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The statistical domain theory of ferromagnetism, introduced by Heisenberg and extended
by others, is developed in a general form capable of application to any ferromagnetic, crystalline
or polycrystalline. Formulas are derived by which the magnetization and strain components
can be computed to the 6rst order in the stresses, provided the magnetization curve at zero
stress is known. The analysis is valid at any magnetization below that at which the rotation
process begins, and the six stress components may have arbitrary values. The formulas are then
specialized to nickel crystals; the results reduce to those of Gans and v. Harlem, and of Akulov
and Kondorsky, for the special cases treated by them, except for one formula of the former
authors and one of the latter. In these cases the original formula is shown to be in error, and the
corrected formula leads to better agreement with experiment.

INTRoDUcTIoN

HE statistical domain theory by which
Heisenberg' calculated the magnetostric-

tion curves of iron crystals has been successfully
extended to other fields by Gans and v. Harlem'
and by Bozorth. ' A similar calculation carried
out by Akulov and Kondorsky, 4 and leading to
formulas for the variation of Young's modulus
with magnetization and of magnetostriction with
tension, has been less successful; for although the
authors found fair agreement with certain data,
and although Girenchin' has recently presented
data apparently in good agreement with the
theoretical formulas, the results of Siegel and
Quimhy' indicate a need for emendation of the
theory. Moreover the formulas are valid only to
the third order in the magnetization.

It was recently pointed out by the writer'
that because of the magnetic skin effect, meas-
urements of Young's modulus by a dynamical
method give approximately the value at constant
Aux density (8), while static methods give the
value at constant magnetizing field (IX). It is
therefore important, before applying theoretical
formulas to such data, to ascertain to which
of these two values the formulas correspond.
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Another source of uncertainty is the inaccuracy
of any method of averaging over the constituent
crystals of polycrystalline material; the true
average may be expected to lie somewhere be-
tween the values obtained by assuming uniform
stress and by assuming uniform strain, but
Akulov and Kondorsky give only the first of
these. It seems desirable, therefore, to carry out
the theoretical calculation under various assump-
tions in regard to the constancy of magnetic
quantities during the strain, and by both
methods of averaging over the crystals. To do
this by the original method of Akulov and
Kondorsky would involve tedious calculations,
as would any attempt to apply the method to
the calculation of the variation of rigidity with
magnetization, or to obtain a higher degree of
approximation in the formulas. The need for a
more Hexible procedure is also evident from the
fact that so far, every writer who has attempted
a further application of Heisenberg's method
has gone through a complete derivation of a
distribution function for the particular type of
crystal and the particular magnetic and me-
chanical situation under investigation. The
method has now proved useful in such a variety
of problems that it seems desirable to obtain,
once for all, general formulas applicable to any
ferromagnetic crystal under the action of any
field and stress system.

The application of the theory to polycrystal-
line material may be made in several different
ways, depending on the nature of the material.
If each of the constituent crystals contains many
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domains, the results for crystals may be aver-
aged; this is the procedure followed by Akulov
and Kondorsky. If the size of the crystals is of
the same order of magnitude as the size of the
domains, then, following Gans, we may regard
the substance as an aggregate of crystalline do-
mains with their axes oriented at random. If the
crystals are much smaller than the domains,
the domains can no longer be regarded as crystal-
line; they may be isotropic, or may have an
anisotropy due to nonrandom orientation of the
crystal axes or to other causes. The theory should
be flexible enough to apply to any of these cases.

The first object of the present paper is to
derive general formulas by which the strains (or
stresses) and certain other quantities can be
calculated rigorously as functions of the mag-
netization, and to the first order in the stresses
(or strains), for any ferromagnetic under various
assumptions regarding the constancy of mag-
netic quantities durinp the strain. (The assump-
tion of uniform stress or of uniform strain will
enter implicitly, according as one or the other
is taken as independent variable. ) The formulas
will then be applied to nickel crystals; the results
will be compared with those of previous writers,
especially of Akulov and Kondorsky, and with
experimental data.

