjerna' and Jensen
have compared the lattice energies of the body-
centered and simple lattice types of CsC1 and
have thus investigated the stability. Since none
of these comparisons has resulted in the proper
stability, the lattice energies have been .recal-
culated. Apparently no previous attempt has
been made to determine theoretically the tem-
perature of transition.

LATT IcE ENERGIEs

In calculating the lattice energy, U, as a
function of the lattice constant, ro, that is, the
smallest distance between ions in the lattice,
Huggins and Mayer4 and Bleick' have used the
form

—U+-', hvo ——4 (ro) = —ne'/ro —C/ro'
D/ro'+8(ro) +—-',-hvo. (1)

The five terms included are, respectively: the
electrostatic energy, the energies of the dipole-

3 W. E. Bleick, J. Chem. Phys. 2, 160 (1934).' M. L, Huggins and J. E. Mayer, J. Chem. Phys. 1,
643 (1933).' M. Born and J. E. Mayer, Zeits. f. Physik 75, 1 (1932).

6 J.A. Wasastjerna, Soc. Scient. -Fennica, Comm. Phys. -
Math. vol. 8 No. 21 (1935).' H. Jensen, Zeits. f. Physik 101, 164 (1936).
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TABLE I. Constants which depend only on the lattice type.

TYP'E OF LATTICE

S6'
It

Sg'
It

8

M
M'
a

CsC1

1.7627
8.7088
3.5445
8.2077
2.1476
8
6
1.1547

(2 o/'&3)'

NaC1

1.7476
6.5952
1.8067
6.1457
0.8001
6

12
1.4142

2fp

dipole and dipole-quadrupole van der Waals
interactions, the repulsion component and the
zero point energy of the vibrations. e is the elec-
tronic charge. The values of Madelung's constant,
n, for the two lattice types involved are given in
Table I.

The van der Waals constants C and D are of
the forms'

C= S,'c+ +S,"(c+++c )/2;
D =Ss'd+ +Ss"(2+++2 )/2

where the S's are numbers depending on the type
of lattice and the c's and d's are constants
characteristic for the interaction of a pair of
ions. Table I lists the values of S obtained from
the summations of Jones and Ingham. '

While the van der Waals terms constitute only
a small part of the total energy, they change
rapidly with variation of the lattice separation
and are important for considerations of stability.

In this paper the constants c and d are, at
first, given the values derived by Mayer' for CsC1
from optical data, and by Bleick' for NH4C1.
They are listed in Table II. The values of c
obtained by Mayer for CsC1 are considerably
higher than those previously given by Mayer and
H elm holz. "

It is assumed that the repulsion energy
between two ions has the form be "» as given by
Born and Mayer. ' Because of the rapid decrease
of the exponential form with increase of separa-
tion, it is necessary to include only the repulsion
between a given ion and those ions nearest to it
(unlike ions) and those at the next smallest
distance (like ions). These we shall call first

J. E. Mayer, J. Chem. Phys. 1, 270 (1933).'E. Jones (Lennard-Jones) and A. E. Ingham, Proc.
Roy. Soc. A10'7, 636 (1925).

'P J. E. Mayer and L. Helmholz, Zeits. f. Physik 'lS,
19 (1932).

and second neighbors of that ion. The complete
form assumed for the repulsion component, B(ro),
will be considered in detail later.

The constants b and p can be evaluated if the
compressibility, p, and lattice constant, ro, are
known, by forming the first and second deriva-
tives of Eq. (1) with respect to ro,

Bc me 2 6C 8D QB
rp ——+ + +rp———R,

Brp fp t'p fp l9fp
(2)

()2@ 2~e2 42 t" 72D—r' — + +
8rp' rp fp rp

828
—t'p

Orp
(3)

where, at absolute zero, R =0 and S=9 U/N p
Since rp and P are not known at absolute zero,
Born and Mayer derived the expressions

3T paUi

NP iaT).
T/aPi T (aUi (aP)

1+—
i I +

NP P EaT) p P'VhaT& p(aPj r

9U
S=

2 T(av+-—
I

3 V (aT) I

(2')

U is the mole volume; X, Avogadro's number;
and I' the pressure. With these expressions, the
values at temperature T are used for all quan-
tities occurring in (2) and (3). The calculations
reported in this paper, except where otherwise
noted, were made for 273'K.

