corded for the major portion of the distribution curve can be conservatively interpreted as contributing limited support to the K.U. theory.

ACKNOWLEDGMENTS

The writer wishes to express his sincere appreciation for the inspiration to begin the above investigation and the encouragement to carry it to completion which was given by Professor Robley D. Evans, under whose direction the work was done.

It is also a pleasure to acknowledge the cooperation of Professor A. F. Kovarik of Yale University who was kind enough to prepare a thorium B source on two occasions. This source was used for the calibration of the magnetic field and determination of the efficiency of the spectrometer.

The radium E sources were obtained from Dr. L. R. Hafstad of the Department of Terrestrial Magnetism, Carnegie Institution of Washington, as well as from Professor J. A. Bearden and Dr. W. R. Kanne of the Johns Hopkins University.

It was only the continued courtesy of those just named that made it possible to study the radium E beta-ray spectrum under the various conditions reported in this paper.

For data concerning the design and operation of the spectrometer as well as for information concerning the Fermi and Konopinski-Uhlenbeck theories the writer is also deeply indebted to Dr. L. I. Schiff.

A like debt of gratitude is owed to Dr. N. S. Gingrich and Dr. E. J. Schremp for advice on the electrical circuits used in the counting apparatus.

AUGUST 15, 1937

PHYSICAL REVIEW

VOLUME 52

Extreme Ultraviolet Series in Cr VI, Mn VII and Fe VIII¹

P. GERALD KRUGER AND S. G. WEISSBERG University of Illinois, Urbana, Illinois (Received June 14, 1937)

Lines in the extreme ultraviolet region involving the 3d 2D, 4p 2P, 5s 2S, 6s 2S, and several nf²F terms have been identified in the spectra of Mn VII and Fe VIII. In Cr VI the first member of the $3d^2D - nf^2F$ series has been found. These spectra have been photographed with a twenty-one foot grazing incidence vacuum spectrograph. Identification was facilitated by the use of constant second difference displaced frequency diagrams.

HE spectra of highly ionized chromuim, manganese and iron have been photographed in the extreme ultraviolet with a twentyone foot grazing incidence vacuum spectrograph. The instrument and source of power have been described in previous reports.^{2, 3}

Heretofore the identification of the extreme ultraviolet spectra of isoelectronic ions by the use of the constant second difference law, has been greatly facilitated by the fact that the lines involved were among the very strongest in the region. However, when an attempt was made to extend the K I-Cr VI isoelectronic sequence to Mn VII, an extrapolation of the displaced frequency diagram (see Fig. 1) for the resonance multiplet $3d {}^{2}D_{3/2, 5/2} - 4p {}^{2}P_{1/2, 3/2}$ led into a thickly populated region, with no prominent lines. This was in contrast to the appearance, on our plates, of the very strong $3d {}^{2}D_{3/2, 5/2}$ $-4p \, {}^{2}P_{1/2, 3/2}$ multiplets in V V and Cr VI.⁴ That Mn VII might not be excited would indeed be curious, since spectra both from Mn VI and Mn VIII have been identified on the same plates, and lines from both of these ions are intense. One must conclude, therefore, that the above multiplet is among the lines of intermediate intensity in Mn VII.

From the identification of the multiplet $4s \, {}^{2}S_{1/2} - 4p \, {}^{2}P_{1/2, 3/2}$, Gibbs and White had already found the fine structure interval in the

314

¹ Preliminary report given by P. G. Kruger and S. G. Weissberg, Phys. Rev. **49**, 873A (1936). ² P. G. Kruger, Rev. Sci. Inst. **4**, 128 (1933). ⁸ P. G. Kruger and W. E. Shoupp, Phys. Rev. **46**, 124

^{(1934).}

⁴ Previously reported by R. C. Gibbs and H. E. White, Proc. Nat. Acad. Sci. 12, 598, 675 (1926).

FIG. 1. Displaced frequency diagram with constant second difference of 11,000 cm⁻¹ for resonance multiplet $3d \,^2D_{3/2, 5/2} - 4p \,^2P_{1/2, 3/2}$. Horizontal scale: 1 div. = 4000 cm⁻¹.

 $4p \ ^2P$ term in Mn VII to be 2464.7 cm⁻¹. This interval was verified by us with the discovery of the $4p \ ^2P_{1/2, \ 3/2} - 5s \ ^2S_{1/2}$ and $4p \ ^2P_{1/2, \ 3/2} - 6s \ ^2S_{1/2}$ multiplets, their approximate location being predicted with the use of displaced frequency diagrams. (See Figs. 2, 3.)

