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section, thus permitting a check of the con-
sistency of the whole theory.

Note addedin proof: Recently published experiments by
J. Halpern, I. Estermann, O. C. Simpson and O. Stern,

Phys. Rev. 52, 142 (1937) indicate that the scattering
cross section of ortho-H2 for liquid-air neutrons is much
larger than the corresponding para-H~ scattering cross
section. This proves conclusively that the singlet state of
the deuteron is virtual.
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It is possible to apply statistical methods to the calcula-
tion of nuclear processes provided that the energies in-

volved are large in comparison with the lowest excitation
energies of nuclei. Expressions are obtained for the emission
probability of neutrons or charged particles by highly
excited heavy nuclei. These expressions are built up in a
similar way to the formula for the probability of evapora-
tion of a particle from a body at low temperatures. In

applying it to the impact of high energy neutrons on heavy
nuclei, the mean energy loss per impact turns out to be
EI 1 —2(a/E)&j where E is the energy of the incident
neutrons and a is dependent on the nuclear structure; we
can put approximately a 0,05—0.2 MV. T' he energy d.is-
tribution of the scattered neutrons is approximately a
Maxwellian one with a mean energy of 2(aE)&.

HE application of quantum mechanics to
the calculation of nuclear reactions in

heavy nuclei gives rise to extremely complicated
expressions which cannot be treated by ordinary
methods, since there is no approximate solution
for this complex many-body problem on account
of the intense interaction between the constit-
uents of atomic nuclei. On the other hand Bohr'
has pointed out that just the extreme facility of
energy exchange gives rise to a characteristic
simplification of the course of every nuclear
process initiated by a collision between a par-
ticle or a light quantum and a nucleus. It con-
sists in the possibility of dividing the process into
two well-separated stages. The first is the forma-
tion of a compound nucleus in a well-defined
state in which the incident energy is shared
among all the constituents, the second is the
disintegration of that compound system, which
can be treated as quite independent of the first
stage of the process. This conception has been
extremely fruitful in the treatment of all kinds
of nuclear reactions. Qualitative statistical con-

' N. Bohr, Nature 137, 344 (1936); N. Bohr, Science
(1937), in print.

'A comprehensive account of the application of the
ideas in question to nuclear phenomena will be given in a

clusions about the energy exchange between the
nuclear constituents in the compound state have
led to simple explanations of many character-
istic features of nuclear reactions. In particular
the use of thermodynamical analogies has proved
very convenient for describing the general trend
of nuclear processes. The energy stored in the
compound nucleus can in fact be compared with
the heat energy of a solid body or a liquid, and,
as first emphasized by Frenkel, ' the subsequent
expulsion of particles is analogous to an evapo-
ration process. 4

In this note an attempt is made to apply
statistical methods in a more quantitative way
to nuclear processes in which heavy nuclei are
involved and become highly excited a's, for ex-
ample, in the case of the collision of very fast
neutrons with heavy nuclei. The individual prop-
erties of the separate nuclear quantum states are
then of no interest, on account of the extremely
small distance between the energy levels of highly
excited heavy nuclei; it is thus possible to obtain
statistical information on the behavior of these
nuclei by averaging over many quantum states

paper by Bohr and Kalckar to appear shortly in the Pro-
ceedings of the Danish Academy.' I. Frenkel, Sov. Phys. 9, 533 (1936).

4A general discussion of the application of thermo-
dynamical conceptions to nuclear processes can be found
in the paper by Bohr, Science, reference. 1.
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of approximately the same energy. ' A general
statistical formula is derived for the emission of
particles by highly excited heavy nuclei. It can
be shown by means of this expression to what
extent it is possible to describe the disintegration
of the compound nucleus as an ordinary evapo-
ration process. The statistics of systems with
comparatively few particles gives rise to charac-
teristic discrepancies from the ordinary result
obtained for the case of macroscopic bodies. We
cannot, for example, speak unambiguously of an
evaporation temperature of an excited nucleus,
since after emitting one particle it has lost such
a large amount of energy that often a much
lower temperature must be ascribed to the re-
maining nucleus. Furl. hermore all the other
terms and quantities which are neglected in ordi-
nary statistics on account of the great number
of degrees of freedom must be taken into con-
sideration.