At the temperatures involved, the classical
value has practically been reached by the specific
heats and therefore the heat energies have ab-
sorbed the zero point energies and become equal
for the two lattice types. Since we shall be con-
cerned primarily only with the difference of the
energies in the two forms, the heat energy, and
consequently the. zero point energy, has been
dropped.

The compressibility data for NH4C1 were cal-
culated from information supplied by Professor
P. W. Bridgman to supplement that published"
and the volume-temperature coefficient for CsC1
was computed from the measurements of Wagner
and Lippert. "All other quantities occurring in
(2') and (3') have been taken from Huggins and

"P. W. Bridgman, Phys. Rev. 38, 182 (1931).
"Wagner and Lippert, reference 2.
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Mayer and from Bleick. These data are listed in
Table II ~

The lattice constants of the body-centered and
simple lattice types have been measured for both
CsCl" and NH4C1" but not at 273' ~ For the
body-centered type we have only to correct for
the change between room temperatures and 273',
but values for the simple lattices are available
only at high temperatures and the thermal ex-
pansion coefficients are not known. The values
given in Table II are approximations obtained
by extrapolating from the measured data by
means of the expansion coefficients of the body-
centered type.

We shall write

B(ro) =b&Me '"~+b&M'e ""' (4)

The two terms represent the interactions with
first and second neighbors and bj- and b~ are the
corresponding values of b. M and M' are the
numbers of first and second neighbors of an ion,
and u is the ratio of the distances of second and
first neighbors. Values of M, 2' and a, which
depend only on the type of lattice, are given in
Table I ~

It is to be expected that b will vary with the
ions involved, so that it has been customary to in-
troduce the two constants b+ and b, one for each
type of ion, and in place of b, to write b+b, b+b+,
or b b for interactions between two unlike ions,
two positive ions or two negative ions, respec-
tively. Then b~ ——b+b and b' (b+b++b =b )/2.
Since there are now three unknowns, b+, b and p,
their evaluation requires the use of a third known

quantity, in addition to the compressibility and
lattice constant of the body-centered type at
273' ~ Born and Mayer' have used the experi-
mentally determined "ionic radii" of Gold-
schmidt, '4 and Huggins and Mayer4 and Bleick'

'~ G. Bartlett and I. Langmuir, J. Am. Chem. Soc. 43,
84 (1921).

'4 V. M. Goldschmidt, Skrifter Norske Videnskaps Akad.
Oslo, No. 2 (1926), No. 8 (1927); Fortschr. d. Min. 15,
73 (1931).

so that

roBB/Bro —(ro/p——)(b~Me ""~+b~aM'e '"'~) (5)

and

ro'O'B/Bra'= (ro'/p )(O'Me ""'
+b,a'Ate "«~). (-6)

have assumed p to have the average value,
0.345)&10 ' cm, found for the alkali halides by
Born and Mayer. For CsC1 and NH4C1, Huggins
and Mayer4 and Bleick' have found b+ and, b to
be only slightly different and the use of a single
value of b appears entirely justified. Hence we
shall, at first, assume that b~=b~.

b and p were determined for both salts from the
compressibilities and lattice constants with Eqs.
(2) and (3) for the body-centered type. Higher
lattice energies were found for the NaC1 type
than for the CsC1 type lattice for both salts and
the former type should therefore be stable. This
is contrary to experience. The values obtained
are given in Table II under the heading "Original
Data. "

The conviction expressed by Mayer' that the
van der Waals constants used provide stability
for the body-centered form of CsC1 is not con-
firmed. Born and Mayer, ' starting with the
smaller van der Waals constants already men-
tioned, " obtained the proper stability by an
arbitrary doubling of the van der Waals energy
but neglected the large effect of this change on
the repulsion constants.