GENERAL THEORY

Using Heisenberg's simple model, we regard a
ferromagnetic specimen as consisting of domains
of equal size, N of them in unit volume; these
may be divided into classes in accordance with
the nature of their anisotropy, so that of the N
domains, N' are of class r: then PN'=N. For

a single crystal, all the domains will belong to a
single class, so that the superscript v and the
summation sign P may be omitted in all equa-

T

tions. For a polycrystalline specimen as viewed

by Gans, the orientation of fixed axes with
respect to the crystal axes of a domain may be
specified by Eulerian angles p, 8, P; a particular
class 7. will then consist of those domains for
which the direction p, 8 is within a solid angle
do& and for which P is within df, and N' will be
Ndcodg/8 ~'

R. Gans, Physik. Zeits. 33, 15 (1.932).

Each domain of class 7- will have certain direc-
tions of easy magnetization; we are concerned
with magnetizations below the knee of the J-FI
curve, so that rotation of the magnetization
vector out of these directions of easy magnetiza-
tion may be neglected, and the magnetization

, process may be assumed to proceed entirely by
changes of the spontaneous magnetization in
individual domains from one of these directions
to another. In the limiting case of isotropic
domains, every direction is a direction of easy
magnetization, and the transitions degenerate
to continuous rotations. A particular microscopic
state of the . specimen could be described by
giving the direction of the magnetization of each
domain; those states for which the number of
domains of class r with magnetization in direc-
tion o is a specified number N. ' for each v. and
0- are macroscopically indistinguishable and to-
gether constitute a macroscopic state of statis-
tical weight

or by use of Stirling's approximation,

log W= const. —PgN, ' log N, '.

All variations of the partition numbers N, ' are
subject to the conditions

We take, as the independent variables of the
system, quantities y„, each of which is either a
thermodynamic coordinate or the negative of
a thermodynamic force. Let V be the thermo-
dynamic potential per unit volume correspond-
ing to this choice of independent variables,
for isothermal or for adiabatic changes. Then
U, =BU/By, will be the thermodynamic force
corresponding to y, as coordinate, or the co-
ordinate corresponding to —y„as force, and these
quantities will consequently satisfy the thermo-
dynamic relations

V for the specimen as a whole will consist of a
part made up of contributions from individual
domains, and a part resulting from interaction
of the domains. In the contribution of a par-
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ticular domain to the former, terms independent
of the direction of the spontaneous magnetization
may be disregarded for present purposes, and the
remainder, in all cases in which we are interested,
may be regarded as linear in the y„'s. Thus the
value of V for a domain of class 7 and magnetiza-
tion-direction 0- is

where the quantities Y„' are constants, in gen-
eral different for different o-'s as well as for
different v-'s. The value of Y„ for such a domain
then consists of a part independent of the mag-
netization-direction plus a part BV;/By, =Y„.,'
dependent on this magnetization-direction.

If q is any quantity whose observed value for
the specimen as a whole is an average of values
for the individual domains and whose value for
a domain of class v and magnetization-direction
0- is q, ', then

q = Pn'Pn. 'q. ', (4)

where n'=N'/N n '=N '/N'

where Y„o is the part independent of the dis-
tribution of magnetization-directions; and the
value of the thermodynamic potential U for the
specimen is

U= Up+Pn gn U +V = Vp+V +V, (7)

where Uo is independent of the distribution of
magnetization-directions, V" is due entirely to
interaction between domains, and V' is the part
contributed by the separate domains and de-
pendent on their magnetization-directions. V is
given by

V'= Pn'Qn, 'V'. '= Py, .Pn'Pn 'Y

In particular, the macroscopic quantities Y„are
given by

Y„=Y„p+Pn Pn. 'Y„. = Y„p+ Y„', (6)

where the L"s and L' are Lagrangian multipliers
and the N."s are independent variables in the
differentiation. We thus find for the most prob-
able distribution consistent with a prescribed U'

and with (1),

n."=exp (L V, ')/P exp (L V;), (9)

where L is determined as a function of V' by

Pn'{P V. exp (LV ')/P exp (LV ') I
——V'. (10)

7 0' 0'

It, of course, does not follow that this is the
actual distribution; it can be said only that this
is the one we are safest in predicting on the basis
of a knowledge of U', in the absence of definite
knowledge of the form of the interaction term
V". If U" were known, we should merely find
the distribution making V'+ U" a minimum.

Equation (6), together with (9) and (10), now
determines the Y„"s as functions of the y, 's and
of the prescribed value of V'. The completion of
the analysis requires a knowledge of V' or of L
as a function of the y„'s. This we do not have.
We do know, however, that whatever the nature
of this function, it must lead to values of the
Y,"s satisfying (2). If one of the Y,"s, say Yp',
is known as a function of the corresponding
variable yo when all the other y„'s are zero, then
U' and hence all the Y„"s are determined when
y, =0 (r)0). The derivatives 8 Y„'/By, are then,
as we shall see, completely determined by (2),
and thus the Y„"s are determined to the first
order in the y„'s. Thus from a knowledge of the
magnetization curve at zero stress we can calcu-
late the magnetization and the strains as func-
tions of the field, not merely at zero stress, but
to the first order in the stresses.