The general expression contains, however,
several quantities which are closely connected
with the special structure of the nuclei consid-
ered. The most important is the density of levels
as a function of the excitation energy. Our
knowledge of the structure of heavy nuclei is so
far very restricted, so that the quantitative con-
clusions which can be drawn have only a very
low accuracy. Thus most of the deviations from
the ordinary evaporation formula are much
smaller than the inaccuracy of the quantities
inserted. On the other hand the general expres-
sion can be used to draw conclusions about the
density of levels from the observed energy dis-
tribution of particles emitted by highly excited
nuclei.

Let us examine the state of a heavy nucleus A

when it is excited to an energy B& which we

suppose to be greater than the binding energy of
an elementary particle (proton, neutron, n-par-
ticle). This excitation may be produced by ab-
sorption of a hard p-ray or by the collision of a
nucleus with a neutron or another particle,
whereby the compound nucleus A is created.
Before the collision the colliding particle must
have a kinetic energy E&—Ep, Ep being its bind-

ing energy when bound to the nucleus A. The

'Similar ideas recently have been put forward by L.
Landau, Sov. Phys. 11, 556 (1937).

cross section for that collision can in general be
very simply determined. The validity of the sta-
tistical conclusions requires very high incident
energies (at least 3 MV for incident neutrons,
see below) so that the wave-length of the inci-
dent particles is much smaller than the radius r
of the nucleus. The collision can therefore be
described classically and the cross section will be
of the order 7rr'.

We consider now the emission of a neutron by
the excited nucleus A(E~).' In order to be able
to get statistical information there must be a
great number of possibilities for the reaction

the various possibilities differing according to
the various excited states of the remaining
nucleus B(E&).The energy B& must therefore be
much greater than the energy Ep which binds the
neutron to the nucleus A—indeed there must be
a great many levels of B having an excitation
energy less than E~ —Ep. This condition is ful-
filled sufficiently well in heavy nuclei (mass num-
ber greater than 100), if

Bg —Ep& 3MV.

There is of course an upper limit for B~ too; it
must be small in comparison with the total
binding energy of the nucleus. Otherwise the
compound state could not be formed at all.

Let us calculate the probability per unit time
W„(e)de of the nucleus A, excited to the energy
E&, emitting a neutron with kinetic energy be-
tween e and &+de, thus transforming itself into a
nucleus B with an excitation energy 8&=E&
—Ep —e. This probability may possibly depend
on some special features of the initial excited
level of A. Therefore we understand by W (e)de
the average of this probability over all excited
states of A whose energy lies near B&. The prob-
ability W (e)de has, of course, no meaning unless
the interval de is chosen so big that there are a
large number of levels of the nucleus 8 with en-
ergies between E~ and E~—de. To get a con-
tinuous function W (e) it is necessary to average
over a number of 6nal states. We shall always
assume that the interval de is much bigger than

'We shall use the symbols A(B) or B(B) to designate
nuclei A or 8 which are excited by an energy B above tke
ground state.
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the distance between the levels of the nuclei in
the excited states considered.

It is possible to give an expression for W„(e)de
as a function of the cross section corresponding to
the reverse process: i.e. , of the mean cross section
&r(Eg, e) for the collision of a neutron with

energy e with a nucleus B(E& Eo —e) p—roducing
a compound nucleus A(EA). We can write

gme cue(Ee)
W„(e)de=a(Eg, e) de,

tr'ff' cup (Ez)
(2)

where o ~(E)dE and cue(E)dE are the numbers of
levels of the nuclei A and 8, respectively, be-
tween E and E+dE, the energies being measured
from the ground state of the particular nucleus
under consideration. m is the mass of the
emitted particle, h Planck's constant divided by
2z and g denotes the number of states for the
spin of the particle considered. (g = 2 for neutrons
and protons, g=1 for a-particles. This factor is
left undetermined in (2) so that we can apply
(2) to the emission of other particles. )

It is convenient to introduce the logarithm of
the density of the levels:

To derive this relation, let us consider the nucleus and
the neutron enclosed in a volume Q. Then