The fact that expression (1) fails to give the
proper differences of lattice energies, may be due
to the incorrect form of some of the terms as
functions of ro, to an inaccurate determination
of the constants or to the omission of important
components. The error is, of course, greatly
magnified by taking small differences between
large quantities.

The repulsion term should certainly be of more
complicated form than that used. Wasastjerna'
has attempted to arrive at a suitable form em-

pirically, but has not obtained stability of the
proper lattice type for CsC1 ~ This he ascribes not
to the incorrectness of the form used for the
repulsion energy of individual ions, but to failure
of additivity of the contributions of these pairs
to the repulsion, when many ions are accumu-
lated in a lattice. This would indicate the need,
with the expression for the repulsion which he
uses, for an additional term having a strong
dependence' on the lattice type, or for an
equivalent modification of the form employed
for the repulsion energy.

Jensen' has determined the lattice energies
quantum mechanically, the repulsion being cal-
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culated, without an empirical evaluation of con-
stants, by Fermi statistics. He also found the
simple lattice type stable for CsCl.

Since the method described, employing only
two unknowns, b and p, failed to yield the proper
stability, an attempt was next made to improve
the results by increasing the number of constants
that could be varied.

As mentioned before, the difference of lattice
energies may, with sufficient accuracy, be as-
sumed equal to the heat of transition at the
equilibrium temperature. Experimentally deter-
mined values of the heats of transition for CsC1
and NH4C1 are given in the International
Critical Tables and these are listed as "AC

kcal. /mole (meas. )" in Table II.
This was now used to permit the evaluation of

a third constant, a numerical factor inserted in
both parts of the van der Waals energy and, of
course, the same for both lattice types. It was
found that the factors required to give the proper
heat of transition for CsCI and NH4C1 are 7 and
8.5, respectively. It is improbable that the van
der Waals energies can be as large as these
factors indicate.

More reasonable results are secured by chang-
ing the magnitude of the van der Waals terms
and also admitting different coefficients in the
repulsion terms of the first and second neighbors
(that is, bqgb2) without changing the form of
any term. In order to determine the four con-
stants now available, an additional relation was
obtained by using the lattice constant of the
NaCl lattice type at absolute zero in Eq. (2). A
linear extrapolation from the known values of
the lattice constant of the NaC1 type lattice at
high temperatures by means of the expansion
coefficient of the body-centered type, gives
3.372&10 ' cm for CsC1 and 3.184&(10 ' cm for
NH4C1 and it was assumed that the correct
values might be slightly higher than these.

It was found necessary to multiply the quan-
tities c and d given in Table II, under the heading
"Original Data, " by factors of 3.6 and 3.5 for
CsC1 and NH4C1, respectively, and to assign
values of 0.70 and 0.55 to the ratio b~/b~, the
fraction by which the coefficient in the repulsion
term for the first neighbors must be multiplied to
obtain the coefficient for the second neighbors.
The results for the two salts are rather similar,

but the van der Waals factors are unsatisfactorily
large. The complete results are given in Table II
under the heading of "Adjusted" data.

By quantum mechanical methods, Neugebauer
and Gombas" found the principal part of the
polarization energy and the first van der Waals
component for CaC1 to be almost identical in
magnitude as well as form. In the method we
have used, such a polarization energy would be
indistinguishable from the van der Waals energy
and the value derived for C would be twice its
true value. It is quite possible that for CsC1 and
NH4C1 the polarization energy may be large
enough to explain completely the large values
found for C and D.