For convenience, we introduce the definitions

The values of the N "s for which log 8' is a
maximum, for a specified value of V', are deter-
mined by

I

,{log IUU+pL'pN. '+L'V'{ =0,
a T tT

= Z Y.'y' (8) S'= P exp (L V.'),

It is to be noted that the Y„o's and the Y„"s
satisfy (2) separately, since Y„p BU p/ypl„a——nd

Y„'= B(U'+ U")/By„.

S„'= P Y„,' exp (L V, '),

S„,'= P Y„,'Y„' exp (L U, ').
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We then have, from (6),

Y„—Y,o
——Y,' = Qn'S, '/S',

and from (10),

For the derivative at constant Pp, we have

(12) ~BY~ ~BYE BY BY, BY.

(By; 2 Yo KBy j po Byo Byo Byo

En'Zy. S.'/S'= V'
T T

(13)
t' PaoP;o)

(1&)
Ppp )

When y„=0 (r&0), LV; becomes L'Yp, 'yp, and

(13) becomes, by virtue of (8),

QnrS ro/Sro Y ~0 (13')

an equation identical with that one of Eqs. (12)
for which r=0. This determines L' and the S's,
and the rest of Eqs. (12) then determines the
quantities

Y,."= P 'nS„'%S". (12')

To evaluate the Y„"s to the first order in the

y, 's we differentiate (12) with respect to y„
using (11), and then set all the y„'s except yo

equal to zero. This gives (we omit the primes)

By a similar analysis we may obtain the for-

mulas to be used if a certain number of the 7„'s,
say those for which r~m, are known as functions
of the corresponding y„'s when the other y„'s

(r &m) are zero. In this case the functions must
of course be such as to satisfy the thermo-

dynamic relations (2), and they must also be
such that the m Eqs. (12), with r m, give co—n-

sistent values of L. For the derivatives at con-
stant y„(r—m) we get

(BY i QQ;t BY,
=LP„;+—

/
LP„—, /,

—(18)
I By; ) p, Q,Q, K By,

Q, =ZP, y
t=1

where

BY,/By, =LP, ,+(BL/By, )P„oyp, (14)

P„,=Pn'P, ,',
T

P„'=S„,'/S' S„'S,'/—S"=P,„'

Here r and s may have any values (not neces-

sarily different) m; if the consistency require-

ments just mentioned are satisfied, the unique-

ness of the result is insured. For the derivatives
at constant Y, (r~m), we get

In these formulas, superscript zeros have been

dropped, but it is to be understood that all

quantities occurring in the equations are to be
evaluated for y, =0 (r &0), after the differentia-

tions have been performed. Ke note also the
useful relation

P„o BY„'/B (Lyp) . —— (15')

For a given 7; and y;, with i and j—0, we can
obtain from (14) four equations, by setting, in

turn, r=s=O; r=j, s=O; r=0, s=j; r=i, s=j.
In addition we have, by (2), B Yp/By; = B Y;/Byp

By elimination of these two quantities and of
BI/Byp and BI./By;, we get

I'BYi't ( P oPqol P'oP~o BYo

I
—'

I
=LI P;,—'—'

i+
' —' —,(16)

E By; ~ po 0 Poo i Poo' Byo

where yo has been written as a subscript to
indicate that it is .the independent variable held

constant in the differentiation.

(BY;i By„=L(P;;—I;;~.) —L'PQ—&,,~R;, ,
(By;)r, " 'BY, .

(20)
where

T' ~-=(Q'Q-P ~+Q Q~P'- —Q QP~-)/Q~Q-

&;,~=P;,—QZ~. /Q~. (21)

In the differentiations, the independent variables
are the Y,'s (r—m) and the y s (j&m). For-
mula (20) is required for the evaluation of the
strains to the first order in the stresses when

the vector magnetization remains constant during

the strain.
We have, finally (restoring the primes),

Y'= Y'o+ Y'"+E(BY''/By/)y;, (22)
7

where the derivatives will be those at constant
y„or at constant P„according as one or the
other set of quantities is assumed to remain

constant as the y s vary.
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NICKEL AND IRON CRYSTALS

To apply the general theory to single crystals
of nickel and iron, we begin with the thermo-
dynamic potential FH, per unit volume of a
single domain, defined by