An approximate value (1340 cm^{-1}) of the $3d \,{}^{2}D$ fine structure interval was found graphically by extrapolating a $\sigma vs. Z$ graph, where σ and Z are related by the regular doublet law, $\Delta \nu = R\alpha^{2}(Z-\sigma)^{4}/n^{3}l(l+1)$. The resonance multiplet selected yielded 2467 cm⁻¹ for the ${}^{2}P$ interval and 1344 cm⁻¹ for the ${}^{2}D$ interval.

On one of our Mn plates, a series of four pairs of lines with nearly the same frequency difference appeared. These were fitted to the formula

$$\nu_m = 961,517 - 49R/(m - 0.092)^2$$

where m=6, 7, 8, 9. (This formula is for the lower ν of the pairs.) The close fit of this limit with the limit predicted for the $3d \ ^2D$ terms by the use of a Moseley diagram, and the similarity of the frequency intervals (1341, 1323, 1353, 1355 cm⁻¹) to the $3d \ ^2D$ interval of 1344 cm⁻¹ suggested strongly that the series had $3d \ ^2D$ as the common lower state. There were two possi-

FIG. 2. Displaced frequency diagram with constant second difference of 6000 cm⁻¹ for $4p \, {}^{2}P_{1/2, 3/2} - 5s \, {}^{2}S_{1/2}$. Horizontal scale: 1 div. = 4000 cm⁻¹.

bilities, namely a $3d {}^{2}D - nf {}^{2}F$ and a $3d {}^{2}D - np {}^{2}P$ series. Members of the ${}^{2}P$ series would normally consist of three lines with relative intensities (ν increasing) of 5, 9, 1, and with the

FIG. 3. Displaced frequency diagram with constant second difference of $12,000 \text{ cm}^{-1}$ for $4p \, {}^2P_{1/2, 3/2} - 6s \, {}^2S_{1/2}$. Horizontal scale: 1 div. = 4000 cm⁻¹.

FIG. 4. Displaced frequency diagram with constant second difference of 15,000 cm⁻¹ for first members of the $3d \,^2D_{3/2, 5/2} - nf \,^2F_{5/2, 7/2}$ series. Horizontal scale: 1 div. = 4000 cm⁻¹.

²*P* interval nearly twice the ²*D* interval. Members of the ²*F* series, on the other hand, would consist of three lines, with relative intensities (ν increasing) of 5, 100, 70, but with the ²*F* interval very much smaller than the ²*D* interval. Hence, if only two lines appeared, members of the ²*P* series would show the line of shorter wave-length to be the more intense, whereas the opposite would be the case for a ²*F* series. In the series at hand, the more intense line in each pair is of longer wave-length. This points to identification of the series as a 3d ²*D*-nf ²*F* series.

The term values were calculated for this ${}^{2}F$ series by fitting the lines $\nu = 806,419, 847,515$, and $874,181 \text{ cm}^{-1}$ to a Ritz-Rydberg formula given by

$$\nu_m = A - Z^2 R / (m + \mu + \alpha T_m)^2 = A - T_m$$

where A is the series limit, m is an integer, $\mu = -0.1370$ and $\alpha = 2.68 \times 10^{-7}$, and T_m is the term value.

Once these terms were established, and the trend of the variation of the quantum defects known, the identification of the $3d \ ^2D - 4f \ ^2F$ and $3d \ ^2D - 5f \ ^2F$ lines offered no difficulty. Identification of the first member was assisted somewhat by the displaced frequency diagram (Fig. 4).