W, =o-(Bg, ~)v/Q

is the mean probability per unit time of the neutron, with
an energy between ~ and &+de and a velocity v= (2e/m)&,
being captured by the nucleus B(J'&—Fo—e), forming
nucleus A with an energy between I'z and A&+de. We then
obtain the probability 8" (e)de for the reverse process by
dividing We by the number cvz(E&)de of states in which the
neutron can be captured and multiplying by the number of
states into which A(Ez) can decay. There are coa(EIt)de
states of the nucleus B into which A(E&) can decay if the
energy of the neutron lies between e and ~+de and there are

Qgm
(2m') id&

22r+h3

quantum states in the volume Q in the energy range de at
the disposal of the neutron. Therefore we get

co~(Egg) Qgm
(6)dt = W (2m&) id&

(vg(Eg) 2''h'

which leads at once to (2).

having an energy between E and E+dE. We
obtain then

gVle
W (e)de &(E& e) ese(Ex Eo ~—) sx(o—g)de (3)

z'h'

This is a general expression for the emission
of a particle of mass m, from a system having the
free energy Ez and a density of levels co~(E),
the remaining system having a density of levels
equal to cue(E) The u. sual formula for the prob-
ability of evaporation can be derived from (3) by
assuming that E~ is much greater than both the
binding energy Eo and the kinetic energy e of the
emitted particle (E~&&ED, E~&&e), and that Sq
and Se are identical functions (Sg(E) =Se(E)).
It is then possible to develop

Se(EA Eo e) =5~—(E~)——(Eo+e)(dS~/dE) p~.

The derivative of 5& can be expressed by means
of a temperature, namely

de/dE = 1/ Tg (E), (4)

where Tg(E) is the temperature at which the
most probable energy of the body A is equal to E
at thermodynamical equilibrium. ' The tem-
peratures T given here are of the dimensions of
an energy, and are equal to the ordinary tem-
perature times the Boltzmann constant k. We
can then write

This is exactly the usual equation for evapora-
tion. The meaning of 0. becomes clearer in putting
o.=q y(el where q is the actual spatial cross
section of the vaporizing body and y(e) —1 gives
the ratio of the number of particles captured to
the number of incident particles with an energy
e. The cross section for elastic reflection is then
q(1 —r(e)).

If we apply these considerations to the emis-
sion of particles by nuclei, we must observe that
the assumptions necessary to establish (5) are
not realized. Eo in particular is not small in com-
parison with E~. Nevertheless it is possible to

gm
W~(e)de=o(E~, e) ee«—"&e':re 't "~e"'d-e (5).

vr2h3

Sg(E) = lg co~(E), Se(E) = lg (ue(E).
~ We distinguish here between the most probable energy

and the mean energy. Formula (4) is the statistical defini-
5(E) corresponds to the entropy of the nucleus tion of the former.
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where just as in (4) we define:

1/Ta(E) =dSa/dE. (4a)

Ta(E) is the temperature at which E is the most
probable energy of the nucleus B in thermo-
dynamical equilibrium. f(o) contains all further
terms of the development. We thus obtain

gm
W ($)do —o (Eg o) eaa(an ao) aA(a—A)—

~2I 3

&Ira(EA Eo)e f(~—)do —(7)

The total probability of a neutron being emitted
is obtained by integrating with respect to e, if
multiplied by h, it is identical with the "neutron
breadth" F of the emitting level of the nucleus
A (i.e. , that part of the level-breadth which
arises from the emission of a neutron):

g
Ta'(Ex —Eo)

7r 2&2

m
I' =h)I W(o)do=

)('eaa(EA Eo)—SA(EA) —(8)

o is a mean value of o(E~, o)e f" averaged over
the Maxwell distribution:

o =~~oa(Eq, o)e '( a f&')do J~oe '(rado

In order to get a closer analogy to the evapora-
tion formula (5) we put

Sa(Eg —Eo) Sg(Eg) = Eo*/Tg(E—g), —(9)

where Eo* is an energy which is only equal to Bo
if Eo«Ez and S~(E) =Sa(E). When (9) is in-

serted in (7) the difference between (7) and the
evaporation-formula (5) consists in the follow-

ing: the energy Bo is not identical with the bind-
ing energy Zo and the energy-distribution of the
neutrons is not of the Maxwell type, but differs
from it by the factor e f('. Furthermore the
temperature Ta(E& —Eo) is by no means the
temperature of the evaporating compound-

transform (3) into an expression similar to (5),
by assuming only e«B& —Eo. We can then de-
velop

Sa(E~ —E()—o) =Sa(E~ E())—

ol(—Ta(E~ Eo—) ) f(o—) (6)

nucleus A(E~) (its temperature is defined by
Tg(Eg)), but it is the temperature of the re-
maining nucleus B(E~—Eo). This difference can
also be explained as follows: on the liberation of
the neutron a considerable cooling down takes
place. The energy-distribution of the neutrons
corresponds to the temperature of the remaining
nucleus.