Wasastjerna" has neglected the repulsion con-
tribution of the second neighbors as inconsider-
able based on the empirical expression which he
derived for the repulsion energy. If, in the process
described using four unknowns, we drop the re-
pulsion of the second neighbors, i.e. , set b~=0,
we can, of course, still obtain the proper heat of
transition, but for both salts, the equilibrium
lattice constant of the simple lattice type at
absolute zero is found to be unreasonably large,
requiring a thermal expansion coefficient for the
simple lattice type less than half that for the
body-centered type. The experimentally deter-
mined values of the lattice constants in the
vicinity of the transition point indicate that the
two expansion coefficients do not differ greatly.

In this determination of four unknowns, the
values were not obtained by exact solution, but
were found after numerous trials to give suitable
agreement. The procedure followed was to
choose values of the factor inserted in the van der
Waals terms and of the ratio of the repulsion
coefficients in the terms of the second and first
neighbors, i.e. , b2/b~, and then by substitution
to ascertain whether suitable values were ob-
tained for the difference of lattice energies, AU,
in the two crystal types and for the lattice
constant of the simple lattice type at absolute
zero.

In addition to the methods already described,
,an investigation was made for CsC1 to see what
results would be obtained by taking as the four

"Th. Neugebauer and P. Gombas, Zeits. f. Physik 89
480 (1924)."J. A. Wasastjerna, Soc. Scient. -Fennica. Comm.
Phys. -Math. vol. 8, No. 9 (1935),
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constants, two values of p, p~ and p~ for the first
and second neighbors, together with the van
der Waals factor and a single value of b.

The form used for B(ro) was essentially that
of Born and Mayer, 5

B(r,) =b)&10 "j—3A+b e "o—»~

+-,'(1.25b+'+0 75b ')e- "o'&~],

b+ and b having the values found by Huggins
and Mayer. 4 The results obtained were b = 1.73,
p&=0.364X10 cm, p2

——0.310X10 ' cm and the
van der Waals factor=3. 2.

Subsequent calculations based on this method
were found to diEer little from those of the
previous method of four constants, being slightly
less satisfactory.

'I

ELASTIC CONSTANTS AND ACOUSTIC

FREQUENCIES

pressions:

1 d (idyl 1dU
~ =-Z- —

l

——l~'+-
r dr Er dr) 2dh

1 d (1dp)
e»= 2 l

l~ 3'
r dr Er dr)

idU
C44 — +C$2)

2dh

1dU 1 dU R
where — =—ro————,

2 dd 6A dro 6A

6 is the volume per molecule and p the mutual
energy of a pair of ions. The summations are
made by assuming a "reference" ion and sum-
ming over all other ions in the lattice. The elec-
trostatic part of c~~ is

The elastic constants cj~, c~~ and c44 were com-
puted by the method of Born" from the ex-

X4

(e ) — P ( 1) Ii+&2+4

lyl2l3

38
(7)

TABLE II. Calculations are for T=273'K Nnless othenvise specified.

r"M. Born, Dynamik der Erystallgitter (Leipzig 1923),
p. 536, 548, 554; M. Horn and M. Goeppert-Mayer,
Handbuch der Physik, Vol, 24 (Berlin 1933), p. 630. The indices 1&, I2 and l3 are defined by the equa-

SUBSTANCE CsCI NH4CI

Orig. Data Adjusted Orig. Data Adjusted

CRYSTAL TYPE CsCI NaCI , CsCI NaCI CsCI NaCI CsCI NaCI

c++
c X 10"erg cm'
c+

++
d X 10"erg cm'

CXX10sP erg cms
DX10" erg cm'
rpX 10 cm (meas. )
P X 10 barye
P '(8P/BT) X104 deg. '
P '(~P/~P)r X10"barye '
V '(BV/aT)I X10' deg. '
R
S
ne'/rp & X10" ergs per molecule
C/r pp

D/r p'
pX10' cm
b1
b2
81 rp
B2(fp)

& X10"ergs per molecule

U
aU
AC kcal. /mole (calc.)
b,4 kcal. /mole (meas. )
rpX10' cm O'K (calc.)