8F&,= —PJ,8II;++X;;be;;++X;«5e;« (2.3)

Here the H s (4'= 1, 2, 3) are the components of
magnetic field, the J s the components of mag-
netization, along the crystal axes; X;;=X;; is
the x;-component of stress exerted across a sur-
face normal to Ox;; e„,=Du~/Bx, , e;« Bu——;/Bx«
+Bu&/Bx, (k Wj), where the u, 's are components
of displacement. The summation, in this and in
subsequent expressions, is over the three sets of
values (i, j, k) = (1, 2, 3); (2, 3, 1); (3, 1, 2). For
ferromagnetic crystals J;=J.,n;, where J, is the
spontaneous magnetization and n; =cos (J„Ox;).
Keeping all the terms that it has been found
necessary to introduce. in order to account satis-
factorily for experimental results, ' we have by
virtue of the cubic symmetry

The actual values of the n, 's are those that
make FII, or F~x a minimum; but since we
are neglecting the small rotation produced by
the field and the strains, we have for nickel
n; =p;/g3, where p; is either +1or —1 for each
value of i; and for iron n; =+8;„or —5;„, where
8;;=1, 8;;=0 (jWi), and r may be 1, 2, or 3.
Omitting the terms that are the same for all the
directions of easy magnetization, and using the
condition that the average strains must vanish
in the demagnetized state, we get for the part
of F~~~ dependent on the direction of magnetiza-
tion of the domain

(Ni) FHx' = —(J,II/g3) gp„l;
—(2«o/3+ «„/9) p p; p«X;«, (25)

(Fe) FIrx' = ~J,IIl„
—(Kg+«4) P(5;,—-', )X;;, (25')

where the 1,'s are the direction-cosines of the
field. For the parallel component of magnetiza-
tion, J„,and for the part of the strains depending
on the magnetization-direction, we have

Fu.= J4+—H4n;+2Xggn n«'+boa, 'no'no'

+koPe;+k&Pe;~n, '+2koge;«n;n«

+ko(ge;~) (Pn,') +k4+e;;n, 4

+koge;, n, onj, '+ kope;«n;oa;n«

+ 2cll+e '' +eloge;;e««+ oc44+e, «

(24)

or
J„= BFIrx'/B—H, e; = OFT'/—BX;;

e'4'=(2«o/3+Ko/9)p PJ (j&4);

(Fe) J~= &J.l„,

e; = (K~+ K4) (&4„——',).

(26)

(26')

The thermodynamic potential F&z defined by

8Fax = b(Fa4 QX;,e,;—Q—X;«e;«)

= —Q J48FI, Pe, ,5X,,—Q—e;&8X;& (23')

is given by a formula obtainable from (24) by
substituting —X,; for e;;, and new constants
X K ' s j for X;, k;, c;;. The relations between
the two sets of constants are easily obtained,
and need not be given here. The E's are the
constants of magnetic anisotropy, the c's and
s's are the elastic constants and moduli, and
the k's and K's determine the magnetostrictive
stresses or strains. FJI, is to be used when the
strain is assumed uniform, Fy~~ when the stress
is assumed uniform.

K2 =3X111/2 Kl 3l«4oo/2. (27)

Assuming uniform strain rather than uniform
stress, we need only replace e, —X, K by X, e, k

respectively in the analysis to follow. The new
«'s defined by (27) are related to the corre-
sponding k's by the formulas

Gans and v. Harlem found it necessary to in-
clude the quantities denoted here by K4 and .".6,

in order to obtain a good fit at saturation. For
our purposes the coefficients of p;p, and of
(8;,—1/3) are merely constants, and they will
therefore be written hereafter as 2«o/3 and K&

respectively, in conformity with Akulov's nota-
tion. They may be determined from the satura-
tion magnetostriction in the L111] and [100j
directions, by the relations

' F. Bitter, Phys. Rev. 42, 697 (1932); 43, 655 (1933);
R. Gans, Physik. Zeits. 33, 924 (1932); reference 2. The
h2 of reference 2 is our 2K&. The ks-term is really superfluous,
since cl ' 0'1'g = —ck ' +cc ' —Z A

—ko/Ko ——c44 ——1/s44,

kl/ Kl c11 c12 1/(ell ~12) ~

(27')
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NIcKEL CRYsTALs

The calculation is simplified and the sym-

metry of the equations increased, if the field is
assumed to remain constant in direction and to
vary only in magnitude. Equivalent results are
obtained by treating the three field-components
as independent variables; Eq. (18) must then be
used instead of (16). We shall present only the
simpler derivation. By comparison of Eqs. (25)
and (3), we see that for a nickel crystal, assuming

uniform stress, we may take F&I&' as U', and
write

yp= II, —y1= —X;;, y2= —X;, (k82),
Fo ——J„, V&

——e;;, V& ——e;y,
(28)

