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change caused by an adiabatic stretching is equal to
(bT/bV)qbV, where bV is the change in volume accom-
panying the strain.

This expression may be written in a more illuminat'ing
form. If only two of the four variables x&, x&, x3, x4 are
independent, then the following identity is true:

Now
when
Hence
and so

eyy = ezz = ex'
Y„=Z,=0.

b V/ V= e„+e»+e„=(1—20)e„,
(bT/be. .)q, .——(1—2a) (bT/b log U)q.

(Bx~/Bx2), , (Bx3/Bx2)'=1—
(Bx~/Bx~), , (Bx3/Bx2)

The second factor in (a-2) may obviously be written as
-', (b log V/BT)„. Hence (a-2) reduces to

Replacing x&, x2, x3, x4 by U, T, Q, p, respectively, we find
that (a-3) becomes

1 —2~ aT aV
(a-3) (c,—c.)/c. .
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For a gaseous discharge in which the ions have a drift velocity superimposed on a Maxwellian
distribution, the Mott-Smith and Langmuir collector theory deals only with collectors having
a high ratio of sheath to collector diameters. The present paper removes this restriction, but
points out that except when there is negligible sheath distortion due to low drift velocity or to
low collector potential the theory gives only approximate results. It is also shown that for
ratios of drift to random current density as low as seven, the space potential is not indicated by
a break on the semi-logarithmic plot of the collector characteristic.
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studied by the use of a collector or probe
connected to a suitable auxiliary circuit. Mott-
Smith and Langmuir' have shown that if the
logarithm of the collector current be plotted
against the potential applied to it, the resulting
"characteristic" is a line which departs from
linearity at the space potential. This holds for a
Maxwellian distribution of the ions (or electrons)
of the discharge; but when there is a small drift
velocity superimposed on the Maxwellian distri-
bution the characteristic is modified as shown in
their paper. Their results refer only to the case
where there is a high ratio of sheath' to collector
diameter. The present paper deals with sheaths
of all sizes.

The basic assumptions of this collector theory

'H. M. Mott-Smith and I. Langmuir, Phys. Rev. 28,
727 (1926).

'The sheath boundary may be briefly defined as the
surface beyond which the collector potential exerts no force
on the ions or electrons of the discharge.

are discussed by Mott-Smith and Langmuir. '
Special attention is directed to the two assump-
tions (1) that the gas pressure is so low that
collisions between ions or electrons and gas
rriolecules in the sheath have a negligible effect on
the collector current, and (2) that there is no
reHection of ions or electrons at the collector
surface.

Because of the drift velocity, the cross section
of the space charge sheath ~ound a cylindrical
collector (with its axis at right angles to the
direction of the drift) is distorted from the
circular shape. But obviously it still must have
bilateral symmetry about the direction of the
drift, which is therefore taken as the coordinate
axis. The length of the collector is assumed to be
so great that end effects may be neglected.

Without the restriction imposed by Mott-
Smith and Langmuir that the sheath is circular
and by methods analogous to theirs, it may be
shown that, as a first approximation,
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where i is the current to the collector, r and l are
the radius and exposed length, respectively, of
the cylindrical collector, I„is the random current
density corresponding to the Maxwellian distri-
bution, s is the circumference of the sheath
around the collector, n is Ig/2+7/I„(I~ is the
drift current density), r/ is eV/hT (e is the
electronic charge, k is Boltzmann's constant, V
is the potential of the collector with reference
to the space potential, and T is the tempera-
ture corresponding to the Maxwel lian distri-
bution), a is (b/r)' 1, r—is (b cos v//r)2 1, )t is-
(b/r)' cos p sin &p and e is P —8. b and 8 are the
coordinates of points on the circumference of the
sheath; and the normal at the point 6 makes the
angle P with the coordinate axis. See Fig. 1.