The corrections f(o) and Eo*can be determined
still more exactly. It follows from (4) and (4a)
that dS/dE decreases monotonically with in-

creasing E, since this expression is equal to
1/T(E). Therefore S(E) as plotted against E is a
curve which is concave downwards; from this
fact and from (6) we conclude that

f(0) =0 f(o) =0

and finally that f(o) increases monotonically.
Hence the relative energy-distribution of the
emitted neutrons

W„(o) =const. o(E~, o)oe ' ae. ~&')

possesses a maximum which, as compared with
the distribution (5), is shifted towards higher
energies and has a smaller breadth.

We can apply the same considerations to
estimate the difference (9). Assuming S~(E)

Sa(E) we get

Sg(Ez) —Sa(E~ —Eo) )Eo/TA(Ex). (11)

This implies that Eo*&EO.
It may be noticed that the observed neutron

energy distribution for a highly excited nucleus
A(E~) can be different from (10) because the
remaining nucleus B(Ea) may possibly emit
neutrons again. Such double emissions of neu-
trons have been found by Heyn. ' If, however,
E& is less than the energy necessary for removing
two neutrons the observed distribution should
always be represented by (10).

Eq. (7) leads to the following qualitative con-
clusions concerning collisions between fast neu-
trons and nuclei: if a neutron with anenergy 2
collides with the nonexcited nucleus 8, and gives
rise to the nucleus A with energy B+Eo, it will
be reemitted on an average with a much smaller
energy 2Ta(E) and therefore give a great part

'F. A. Heyn, Nature 138, 723 (1936); Physica 4, 160
(1937).
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of its energy to the nucleus 8. 2T is the mean

energy of particles emitted with a Maxwell dis-
tribution corresponding to a temperature T.. Here
it is assumed that the cross section o(EA, ») does
not depend appreciably on e as is shown in the
following section. The eriergy TB(E) is generally
approximately equal to E divided by the num-

ber of degrees of freedom of the nucleus 8 which
are excited at this energy. We see that this rep-
resents a very inelastic collision.

In applying formula (7) to excitations made by colliding
particles or light quanta, we must take into account the
fact, that (7) represents an average over all levels of A

having an energy of about Fz. But not all of those levels
can be excited by the process mentioned above. Excitation
is only possible to levels whose angular momentum differs
not too much from the momentum of the original nucleus, '

since-a particle or a light-quantum with the momentum p
hitting a nucleus cannot transfer a bigger amount of
angular momentum than ~pr+s (r is the radius of the
nucleus and s is the spin angular momentum of the incident
particle, which is h/2 for neutrons and h for photons). We
meet here a characteristic difficulty in nuclear statistics.
The conservation of angular momentum, which is found in

I

nuclear processes, is not usually taken into consideration in

ordinary statistics. It is easy to see that the emission prob-
ability from a level with small angular momentum will in

general be bigger than the average value (7) over all

angular momenta since there are among the levels with

energy Ez several which cannot emit at all. The latter are
those with an angular momentum l)Lg+I, L~ is the
maximum angular momentum of the levels in B(E~) and l,
is the maximal angular momentum the outgoing neutrons
can have (l, r(2m')&+s((L~). We get a rough estimate of
the emission probability S" (e)de for levels with low angular
momentum by assuming that all the levels with l (L& emit
with the same probability and that the levels with l)La do
not emit at all. The only change in the formula (7) for
8'„(e) caused by this assumption consists in putting co~ (E~)
instead of co&(E&). ~z'(E&) being the density of levels with

angular momentum less than L~. In what follows we shall

neglect this change, since up to the present it is impossible
to say anything about the angular momentum distribution
among nuclear levels. All estimates of cog(E) are far too
inexact to distinguish between u~' and cog.