= (J /+3)PP'l' Y1~= 2K2PiP1'/3

3—
~Sr„iQ

0
I ( } I I

0 .2 + .6 .8 l 0

FIG. 1. Variation of longitudinal resistivity with mag-
netization for nickel crystal magnetized in t 111j direction.
Points, experimental values of Kaya as plotted by Gans
and v. Harlem. Dashed curve, formula of Gans and v.
Harlem; solid curve, corrected formula. Each curve has
been fitted separately to the data by least squares.

V2. ——2112p,pp/3.

where 2t = LIIJ,/g—3;

The first of Eqs. (11) becomes

S=2 e~p [( LIIJ./v—'3)Zp'l' j
=Z «p [nZp'1 j,

(29)

13e
' ' /plX '' L0(P11 P10 /Ppp) +&XP10 /Ppp

&e; /&X;2 Lp(P12 P10——P20/Ppp)

+12XP10P20/Ppp s

(34)

Eqs. (12') and (13') therefore become

e;;"=2ept;t;/3, j„'=J„'/J,, = (1/+3) pl;t;. (33)

Eqs. (16) and (17) become

the outside summation is over the eight com-

binations of values (P1, P2, Pp) = (1, 1, 1);
(1, 1, —1); ~ ( —1, —1, —1), so that

S=8 cosh 2tl1 cosh 2tl2 cosh 2tlp. (30)

The evaluation of the other sums is facilitated
b noting that p;, multiplying the exponential
factor, is equivalent to 8/B(2tl;), which may be

taken outside the summation sign g; moreover

[0t/B(2tl;)]", operating on S, is equivalent to 1 if

n is even and to tanh q/; if n is odd. Writing for

brevity t; = tanh gl;, s;= sech ql;, we have

where X =rt J„p/BEY; Lp(= L) is de—termined as
a function of FI by (29), the second of Eqs. (33),
and the magnetization curve at zero stress; a is

1 if the differentiation is at constant IZ, 0 if at
constant J„;and the P; s are given by Eqs. (32).

The two Eqs. (33) give in parametric form the
functional relation between the magnetostrictive
strain components e;;" and the magnetization
J„' in the field direction. The parameter q runs

from 0 at demagnetization to ~ at pseudo-
saturation (j„'=P ~l,

~
/g3). The magnetostric-

tive elongation in direction (v1, 212, vp) is

S./S= (J./v'3) El,t;,
S1/S = 2apt, t;/3,
S2/S=2112tlt1 /3;

Ppp ——J,pal 2s 2/3,

P 10
——(2 ~2J,/3+3) (fl,s;pt, +l;s12t,),

P„=(2~2J,/3/3) (l;s t,„+l,„sppt;), . .

P =(4~22/9)(1 —t 't')

P22 = (4g 2/9) (] —t .2t 22)

P 12
——(4112'/9) t;s1't p.

(31)

e,,"= pe; 0"21;v& 2112+vp pt; t——&/3, (35)

j =JP/J, =ft,/Q3

Eq. (35) may therefore be written

(36)

e„'0=2112+v1y&j j00=2112j "+21ypa;op, (37)

where J' is the magnitude of J' (not to be con-

fused with the parallel component J„'),j'= J'/J„

and a similar formula holds for the magnetiza-
tion-dependent part of the electrical resistivity.
The magnetization components (see Eq. (4)) are

given by
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0,

-fo

gcfl ~106t"
The agreement with the data on longitudinal and
transverse magnetostriction is less satisfactory
(see Fig. 2), but still constitutes an improvement
over the original formula.

The distribution functions n. do not occur
explicitly in any of the present formulas; they
may, however, be found from Eq. (9). Thus the
fractional number of domains with magnetiza-
tion along (p~/Q3, P2/g3, P3/+3) when the
stresses are zero is given by

n'y, p2p3 ——[exp (gP/;p;)]/S
-20

~300 t

.2 + .6 .8 l.o

FIG. 2. Variation of longitudinal and transverse (L112j)
magnetostriction with magnetization for nickel crystal
magnetized in $111j direction. Points, experimental
values of Mashiyama as plotted by Gans and v. Harlem.
Curves, corrected formula. The curves have been fitted
to the data by least squares with a single value of K2,
39.9X10 6.