Equation (1) is approximate instead of exact
because in its development the angular mo-
mentum of an ion at the sheath surface is equated
to its angular momentum on arrival at the
collector surface; but this equality does not hold
for a noncircular sheath since the force on the
ion due to the collector potential is noncentral
(i.e. , it is not directed always to the collector
axis). The exact solution of this problem involves
the determination of the shape of the sheath and
the distribution of the force-field within it, a
problem which is not dealt with in this paper.
However, the sign of the error can be deduced by
introducing the plausible assumption that for
retarding potentials on the collector (s negative)
the sheath shape is such that g is positive (as in

Fig. 1) and that for accelerating potentials
(s positive) $ is negative. Eq. (1) is equivalent to
the assertion that ions will reach the collector if
they arrive at the sheath boundary traveling in a
certain direction (or within a certain range of
directions) and within a certain range of ve-

locities. Owing to the sheath distortion assumed
above, the ions which will reach the collector are
those having a direction making an angle with
the coordinate axis greater than if the sheath was
circular; and since the distribution function
shows that there are fewer of such ions it follows
that the current given by Eq. (1) is too large
whether the potential on the collector is retarding
or accelerating.

For a small sheath, (b/r=1), Eq. (1) becomes
exact, since the sheath is now circular. The
equation reduces to

xe—(&—a cos e) dxdg
o. &(—n)

(2)

where 3 is written for i/27rrlI„This fur. ther
reduces to

g = e
—~'/2[(1+ ~2) I 0 (a~/2) +~2I, (~~/2) ]

+2(1+~')2(—1)"Iu(~'/2)I2, «)
I

—a'2 (—1)"Iu(~'/2) {I2.-2(t)+I2„+2(t) }]
1

for )t —0, (2b)

where t=2ng (—)t) and I„(x) is the modified
Bessel function of the first kind and the pth order.

Without any restriction as to sheath size, but
considering the limiting case where the sheatb is
a circle of radius b, Eq. (1) reduces to

1b
x~—(&—a cos 8)2

O 0

for )) 0, (2a)

3=e~ ='/'[(1+n')I, ( a/ )2I,(t) —~2I, (~2/2)I, (/)

X Erf I [(x'+r/)///g*'+o/ sin 8}

FiG. 1.

2
+ Erf ', [(x'+s)/o]'* —n sin 8} dxd8, (3)

g)r
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where
t

Ef(i) f e "'A.
p

CO

gx+g 'g ~Ip 2ogdx, 4
Vs '& a( n)—

For a very large sheath (b/r = 00), Eq. (1)
reduces to

tortion is negligible, i.e. , when n or g are small.
Mott-Smith and Langmuir have shown this to be
true for three simple types of velocity dis-
tributions. '

For Positive values of v, the solution of Eqs. ('3)
and (4) depends on a knowledge of the size of the

/. 0-

which is equivalent (changing = to =) to
Eq. (46)' of Mott-Smith and Langmuir whose
basic equation referred to a circular sheath; but
it should be observed that Eq. (4) is approxi-
mate, not exact, for noncircular sheaths —in
disagreement with the statement by Mott-Smith
and Langmuir that "the current for very large
sheaths must be independent of the actual shape
of the sheath. "4 While they reached this con-
clusion by an alternative method of calculating
the collector current, this method also involved
the angular momentum of an ion, and is inaccu-
rate for the same reason as Eq. (4).

Since the error in Eq. (4) caused by the
noncircularity of the sheath must approach zero
as the sheath becomes less distorted, it is
justifiable to use it when n is small; but for large
values of o!. when the sheath must certainly be
greatly distorted (unless it is small, because of a
low value of rt) Eq. (4), or any equations such as
Eqs. (MS 54) to (MS 57) developed from its
equivalent Eq. (MS 46), should not be used
until it is shown that their error is negligible.

For negative values of v, Mott-Smith and
Langmuir have reduced their Eq. (46) to Eq.
(47). It may further be shown that Eq. (2b) is
algebraically equivalent to Eq. (MS 47). When
u/Q ( —v) exceeds unity, Eq. (2b) is suitable for
computation; for low values of the ratio, Eq.
(MS 47) is better. '

It was found that computations of Eq. (3) for
b/r =v2 and 10.05 gave the same collector current
as obtained from Eq. (2b), (b/r = 1) or its
equivalent Eq. (MS 47), (b/r= ~). Thus the
collector current is independent of the sheath
size for the restricted cases where sheath dis-

' It will be shown below thati may properly be changed
to i in Eq. (MS 46) et seq.