The formula derived above can be applied to
the emission of charged particles (protons, »2-par-

ticles). We need only allow for the fact that the
Coulomb field has a strong influence on the cross
section o(EA, ») for the reverse p.rocess, because
it repels and deflects the incident charged par-
ticles. If the cross section. for the reverse process
can be roughly determined by the classical con-
ception that any particle hitting the nucleus is

absorbed, we get the expression

=o.p(1 —V/») for») V
(r(EA, ») e(V

0 p =7l"f, U=ZZ'ep/r

where Ze and r are the charge and the radius of
the nucleus and Z'e the charge of the particle.
For Z =50 we get approximately V= 7 Z' M V.
It is better here to use the following expansion
instead of (6):

SB(EA Ep») =SB(EA Ep —V)
—(» —V) / TB(EA —Ep

—V) f(»——V) .'

Instead of (7) we then get

gm
IV&(») d» —

(rp ess(EA Eo v) sA(EA) (»
—U—)

7r2h3

X ~ (& V) / Tg(EA —Eo—V) .e
—f (0—V)dg

for the emission probability of charged particles,
and for the total emission-probability (proton
breadth, a-particle breadth)

gm
TB2(EA Ep U)esB(EA Eo v) s4(EA)—. — —

~2&2 (12)

Comparing this with (7) we note that the binding
energy Ep is replaced by Ep+ U and 'the energy
distribution is shifted to higher energies by an
amount U without any other change in form.
This is. easily understood because an additional
energy U is given to the emitted particle on
account of the Coulomb field of the nucleus. For
the same reason the binding energy Ep is in-

creased, since the energy necessary to liberate
the particle must appear in our formula without
the energy gained when the particle is acceler-
ated in the Coulomb field, being taken into
account. The formula has no longer a meaning
when e( V, since then, according to the classical
considerations made in deriving the expression,
the particle cannot leave the nucleus. But if we
take into account the quantum-mechanical pos-
sibility of passing through the potential wall, one
may expect to find for e (V an emission proba-
bility diferent from zero, though very small.

The general consequences of the electrostatic
repulsion in nuclear reactions are discussed in
both papers of Bohr. ' We restrict ourselves there-
fore to the following two general conclusions:
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The binding energy Eo is generally as large for
protons as for neutrons, in so far as we have to
deal with isotopes which are stable with regard to
P-emission. Thus, when the Coulomb potential U

in the exponential of (12) is comparable with Eo*,
we may expect the emission of protons to be in

general much less probable than that of neutrons.
In fact, no emission of protons from heavy nuclei
Z)30 is found, when excited by neutrons' or
y-rays. '

The emission probability for n-particles will be
much smaller than that of neutrons as long as the
nucleus is stable in respect to u-decay since U is
then certainly much bigger than the binding
energy of neutrons. The latter is about 8 MV,
whereas U is at least 14 MV. For radioactive
nuclei however the binding energy of o,-particles
is negative. It can then happen that 80*+U is

nearly equal for o.-particles, to the binding energy
of a neutron. The excited nucleus will then be
able to emit neutrons and n-particles with proba-
bilities of the same order of magnitude. Thus we
should expect an emission of n-particles by heavy
nuclei after the capture of a neutron only in
nuclei belonging to the radioactive group. In fact
a process of this kind has only been found in
thorium" "

The nuclear reactions resulting from collisions
between charged particles and heavy nuclei are
outside the scope of the present paper, because
the velocity of charged particles is reduced in the
Coulomb field, and (in the experiments which
have so far been carried out) they do not there-
fore possess sufhcient energy to excite the nuclei .

strongly enough. The energy of protons or
deuterons should be considerably above 7 MV
and that of O.-particles above 14 MV.

Let us now investigate the order of magnitude
of the functions 5(E) and o(E~, e) which appear
in (7). It is obvious that this can only be done
roughly, owing to the small knowledge we have of
nuclei so that the expressions to be given now are

' E. Fermi and collaborators, Proc. Roy. Soc. A146, 483
(1934).

"W. Bothe and W. Gentner, Naturwiss. 25, 30, 126
(1937)."I. Curie, H. v. Halban, and P. Preiswerk, J. d. phys. 7,
6, 361 (1935).

"O. Hahn and L. Meitner, Naturwiss. 23, 320 (1935).