"See Eq. (6) of their first paper and Eqs. (11), (12) of
their second (reference 2). R. H. Fowler, Statistical 3Ee-
ckanics, second edition (1936);p. 520, gives correct formu-
las and curves for the longitudinal magnetostriction in
these three special directions.

~' See the third of Eqs. (5), first paper, reference 2.

and the 0- s are the direction cosines of the
magnetization. This formula is useful only when
it is known from symmetry considerations that
the magnetization direction (o.~, o.~, 03) coincides
with the field direction (l~, l~, l~). This is the
case when the field is in one of the directions
[100], [110], [1117;for these three cases, the
right member of (37) reduces to

[100]0, [110]Koj
"vg2, [111]2x2j "Pvy&/3. (38)

The first two of these agree with the for-
mulas of Gans and v. Harlem, but in their
[111] formulas'0 our factor j" is replaced by
2[(8j"+1)i—1]. The discrepancy is traceable
to their erroneous assumption" that when the
resultant magnetization is in the [111]direction,
the same number of domains are magnetized in
each of the directions [111], [111], [111]on
the one hand, and in each of the directions [111],
[111],[111]on the other.

Figure i shows the improved agreement between
theory and experiment obtained by using the
corrected formula for the longitudinal resistivity.

= (1/S)II(cosh ql, +p; sinh ~E;)

= II+Ep'"+Zp;p", "
(39)+plp2P3'1'2'3]/8

= I:1+v'3i'Zp'"+3i 'Yp;P'. ~"
+3&3j "pipnp3~i~~'3]/8

This reduces to formulas identical with those of
Gans and v. Harlem" for the special case
JII[110],and it is identical with the formulas
obtained from those of Akulov and Kondorsky"
by setting the tension equal to zero. The present
derivation shows however that the formula thus
obtained is rigorous to all orders in the magneti-
zation, and not merely a third-order approxima-
tion as might be expected from Akulov and
Kondorsky's derivation.

Equations(34) givethe variationof theeffective
elastic moduli s, of the crystal with magnetiza-
tion. We see that the tension-elongation moduli
are unaffected by the magnetization, but that
the relations between shearing stress and shear-
ing strain are altered: the field destroys the
cubic symmetry and leads to relations of the
more general type

e12 S66 X12+S64 X23+S6 X31.

In (34), n is to be set equal to 1 if the moduli
are measured by a static method. The same
equations with n =0 give the values when the
direction of the field and the component of mag-
netization (and hence approximately of ffux den-
sity) in this direction remain constant during
the strain. This will be the case, in a dynamic
measurement of the elastic moduli, only if the

"First paper, Eqs. (5), reference 2.
"Akulov and Kondorsky, Zeits. f. Physik 85, 661

(1933), Eq. (22).
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field-direction and the stress system have such
symmetry with. respect to the crystal axes that
the magnetization and the field are in the same
direction even during the strain. This condition
can be satisfied by utilizing the longitudinal
vibrations of a thin crystalline cylinder with
cylinder axis in one of the orientations L100],
L110], L111]. In general, however, the values
at constant vector magnetization must be ob-
tained by means of Eq. (20).

Since experimental data are not available, it
is not yet possible to test these theoretical con-
clusions in regard to the elastic properties of
ferromagnetic crystals. When experiments of this
nature are undertaken, it should be remembered
that the theory takes no account of magnetic
hysteresis, and that therefore the use of the
actual magnetization curve may lead to erro-
neous results. Since the stress-strain relations
are themselves nearly reversible, ' it seems plaus-
ible that so far as these are concerned the actual
specimen may be equivalent to a reversible speci-
men whose differential susceptibility, at any
magnetization, is equal to the reversible suscep-
tibility" of the actual specimen. This, as well as
the usual magnetization data, should therefore
be determined for the specimens used in the
elastic measurements.

The theory should apply rigorously to data
obtained anhysteretically: that is, by shaking
the specimen into its most stable state before
each reading. This is usually accomplished by
applying an alternating magnetic field and grad-
ually reducing it to zero. The writer has found,
however, that in obtaining anhysteretic magnet-
ization curves it is safer not to rely on a single
reduction of this sort, but to vary the alternating
field rapidly between zero and its maximum
value, several times, in order to insure the pene-
tration of the field to the interior of the specimen.
In order that the data may be truly anhysteretic,
it is of course necessary that this procedure
be followed whenever either field or stress is
changed; vibrations at a point on the anhysteretic
magnetization curve will not give an anhys-
teretic value of Young's modulus.