152
129
129
278
260
250

1621
2630
3.553
5.9
6—0.30
1,887
1.82

124.9
11.29
0.81
0.10
0.290

28930
28930

1.09
0.12

10.99—0.10—1.4
1.34

152
129
129
278
260
250

1105
1751
3.430

1.08

11.59
0.68
0.09
0.290

28930
28930
1.25
0.02

11.09

3.38.6

5836
9468
3.553

1.82

11.29
2.90
0.37
0.365
5734
4014
2.70
0.31

11~ 55
0.10
1.4
1.34

3978
6304
3.442

1.51

11.55
2.40
0.32
0.365
5734
4014
2.75
0.07

11.45

3.399

98
127
98

150
266
177
850

1254
3.227

2.01

12.32
0.75
0.11
0.319
6170
6170
1.50
0.05

11.63
1

3.159

98
127
98

150
266
177

1251
1898
3.339
5.602

14.6—2.75
1.42
1.19

113.7
12.01
0.93
0.12
0.319

6170
6170
1.40
0.21

11.42—0.2—3.0
1.03

4378
6643
3.339

1.19

12.01
3.16
0.43
0.374
3131
1722
3.32
0.34

11.94
0.08
1.2
1.03

2975
4389
3.230

1.04

12.31
2.62
0.37
0.374
3131
1722
3.34
0.10

11.86

3.202
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TABLE III. Summations used to calculate the
van der Waals forces.

LATTICE
TYPE

As in calculating the lattice energies, only the
first and second neighbors are included in the
repulsion. We obtain

SUMMATION

SIGN
OF

IONS CsCl NaC1

(c11),= (1/6 p') [(8/9) burro(ro+ p)s

+2boar o(aro+ p) e "«I'5 (9)

1/rIo

(—1) l 1+l 2+ l 83@4/rs

(—1) l1+l 2+l 33&2y2/r6

x4/r'0

&2y2/rio

&2y2/rI2

r0 ——unit length

like
unlike
like
unlike
like
unlike
both
both
like
unlike
like
unlike
like
unlike
like
unlike

3.5446
8.7088
2.1977
8.1575
1.5250
8.0394
1 8406'

—1.8016'
1.0200
1.0413
0.0808
0.9308
0.6831
0.9236
0.0247
0.8978

1.8067
6.5952
0.8001
6.1457
0.3847
6.0414—3.2263
0.739
0.3204
2.0972
0.1409
0.0506
0.1376
2.0213
0.0646
0.0136

I M. Goeppert-Mayer and A. May, Phys. Rev. 50, 99 (1936),
2 M. Goeppert-Mayer and A. May, Phys. Rev. 52, 242 (1937),
3 Born, reference 17, p, 738.

48 (c+++c
(c»).= ——

i

2

x4 x4i
E —+c+- 2 --

i

like y unlike y' )
80 pd+++d x' x' i

~ —,+d. Z —i. (8)
g E. 2»ke y uniike y j

ions ions

tions x=l1a, y =l2a, s =laa, where a, for both the
CsC1 type and NaC1 type lattices, is half the
distance between nearest like ions. For the CsC1
type all 1's must be even or all odd.

The van der Waals contribution to c11 is

for the CsCl type lattice, and

(ci|),.= (1/Apo)[2b|ro(ro+ p)e "oil'

+8lboro(aro+ p)e '""I'5 (10)

for the NaC1 type.
Similarly we have

(clo).= (bi/~ p') (8/9)ro(«+ p)s

(CsC1 type), (11)

(c&&),= (bo/Ap )pro(aro+ p)e '"oi&

(NaC1 type). (12)

Nothing is contributed to (c»), by the first
neighbors for the NaC1 type, nor by the second
neighbors for the CsC1 type. The other com-
ponents of c12 differ from the sum in c11 only in
the substitution of the factor x'y' for x4.

The value of R needed for the calculation of c44

has already been obtained for the body-centered
lattice. For the simple lattice it is calculated
from Eq. (2).