S(E) =' fdE/T(E), (14)

where the constant of integration does not con-
cern in our problem, since we always have to deal
with the difference between two values of S.
The energy E can in general be represented over a
large range as proportional to a power of T:

where a is a constant. If all the degrees of freedom
are excited (classical limiting case), n. must be
put equal to unity; in the reverse case (i.e. , for
relatively low temperatures) n =4 for solid
bodies, and n=2 for degenerate gases. In the
present problem we can check the power n and
the constant a in two almost independent ways:

(1) As an approximation we represent the
degrees of freedom of the nucleus under con-
sideration by proper oscillations with frequencies
vi, v2, , v;. ."Then E(T) can be evaluated
from Z(v), Z(v) being the number of proper fre-
quencies v;. & v as function of v. '5 The most prob-
able energy or the mean energy (the approxima-
tion is so rough, that this difference has no essen-
tial effect) is in the fact approximately

E T Z(T/1$).

'3 H. A. Bethe, Phys. Rev. 50, 332 (1936)."I am indebted to Professor Bohr for the following
method of estimating the temperature of an excited
nucleus.

» In this model the proper oscillations and the quantum
states must be distinguished. The number Z(v) of the
oscillations is diHerent from that of the quantum states for
which Z(kv.' the former Z(v), is smaller than the latter.

much less exact than those of the preceding sec-
tion. An attempt has been made by Bethe" to
calculate the density of levels in nuclear spectra.
According to his result (32) we get

$(E) = (M E/2. 2)
**—(5/4) lg E, (13)

where Ji is measured in MV and 2lE signifies the
mass number. On account of the extreme inac-
curacy of any nuclear model we shall try to de-
rive expressions for S by means of two other
methods which are less exact but perhaps more
general than Bethe's method.

A proper way to calculate 5(E) is to find T(E)
first. If we know the dependence of the most
probable energy E of the nucleus upon the tem.-

perature in thermodynamical equilibrium, we
can put
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This is equivalent to the assumption, that the
mean energy of a proper oscillation whose fre-
quency is smaller than T/Ii, is equal to the class-
ical value T and that the proper frequencies
v;) T/h are regarded as nonexcited. For energies
E small compared with the binding energy of the
particles, Z(E/h) is more or less proportional to
the energy E, since the proper frequencies in this
energy-domain are still statistically distributed.
We then obtain Z(E/Ii) =E/a and

(16)

Thus we find n = 2 where a is an energy which can
be considered as equal to the mean energy dis-
tance between the lowest proper frequencies hv;.
The value of a cannot be easily estimated owing
to our restricted knowledge of the structure of
heavy nuclei. Only for radioactive nuclei does
experimental evidence on the spacing of the
lowest levels exist. This spacing can roughly be
set equal to the frequencies of the lowest proper
oscillations. The experiments on n-ray fine struc-
ture and on y-ray spectra lead to nuclear levels
the spacing of which is of the'order of 0.1 MV.
Since no information on nuclear spectra of heavy
nonradioactive nuclei is available, we assume
that the value of a is of the same order of magni-
tude for nuclei with mass numbers greater than
100 and put for these nuclei a 0.1 —0.2 MV.
This check on a is very uncertain; a dependance
on the weight of the nuclei and a variation due
to the existence of different kinds of nuclei (odd
or even) must be expected.

(2) The other way to check n and a avoids the
representation of the dynamics of the nuclei by
means of proper oscillations. We try to approxi-
mate to the problem from another side, and con-
sider the nucleus as a degenerate gas of particles,
with strong interaction forces between them. The
energy of a degenerate gas of particles obeying
the Fermi-statistics is also given by (16). Since
we know from experience of metallic electrons
that this law holds in spite of very strong interac-
tions between electrons, we may assume n = 2 for
nuclei also. The constant a can be checked by
means of the expression for the density of levels
which follows from (14) and (16):

$(E) =2(E/a) i+const. ,

co(E) =const. exp [2(E/a) i].

Thus the value of a can be calculated if we know
the density of levels oi(E) for two values Ei, E2.