R. Gans, Physik. Zeits. 12, 1053 (1911); Ann. d.
Physik 61, 379 (1920); P. Debye, Hundblch der Radiologic
(1925), Vol. 6, 721.

We shall now use the results already obtained
to derive formulas corresponding to those of
Akulov and Kondorsky for the hB effect at low
magnetizations.

THIRD-ORDER APPROXIMATION

—&= oxoFI'+ o~XPF +oxoZFI'

where the x's are constants. Hence

J,o = ~ &/~&A =FF'fx +(ox'&'+xoFF'') ]
=FFI*Lxo+(x +x I')Ff'] (40)

By expansion of the hyperbolic tangent to the
fourth order in g, we get from Eq. (36)

J„o= (J,/g3) qI;(1 —gol;o/3 (41)

If we equate the right members of (40) and (41)
and solve for g to the fourth order in H, the
result, by restriction (c), must be the same for
i =1, 2, and 3. This requires

then
Xo = —xo'/J, '; (42)

g = (V'3xoFI/ J,)[1+(xi/xo)II' ],
J =FF'Lxo+xiFF' —(xo'/J. ')FI"], (43)
J,' =2J"I'=F&Lxo+ (xi —xo'ZI''/ J.')FI'].

In terms of j„'we have

~ =v'3i. 'L1+(EI")i,"],
(44)

Lo= (3Xo/J ')r1+(X~J.'/xo')i "].

We assume that the magnetization compo-
nents J under zero stress are known as functions
of the field components H;, to the fourth order.
The assumed functional relations are subject to
three types of restriction: (a) those imposed by
thermodynamics; (b) those imposed by the cubic
symmetry; (c) the restriction, already men-
tioned, that Eqs. (36) with i = 1, 2, 3 must yield
a unique value of p. The thermodynamic condi-
tions may be satisfied by deriving the J,'s from
the thermodynamic potential F= F&, z 0, which
must be expressed to the fifth order in the II s.
The cubic symmetry then requires that this be
in the form
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From (33) and (34) we now get, to the third
order in j„',

e;;"= 2a2l;1;j„",
( Be; $ 4Kp xp xgJ

1+——'-j„",
E. 8X;;)0 3J,' xo'

e."= 2~oj„"P&;4v;vo,

(~~ l 4 ~2 Xo 4&2 goZv;""+-

DEBT)

a 3 J,' J,'
1 giJ

)& 2+v/v;v„l;l„+ ———PvJovo' . (48)
Xo

( Be'. $ 4Ko xp

(BX;o) sr J.'
In (Be„'/BT)z„ the quantity in square brackets

(45) is replaced by

(Be~i l
(BX;;)z„

4~o'xo ( xiJ.')
3J' ( xo' )

[2+v 'v vol;/o —4+/;oloov 'vo' —8+1 'l;l pv 'v, vo

+o(xiJ, '/xo') ZvP»'] (49)

f Be; $ 4aoxp
l;lo(1 —4l;o)j„".

EBX;p) J.„J,'
Although these results have been written for
convenience in terms of j„', they can be expressed
in terms of II by rePlacing j„' by XpII/J. . The
corresponding formulas when the magnetization
components are the independent variables are

e,;"=2~pe,p;j' (j=J/J, ),

( Be; ) 4~p'xp xgJ, '1- 3(-, +-, )——j',
& BX,,), 3J,

(46)
( Be;/p

(BX;,),
These may be obtained by use of Eq. (20); or
they may be derived from Eqs. (45) by first
writing the complete expression for e;,' to the
third order in the IZ s and to the first order in
the stresses, and then substituting for II; its
value to the second order in the J s and to the
first in the stresses. This is obtained by inversion
of the formula

where

J;=xpII;+ e(I'I&X;&+IIoX,o),

1 (BJ ) 1 Be;; 2zo
(4&)

II; (BX,;) rr II; BII; J,'

From the formulas just given, we can derive.
the following formulas for the elongation e„' in
direction (v&, vo, vo) when the stress-system con-
sists merely of a tension T in the same direction
(X,;=v„v;T):

If the magnetization components are taken as
independent variables, we have

e„=2Koj Po'&o'ov;vp,

f'Be„'y 4 Ko xp 4Ko xp
Qv 'v„' — j'

(BTjg 3 J' J'
1 xd.')