TRANSITION	λ(Α)	Int.	ν(cm ⁻¹)	$\Delta \nu (\mathrm{cm}^{-1})$		
Mn VII						
$\begin{array}{c} 4p \ {}^{2}P_{3/2} - 5s \ {}^{2}S_{1/2} \\ 4p \ {}^{2}P_{1/2} - 5s \ {}^{2}S_{1/2} \end{array}$	467.662 462.363	30 15	$\left. \begin{array}{c} 213830\\ 216280 \end{array} \right\}$	2450		
$4p {}^{2}P_{3/2} - 6s {}^{2}S_{1/2}$ $4p {}^{2}P_{1/2} - 6s {}^{2}S_{1/2}$	284.059	10 3	352040 354490	2450		
$\begin{array}{c} 3d \ {}^{2}D_{3/2} - 4p \ {}^{2}P_{1/2} \\ 3d \ {}^{2}D_{5/2} - 4p \ {}^{2}P_{3/2} \\ 3d \ {}^{2}D_{3/2} - 4p \ {}^{2}P_{3/2} \end{array}$	251.479 250.771 249.929	1 4 2	397647 398770 400114	$ brace{2467}{1344}$		
$\begin{array}{c} 3d \ ^2D_{5/2} - 4f \ ^2F_{5/2} \\ 3d \ ^2D_{5/2} - 4f \ ^2F_{7/2} \\ 3d \ ^2D_{5/2} - 4f \ ^2F_{7/2} \\ 3d \ ^2D_{3/2} - 4f \ ^2F_{5/2} \end{array}$	162.707 162.667 162.349	30 60 80	614602 614753 615957	$\left.\begin{array}{c}151\\1355\end{array}\right.$		
$\begin{array}{c} 3d \ ^2D_{5/2} - 5f \ ^2F_{5/2} \\ 3d \ ^2D_{5/2} - 5f \ ^2F_{7/2} \\ 3d \ ^2D_{5/2} - 5f \ ^2F_{7/2} \\ 3d \ ^2D_{3/2} - 5f \ ^2F_{5/2} \end{array}$	$135.425 \\ 135.393 \\ 135.177$	$\begin{array}{c}2\\25\\20\end{array}$	$\left.\begin{array}{c} 738416 \\ 738590 \\ 739771 \end{array}\right\}$	$174 \\ 1355$		
$3d \ {}^{2}D_{5/2} - 6f \ {}^{2}F_{7/2}$ $3d \ {}^{2}D_{3/2} - 6f \ {}^{2}F_{5/2}$	124.005	15 10	$806419 \\ 807760$	1341		
$3d {}^{2}D_{5/2} - 7f {}^{2}F_{7/2}$ $3d {}^{2}D_{2/2} - 7f {}^{2}F_{5/2}$	117.992	53	847515 848838	1323		
$\begin{array}{c} 3d \ {}^{2}D _{5/2} - 8f \ {}^{2}F_{7/2} \\ 3d \ {}^{2}D _{3/2} - 8f \ {}^{2}F_{5/2} \end{array}$	114.393 114.216	$\begin{array}{c} 0\\2\\1\end{array}$	874181 875534	1353		
$\begin{array}{c} 3d \ {}^{2}D_{5/2} - 9f \ {}^{2}F_{7/2} \\ 3d \ {}^{2}D_{3/2} - 9f \ {}^{2}F_{5/2} \end{array}$	112.260 111.889	1 0	892387 893742	1355		
Cr VI						
$\begin{array}{c} 3d \ ^2D-4f \ ^2F\\ 3d \ ^2D-4f \ ^2F\end{array}$	210.288 209.978	6 4	475312 476240			

TABLE I. Observed lines and transitions.

The complete list of wave-lengths identified in Mn VII is given in Table I. Two new lines have been assigned to Cr VI, namely the two strong lines of the $3d \ ^2D-4f \ ^2F$ transitions.

The analysis of the Fe VIII lines presented the same problems met in Mn VII with the addition that the $4p \,{}^{2}P$ fine structure interval was unknown. Reliance was placed on the screening constant extrapolation for an approximate value of the $4p \,{}^{2}P\Delta\nu$. The ${}^{2}P-{}^{2}S$ lines were easily

TABLE II. Observed lines and transitions. Fe VIII.

TRANSITION	λ(Α)	Int.	ν(cm ⁻¹)	Δν
$4p^2P_{3/2} - 5s^2S_{1/2}$ $4p^2P_{1/2} - 5s^2S_{1/2}$	370.432	10 4	269955 273319	3364
$\frac{4p}{4p} \frac{^{2}P_{3/2}}{^{2}P_{3/2}} - \frac{6s}{5} \frac{^{2}S_{1/2}}{^{2}S_{1/2}}$	223.870	4	446688	3379
$\frac{3d}{^2D} \frac{^2D_{3/2}}{^2D_{5/2}} - \frac{4p}{^2P} \frac{^2P_{1/2}}{^2P_{3/2}}$	196.046 195.476	15 20	$510084 \\ 511572$	3363
$3d {}^{2}D_{3/2} - 4p {}^{2}P_{3/2} \\ 3d {}^{2}D_{5/2} - 4f {}^{2}F_{7/2}$	$\begin{array}{c} 194.762 \\ 131.242 \end{array}$	5 9	513447) 761951	1763
$\begin{array}{c} 3d \ {}^{2}D_{3/2} - 4f \ {}^{2}F_{5/2} \\ 3d \ {}^{2}D_{5/2} - 5f \ {}^{2}F_{7/2} \end{array}$	$\frac{130.939}{108.083}$	8 8	763714 925214	1810
$\begin{array}{c} 3d \ {}^{2}D_{3/2} - 5f \ {}^{2}F_{5/2} \\ 3d \ {}^{2}D_{5/2} - 6f \ {}^{2}F_{7/2} \end{array}$	$107.872 \\ 98.522$	8 4	927024 1015002	1826
$\frac{3d}{3} \frac{^{2}D_{3/2} - 6f}{^{2}F_{5/2}} \frac{^{2}F_{5/2}}{3d} \frac{^{2}D_{5/2} - 7f}{^{2}F_{7/2}}$	98.345 93.374*	43	1016828	1846
$3a {}^{2}D_{3/2} - 7f {}^{2}F_{5/2}$	93.217*	3	1072765	