( Ei*—Eg'
a=4'

i
. (18)

Klg o)(Ei) —lg oi(E2) )
We have a rough knowledge of the density at an
energy 2 8 MV from the experiments on the
capture of slow neutrons. The capturing levels of
the compound nucleus have an energy of about
8 MV and their distance apart is about 1 —10

10 ' MV for heavy nuclei (weight cV 100)
according to Bethe and Placzek. " On the other
hand we can assume the distance between the
lowest nuclear levels to be of the order 0.1 MV.
from experiments on p-ray spectra as stated
above. Inserting these two values in (18) we get
a 0.2 MV. This value may be too high because
the actual density of levels at 8 MV is certainly
higher than the value inserted, since the experi-
ments on capture of slow neutrons only give in-
formation about levels with two fixed successive
values of angular momentum. ' In any case the
order of magnitude can hardly be very different
since the level densities only appear logarith-
mically in the expression (18).

The value of a from Bethe's formula (13) is
slightly lower than the above results. Neglecting
the logarithmic term we get a =8.8/3II expressed
in MV. The interpretation of a as the distance
between the lowest proper oscillation frequencies
may however indicate a weaker dependence on M.

From a comparison of all the results obtained,
we may take the following expression for T(E)
for nuclei of mass number 3f& 100

T(E) =(aE)t, 0.05 MV(a(0. 2 MV.

a is certainly nearer to the upper limit than
the lower for the lighter nuclei and decreases with
increasing mass number.

The cross section o (Eg, «) can be estimated in
the following way: when the energy e of the
neutron is high enough for the corresponding
magnitude X =X/2~ =h/(2m&) & to be smaller than
the range of nuclear forces d = 2 10 " cm, then
we can consider the reverse collision as classical,
and put o. =7rr' independently of E& and o (r is
the radius of the nucleus). This is only fulfilled if

"H. A. Bethe and G. Placzek, Phys. Rev. 51, 450 (1937).
"The capture of slow neutrons can only give rise to

levels whose angular momentum differs by h/2 from the
angular momentum of the capturing nucleus.
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c&5 MV. When the magnitude X cannot be con-
sidered as small compared to d, but is still smaller
than r/2 0.5 ~ 10 " (i.e.', p&0.8 MV), the area.
~r' can be regarded as an upper limit for the
cross section. How much 0 is less than this upper
limit depends on E.4. When the levels of' the com-
pound nucleus A(Ez) are separated by large
distances, the capture is very selective, which
reduces the cross section. But in the case con-
sidered here E& must be very high for E& & Eo
+3 MV, on account of condition (1). It may
generally be expected —and we shall verify it by
calculation —that the breadth of the levels is
then larger than their distance apart, so that
selectivity is no longer possible. No considerable
error can then be made in putting

o(Eg, p) =7rr' for p& 0.8 MV.

Since, according to (7) the bulk of the emitted
neutrons has an energy e 2T&, the only inter-
esting value of o(E~, o) is that corresponding to
this energy. Now the temperatures occurring in
nuclear processes which can be handled by
statistical methods are generally higher than 0.5
MV. This foIlows from the fact that a tempera-
ture T 0.55 MV corresponds to the minimum
value of Ez Ep (see (1)—). Thus the mean energy
of neutrons will be high enough for putting
o(Eg, p) = 7rr'.

The relative energy distribution of the emitted
neutrons is then according to (7):

W (p)do =const. oe '~ s& " e»e f&'&do

in virtue of (1). Consequently we see that the
correction f(o) has no great influence. The energy
distribution of particles emitted by highly excited
nuclei will therefore be nearly a Maxwellian one.
When neutrons with energy E fall on'a nucleus
B they will be reemitted with a mean energy of
2 (aE)1. Hence the mean energy loss per impact is

EL1 —2(a/E) lj. Neutrons of 10 MV will for
example be reemitted with a mean energy of only
1.4 —2.8 MV.

Let us now calculate from (9) the total proba-
bility for the emission of neutrons from the
excited nucleus A (Ez).This probability expressed
in energy-units, is equal to the neutron-breadth
of the emitting levels. The fact must be allowed
for that the statistical expressions are only valid
when E~—Eo is large, i.e. , when the nucleus 8
can remain excited after the emission of the
neutron in many different ways. Consequently
the formula cannot be applied to levels resulting
from the capture of slow neutrons. From (8) and
(17) it follows that

o (E~ —Eo)
exp I 2L(E~ —E )/nj' —LE~/n1'I.

where Ex=A'/2mr' 0.2 MV. To get an idea of
the dependence on E~ and on the assumed value
of a we calculate I' for several values of E~ and
a, putting Eo ——8 MV. The values of F„in electron
volts (not in MV) are given in Table I.
TABLE I. Values of probability of emission of neutrons given

in electron volts (breadth of emitting levels).