The van der Waals sums were computed
directly to spheres of radii seven times the
lattice constant, integrated to infinity and then
corrected by comparison with the inverse power

TABLE IV. Elastic constants X10 "ergs/cm'.

CSC1 TYPE
cscl

NaC1 TYPE

electrostatic
van der Waals C
van der Waals D
repulsion
R/6a

electrostatic
van der Waals C
van der Waals D
repulsion
R/6a

Cn

1.707—3.453—0.681
6.638
0.044

4.255

2.188—'4.585—0.966
8.046
0.035

4.718

C12

—1.671—1.634—0.379
4.548

0.864

—2.142—2.122—0.519
5.710

0.927

0.908

NH4Cl

0.962

C11

—2.615—4.021—0.972
11.358
0.031

3.781

—3.372—5.302—1.355
14.139
0,023

4.133

C12

0.599—0.335—0.037
0.151

0.378

0.772—0.457—0.056
0.205

0.464

0.409

0.487
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summations of r of Jones and Ingham' by using TABLE VI. Elastic constants and acoustic frequency limits
f ~ (v ) at various temPeratures.the relation

x4+ 2x'y' 1
3P (rt=6, 8)

CSCl TYPE NaCl TYPE

yn+4
Cll C12 C44 y~ Cll C12 C44 ytrt

as was done by Herzfeld and Goeppert-Mayer. I8

The summations for like ions of the body-
centered type are obtained, by a change of
scale, from the like and unlike ion summations
for the simple lattice.

The summations are given in Table III and the
resulting constants in Table IV.

In averaging the sound velocities over all
directions, the method of Born and Karman"
cannot be used since it requires that the quantity
(3c~~ —c»)/(c» —c~2) be small. Herzfeld and Goep-
pert-Mayer" substituted a geometric mean for
the average

3(1/w') „„=(1/w, ')«+ (1/w2') All+ (1/w3 )„
proposed by Debye. Because of the relatively
small values of c» and c44, the several sound
velocities will differ considerably and the
geometric mean would be too high. The aver-
ages, (1/w')A„where w is the sound velocity,
were obtained by the method of Hopf and
Lechner" which is especially applicable to the
case where c&~ and c44 are small.

The acoustic frequency limit is found from
Debye's formula

v„' = 3/4~6(1/w') A, .

The velocity averages and corresponding fre-
quencies calculated for 273' are given in Table V.

The frequencies corresponding to various
temperatures may be of interest in connection
with the calculation of the transition points, and

TABLE V.

X1Q 11 X10 " XfQ 11 X 10-»

cscl
0 K

1350
2730
718o

NH4CL
O'K

2730
500'

4.820 1.205 1.205
4.638 1.090 1.106
4.254 0.864 0.908
3.284 0.340 0.447

5.104 1.179 1.179
4.7 18 0.927 0.962
4.340 0.692 0.758

3.18 4.606 0.392 P.392 2.24
3.08 4.305 0.387 0.399 2.23
2.86 3.781 0.378 0.409 2.21
2.19 2.436 0.350 0.431 2.12

5.50 4.684 0.474 0.474 4.12
5.10 4.133 0.464 0,487 4.12
4.67 3.565 0.455 0.501 4.04

a number of values are included in Table VI.
In their computation the lattice constants ob-
tained for these temperatures by means of the
expansion coefficients, have been used.

Calculating these frequencies by the Hopf and
Lechner method is a long task, but this may be
obviated by using an approximation developed
by Blackman;" His formula can be written

v„=kLc„(ct4)'6j't'/M'~' (13)

OPTICAL FREQUENCIES

where k is a constant and 3II is the molecular
weight. From a number of frequencies previously
calculated by the Hopf and Lechner method, the
constant was found to have the value, k=21.8,
for the elastic constants expressed in the unit
10" ergs/cm', 6 in 10 " cm', and v in 10"
sec. '. Since the longer method involves the
small differences of large quantities, the accuracy
which it yields is generally poor, and since the
deviations between results obtained by the two
methods amount to only a few percent, the
approximation appears quite satisfactory.