4 Reference 1, p. 752.' Present tables of I„(x)are very limited. More extensive
tables will soon be available. Report B.A.A.S. (1935),
p. 304.
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FIG. 2. Bg/Bq as a, function of a.

sheath which is not available. Nevertheless, the
collector current must lie between the values
given by Eqs. (2a) and (4). The latter may be
reduced to two equivalent forms,

(V'rti "
Jy+3/Q(t) +e& '"L(1+u')Io(a'/2) Jo(t)

Eo. j
+~'Io(~'/2) J2(t) +2(1+~')ZIn(a'/2) J2n(t)

1

+a'QI„(cP/2) I J,„2(t)+J2„+2(t) I ] v 0, (5b)—

where J„(x) is the Bessel function of the first
kind and the pth order, and t=2o, g g. As n and g
become large, these series converge very slowly
and the computation becomes more laborious
than a graphic integration of Eq. (4).

' Reference 1, p. 751.
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When 0, is zero or very small, the graph of the
collector current or its logarithm against collector
voltage (i.e. , g && a constant) indicates clearly the

' 'og '/'~ = '/~'+" I '+I ("/2)/I ("/') I j
for s =0. (6d)

The limit of Eqs. (2) or (4) for g equals zero, as
n increases, is 2&x/g m, so that the collector
current can be expressed in terms of the drift
current instead of the random current.

2rlId Id

2n
3= ~ =1 (for s=0). (7)

2a

0 7 +2

FrG. 3. Log g as a function of q.

83/Bg = e& "'(Io(n'/2) Io(t)

+2+ ( —1)&I„(n'/2) Iq„(t)] for g ~0, (6a)
1

, - (2P)' t
aS/a~ = e~-"P

~ [ I„(t)
o (p!)'4" (g(—g))

for q —0, (6b)

where t = 2o.g( —q).

space potential. But it should be observed that as
n increases, the value of Ã/Bg (at g equals zero)
quickly decreases, (Fig. 2) and therefore the
curve of J or its logarithm shows no distinctive
change at this point for values of o. as low as
two. (Fig. 3). Thus this method of determining
the space potential cannot be applied in these
cases. .It should be emphasized that this does not
preclude a break at the space potential caused by
factors specifically excluded by the basic as-
sumptions of this theory, e.g. , reflection of ions
when there is a retarding potential on the
collector.

The equation for 83/Bs can be given in two
equivalent forms and the limiting forms at
q equals zero are included for completeness.

The exact values are 1.282 for +=1, 1.062 for
a=2, 1.028 for n=3 (values of i/2 r7rlI„ from
Eq. (2a)); so that knowing the drift current
density and the collector dimensions we can
calculate the minimum value of collector current
at the space potential regardless of a.

Attention should be drawn to an improper use
of this collector theory by Bramhall, ' who used a
probe in a copper arc. The space potential was
determined by a break in the semi-logarithmic
plot of the probe characteristic, and the probe
current density was there taken to be I„, the
random current density, which is true only when
there is no drift- current. The drift current
density, Id, was calculated from the arc area and
current, giving I&/I„rough1y 100, or u equals 28.
But this high value of n is inconsistent with a
break in the characteristic at space potential.
Also the probe current calculated from the probe
dimensions and the drift current density, Eq. (7),
should have a minimum value of 0.4 ampere,
whereas the observed value was 0.04 ampere.
Further, the part of the theory used by Bramhall
in Fig. 9 is based on the Mott-Smith and
Langmuir Eq. (54) which is restricted to large
values of n, with g —

q =0.. The value of g in his
experiments certainly lay between zero and —25,
so that n should not have exceeded 5, a value
much too small to warrant the use of Eq.
(MS 54)—quite apart from any discussion in this
paper as to the validity of that equation.

83/rtg= e ~'"Io(n'l2) for q = 0, (6c) ' E. H. Bramhall, Phil. Mag; 13, 682 (1932).