~

1 ————~gvjvo' —Q&r,'v'v&' . (50)
3 xo'&

The last formula should agree with that of
Akulov and Kondorsky. In their formula, how-
ever, the quantity —Pa,'vPvoo is replaced by
+2+v v,vop. ;op. The difference appears to be
due to the omission of terms in the tension, in
certain of their formulas in which such terms
should, be present: particularly in the assumed
relation between the J s and the IT s, where no
account is taken of the effect of the tension
upon the magnetization curve.

. The formulas to be used when the direction of
the tension coincides with that of the field or of
the magnetization are obtained by setting v; = l;
in (48—49) or v;=p, in (50). It is easily verified
that (49) and (50) then lead to identical results
when this direction is [100], L110], or [111].

POLYCRYSTALLINE NICKEL

Before averaging for polycrystalline material,
we must decide which quantities are to be as-
sumed constant during the stress, and also which
quantities are to be assumed uniform from crystal
to crystal. In the dynamical measurement of
Young's modulus, it is the value at constant 8
that is measured; this however differs inappre-
ciably from the value at constant J. This con-
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stancy of flux density is due to macroscopic eddy
currents, whose field neutralizes the tendency of
the stress to change the flux density. It is evident
from the relation BJ/BT=Be„/8II and from (50)
that this neutralization cannot be exact in each
crystal: only the average magnetization remains
constant. We therefore average (48) at uniform
II and then use, for the polycrystalline material
as a whole, the relation

( 88„$ f Be„''( 88„'l

(BT) g (BTI IH &BII) r
x (51)

This gives, when the tension is in the field direc-
tion,

e,' =2Kgj /5, (52)

t'Be„'q 4 ~2'xo (2 1xiJ,,''
l
—

i
=——I+3j"'~ -+-——I, (53)

((3Tja 15 J,' (7 3 xo'

(Be„'q 4 &2 x„- t'18 1x,J,'q
(54)'BT)g 15 J,' &35 3 xo' )

(~ ~0)/~0—='/(I &)—
(~ ~o)/~0=54+"/35— (55)

(It is no longer necessary to distinguish between
j„' and j'.) The value of the derivative at con-
stant 8 may be found by a similar method; it
differs from the last expression only in that the
fraction 18/35 is multiplied by (1—5e/9)/(1+e),
where e= 1/4n. xo=0.004. This justifies the state-
ment made above, that these two values differ
inappreciably.

Equation (54) agrees with the formula of Akulov
and Kondorsky in the constant term, and there-
fore leads to the same formula for the total
change of Young's modulus between demagnet-
ization and saturation. The term in j ', however,
has 18/35 where their formula has 9/7. Neglect-
ing the term in x~, we get, in terms of the
saturation magnetostriction X"' in the L111]
direction,

where Eo, E, I' are, respectively, the values of
Young's modulus when J=O, J, J„and

u 3Xggg'xpEp/5J', '. (56)

We see that the ratio of (E Ep)/Ep to the
coefficient of j ' in (8—Eo)/Eo should be approxi-
mately equal to 35/54, or 0.65, instead of the
value 7/27=0. 26 predicted by the original
theory. The observed ratio in Siegel's experi-
ments' was 0.67. The new formula therefore
removes satisfactorily the discrepancy between
theory and experiment.

It is to be noted that the term in j",which in
(54) is opposite in sign to the constant term, in
(53) has the same sign. This means that, while
Young's modulus at constant J increases steadily
from demagnetization to saturation, the value
at constant II should decrease when small fields
are applied. This explains the apparent dis-
crepancy between Siegel's results, in which a
steady increase of E is observed, and. the older
results of Honda and Terada" (obtained by a
static method), in which E first decreases, and
subsequently increases. It may be remarked (see
Eqs. (45)) that this initial decrease results from
the appearance of effective elastic constants s45',

s56', and s84' in the (elastically) very anisotropic
state ensuing when the crystal is slightly mag-
netized. As saturation is approached, all such
effects disappear, and the crystal returns to cubic
symmetry, with a higher value of Young's modu-
lus than in the demagnetized state.

The writer plans in subsequent papers to apply
the theory to iron crystals, and to polycrystalline
material in the manner indicated in the intro-
duction; also to suggest a thermodynamic inter-
pretation of the theory, and to show its relation
to Gans's theory" of reversible susceptibility.
He wishes to acknowledge his indebtedness to
Professor S. L. Quimby for helpful suggestions
and criticisms made after reading the first draft
of this paper.

"K.Honda and T. Terada, Phil. Mag. 13, 36 (1907).