CsCl NH4cl

(1/m ) Av X10» (cm /sec. )

CsCl NH4Cl

y~X10» sec. 1

The optical frequencies are derived by a
method similar to that already described. Fol-
lowing Born" we first evaluate the D "bracket-
symbols, "

CsC1 type
NaCl type

14.4
26.9

3.14
5.08

2.86
2.21

5.10
4.12

"K.F. Herzfeld and M. Goeppert-Mayer, Phys. Rev.
46, 995 (1934)."M. Born and Th. von Karma. n, Physik. Zeits. 14', 15
(1913);Born, reference 17, p. 647."L.Hopf and G. Lechner, Verh. d. D. phys. Ges. 16,
643 (1914);Born, reference 17, p. 649.

where the summation is over unlike ions only.

~' M. Blackman, Proc, Roy. Soc. A148, 400 (1935).
"Horn, reference 17, pp. 536, 568, 738, 740.
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TABLE VII. Optical frequencies (Z73'X). D (Born) X10
erg s/cm'.

TABLE VIII. Optical frequencies —various temperatures.
DX10 " vrX10 ".

cscl NH4Cl cscl NH4CL

LATTICE
TYPE'

electrostatic
van der Waals C
van der Waals D
repulsion

frequencies (X10»)

CsCl

—1.975—2.114—0.595
7.658

2.974
3.368

—1.433—1.776—0.533
6.648

—2.901 —2.098—3.160 —2.640—0.942 —0.839
10.721 9.063

2.906
3.607

3.718
5.232

3.486
5.494

NaCl CsCl NaC1 CsC1 type NaC1 type CsC1 type NaCI type

T K D vr D vr D vr D vr

0 3.797 3.04 3.528 3.27 4.354 4.37 3.944 4.55
273 2.974 2.69 2.906 2.99 3.718 3.96 3.486 4.30
500 3.125 3.61 3.017 3.98
718 1.786 1.99 1.914 2.43

D, = —4~e'/3A'.

The van der Waals contributions are:

(14a)

6c+ 1 48c+ x' 8d+ 1
D.=——2—— E—+r' 6 r" 6 r"

80d+ x'

Using Ewald's method, Born found for the
electrostatic part sponding to a frequency of 2.94X10"sec. '. The

value 3.37 X10" differs from this by fifteen
percent.

Heckmann'4 has derived a formula for com-
puting the effect on the frequencies, of the
electron polarization which has been neglected
in the method just used. This formula can be
written

y12
v„ = v, —2= 2

e2

where again the summations are limited to
unlike ions. For both crystal types involved

so that

x2 1
3P =P—, (n=8, 10)

yn+2 rn

10c+ 1 56 d+ 1
(14b)

r' 3 6 r"
The summations over inverse powers of r are

given by Jones and Ingham' and are listed in
Table III.

Since only the interactions between unlike
ions are included, the repulsion part contains
only the first neighbors:

D„=(bM/38 p ro)(ro —2p)e "'» (14c)

"R.B. Barnes, Zeits. f. Physik 75, 723 (1932).

The frequencies were calculated from Born's
formula, which assumes that they are mono-
chromatic: 2~v = (DD/m). l m is the reduced mass
of the ions, i.e. 1/m=1/m&+1/m&, where m~

and m2 are the masses of the two ions. The com-
.ponents of D for 273' and the corresponding
frequencies are listed in Table VII.

The infrared absorption limit of CsC1 as
measured by Barnes" is 102.0 microns, corre-

3~md 1—o.

by putting P = 1 in the form given by Heckmann.
v„ is the actual maximum of absorption; v„ the
frequency which we have calculated from the
elastic properties; e, the electronic charge; 6, the
volume per molecule; m, the reduced mass of
the ions, and n = (n' —1)/(n'+2) is the electronic
polarizability, n being the visible refractive
index. For optical frequencies the index of refrac-
tion of the CsC1 type lattice is practically the
same" for CsC1 and NH4C1, and in both cases
we have used n=1.620, obtained for CsC1 by
Born and Heisenberg' by extrapolation to zero
frequency.