* Absolute values of λ probably in error by 0.01A.

Mn VII							
	n = 3	4	5	6	7	8	9
$^{2}S_{1/2}$		643267 2.8912	348067 3.9304	20985 5.061	78		
${}^{2}P_{1/2}$ ${}^{2}P_{3/2}$		564354 3.0867 561889 3.0935					
${}^{2}D_{3/2}$ ${}^{2}D_{5/2}$	962001 2.3642 960646 2.3658						
${}^{2}F_{5/2}$ ${}^{2}F_{7/2}$		346044 3.9419 345893 3.9430	222230 4.9190 222056 4.9209	15424 5.904	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	86467 7.8859	68259 8.8755
Fe VIII							
	n = 3 4			5		6	
² S _{1/2}					435958 4.0137	23 5	59225 .2051
${}^{2}P_{1/2}$ ${}^{2}P_{3/2}$			709276 3.1467 705913 3.1542				
$^{2}D_{3/2}$	1219360						
${}^{2}D_{5/2}$	1217485 2.4018	5					
${}^{2}F_{5/2}$ ${}^{2}F_{7/2}$			455646 3.9260 455539 3.9264		292336 4.9015 292276 4.9020	20 5 20 5)2532 .8887)2483 .8894

TABLE III. Term values and effective quantum numbers.

found with the aid of the displaced frequency
diagrams (Fig. 2). The $3d \ ^2D$ splitting was then
obtained from the ${}^{2}D - {}^{2}F$ series. This permitted
the definite location of the resonance lines
$3d \ ^{2}D - 4p \ ^{2}P$. The complete list of wave-lengths
of Fe VIII is given in Table II.

Term values and effective quantum numbers are listed in Table III, and the ionization potentials for the entire sequence are shown in Table IV. The value $526,006 \text{ cm}^{-1}$ for the $3d \ ^2D$ term in V V is our estimate based on the data of Gibbs and White.⁵ This results from fitting a

Ion	3d 2D3/2 cm ⁻¹	Ionization Potential Volts	First Difference Volts	Second Difference Volts
ΚI	13470.26	1.6618	8 4662	
Ca II	82097.8	10.1280	14.5066	6.0404
Sc III	199693	24.6346	18.3499	3.84
Ti IV	348433	42.9845	21.9065	3.56
VV	526006	64.891	(25.279)	(3.37)
Cr VI	(730940)	(90.17)	(28.507)	(3.23)
Mn VII	962001	118.677	31.750	(3.24)
Fe VIII	1219360	150.427	(34.97)	(3.22)
Co IX	(1503000)	(185.4)		

TABLE IV. Ionization potentials in the isoelectronic sequence $K I - Co IX.^*$

* Values in parentheses are estimated from a Moseley diagram. The value for V V has been recalculated from data of Gibbs and White, Phys. Rev. 33, 157 (1929).

Ritz-Rydberg term formula to the ${}^{2}S$ terms, as was done by Russell and Lang with Ti IV.⁶ Our estimate is likely to be slightly too deep. This statement is based on the fact that a limit calculation from the ${}^{2}S$ terms in Mn VII and Fe VIII leads to a value which is too deep as compared to the more accurate calculation based on the third, fourth, and fifth members of the ${}^{2}F$ series in Mn VII and the second, third, and fourth members of the ${}^{2}F$ series in Fe VIII.

The ionization potentials in the sequence increase with a nearly constant second difference. Heretofore short range extrapolations of the ionization potential have been made by assuming a constant second difference. This practice is supported by the results of exact series calculations made possible by the identification of several members of the ${}^{2}F$ series.

⁶ A. N. Russell and R. J. Lang, Acous. J. 66, 13 (1927).

⁵ Bacher and Goudsmit, Atomic Energy States.