This represents a Maxwell distribution with a
correction f(p) in the exponent. According to (6)
f(p) is given by

e2 (d2S
f(p) = ——

(2EdE )Eg Ep—
0.05 MV
0.1 MV
0.2 MV

0.2
22

860

18 120 680
450 4800 10000

10000 38000 97000

11 MV 15 MV 20 MV 25 MV

the higher derivatives being of no importance.
With assumption (17) for S this becomes

f(p) = p'/4(E~ —Eo) Ts(E~ Eo)—
and the correction f(o) is therefore smaller than
the Maxwell exponent p/Te itself in the ratio
p/4(E@ —Ep). The Maxwellian mean value of p

is given by c=2Te(E& Ep) so that—
1( u

4(Eg —Ep) 2 (Eg —Ep)

For increasing mass number Eo as well as a gets
smaller and consequently the values of F„will
not depend essentially upon the mass number
within the low accuracy of this calculation. It
should be noticed from this result that the neu-
tron breadths of the level of A(E~) are much
larger than the mean distances of the levels at
the corresponding energy.

The probability of emitting a neutron is much
higher than that of emitting a p-ray. We know
the latter, however, only for comparatively low
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values of E~ from experiments on capture of slow
neutrons. The y-ray breadth is according to
Bethe and Placzek" about 10 MV for an exci-
tation energy of 8 MV. If it is permissible to
assume this value valid also for higher excitation,
the capture of high energy neutrons (E& 3 MV)
will be extremely improbable. Even a transition
of the compound nucleus to a less energetic
unstable state by emission of a y-ray will be an
improbable process since according to the above
table the probability of neutron emission is in

general several orders of magnitude greater than
that for radiation.
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The Beta-Ray Spectrum of Radium E
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The beta-ray spectrum of radium E was examined with a magnetic spectrometer, by using
coincidence counting, under various conditions of source strength, mounting and aperture of
defining slits. It is concluded that the experimental high energy end point depends on the
source strength used, as well as the width of the defining slits. Data from all but very strong
sources gave a K.U. plot which was linear within the limits of error set by statistical fiuctua-
tions and finite slit widths. Extrapolation of the K.U. plot gave 1.25&0,03 Mev as the high
energy end point.

~ ~INCE the. original work of Schmidt' in 1907
more than a score of workers' '4 have made

measurements on the beta-ray spectrum of
* Now at Woodstock College, Woodstock, Maryland.
' H. W. Schmidt, Phys k. Zeit. 8, 361 (1907).' Baeyer, Hahn and Meitner, Physik. Zeits. 11, 488
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B. W. Sargent, P. C. P. S. 25, 514 (1929).' Curie and d'Espine, Comptes rendus 181, 31 (1925).
Yovanovitch and d'Espine, J, de phys. et rad. 8, 276
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radium E with none too concordant results.
The disagreement between observers may be
appreciated by consulting Table I wherein one
finds values for the high energy end point which
range from 4500 EZp up to 12,000 IIp.

The importance of obtaining the true energy
distribution curve for the disintegration elec-
trons from radioactive bodies has been recently
enhanced by the tentative success of the Kono-
pinski-Uhlenbeck" modification of the Fermi"
theory of beta-disintegration, especially as ap-
plied to the lighter artificially radioactivated
elements. The present investigation was under-
taken with the purpose of securing data from one-
of the naturally radioactive elements which could
be used after the manner proposed by Kurie,
Richardson and Paxton" as a further criterion in
determining more conclusively the validity of the
theory.

Fermi's original formula (44), reference" gives
the probability of disintegration with the emis-

"Konopinski and Uhlenbeck, Phys. Rev. 48, 7 (1935)."E.Fermi, Zeits. f. Physik 88, 161 (1934).
27 Kurie, Richardson and Paxton, Phys. Rev. 48, 167

(1935);49, 203 (1936).