We find for CsC1, v —v. =4 11X 10 and
vv=2. 69X10"sec. ', which differs from Barnes'
value by eight percent.

The optical frequencies corresponding to a
number of temperatures are included in Table
VIII. v„was calculated on the assumption that
n is inversely proportional to 6, and that in
other respects the value of n for the NaC1 type
lattice is the same as for the CsC1 type.

'4 G. Hecknaann, Zeits. f. Krist. 61, 250 (1924).
"International Critical Tables, Vol. I, p. 165.
"M. Born and W. Heisenberg, Zeits. f. Physik 23, 407

(1924).
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( U~ —U~)T=-
3k ln (v„v„),/(v„v„),

(16)

where the subscripts 1 and 2 refer to the CsC1

type and .NaC1 type lattices, respectively.
By using the frequencies calculated for O'K,

the transition temperatures obtained are 810'K
for CsC1 and 700'K for NH4Cl, as compared with
the experimental values, 718' and 457'. These

THE TRANSITION TEMPERATURE

The transition temperature is now calculated
from the equality of the free energies.

Because of the high temperatures involved,
the free energies can be computed from two
expressions of the form

F= NU+—3RT ln hv /kT+3RT In hv, /kT, .

where v and v„are the acoustic and optical
frequencies, h is Planck's constant and k the gas
constant per molecule.

The temperature at which the free energies
are equal is given by

results must be regarded as satisfactory in view
of the small accuracy to be expected. Slightly
better values are obtained if the corrections for
the electron polarization are not made.

In calculating the transition temperatures
from Eq. (16), the frequencies used should be
those corresponding to the temperature T.

Because of the rapid decrease of v for the
CsC1 type lattice as indicated in the values of
Table VI, no transition point is obtained if the
temperature dependence of the frequencies is
considered. It appears quite probable that it is
the temperature dependence of the frequencies
that is incorrect rather than the values found for
absolute zero.
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Coercive Force in Single Crystals
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Research Laboratory, General Electric Company, Schenectady, ¹mYork

(Received June 7, 1937)

The coercive force H, of ten single crystal disks of
silicon-iron has been measured in diferent directions in

their planes. In any one disk, H, changes with the direc-
tion; it is mainly determined by the angle a3 between the
field and the $001j axis nearly normal to the disk, and
has a minimum value when that angle is 90'. The angle
ni between the field direction and another cubic axis which

lies nearly in the plane of the disk and close to the field

direction has a smaller effect on. H, . The relation H,

=A jcosai+8 cos ~3 represents very closely the curves
taken on well annealed disks; A and 8 are constants with
values close to 0.1 and 0.4, respectively. The eEect on H,
of varying the disk shape and of increasing the internal
strains by carburization has been studied. Finally it has
been shown that H', values calculated from the empirical
relation are in good agreement with data on single crystal
wires and strips (Kaya, Ruder).

1. INTRoDUcTIoN

"AGNETIC theory can at present account
satisfactorily for the behavior of ferromag-

netic material near technical saturation. Our
understanding, on the other hand, of what
happens in low fields in general, and of the
phenomenon "coercive force" in particular, is
still very limited and vague. It was recognized
early that internal strains in a ferromagnetic

material caused by cold work or by impurities
increased the coercive force. This was proved
systematically by Kussmann and Scharnow. '
Contributions from the theoretical side were
made by R. Becker, N. Akulov and by F. Bloch.
Bloch' in referring to experiments by K. J.

'A. Kussmann and B. Scharnow, Zeits. f. Physik 54, 1

(1929).
2 F. Bloch, Zeits. f. Physik '74, 295 (1932).


