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Internal Friction in Solids

I. Theory of Internal Friction in Reeds
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In a vibrating reed opposite sides have dilations of opposite signs. Thus when one side is
heated the other is cooled. At low frequencies the vibrations are isothermal. At high frequencies

they are adiabatic. At intermediate frequencies they are of a hybrid type accompanied by
internal friction. In this paper this internal friction is calculated solely from thermodynamical
considerations. It is predicted that the internal friction associated with this hybrid type of
vibration is of a larger order of magnitude than that due to all other causes.

tween the different normal vibrations is, how-

ever, established so rapidly that damping would
occur only for frequencies much higher than
those at present available. (2) A lack of thermal
equilibrium exists between the vibrating solid
and the surrounding air. In an investigation on

springs, Sayre' found that the partial lack of
thermal equilibrium between a wire and the
surrounding air gives rise to the dominant
energy losses in certain cases. Since the time
required for the establishment of temperature
equilibrium between a wire and the air is com-
paratively long, such losses are confined to very
low frequencies. (3) We come finally to the lack
of thermal equilibrium between various parts of
the vibrating solid itself. In isotropic solids with
a positive thermal expansion coefficient, a posi-
tive (cubic) dilation lowers the temperature, a
negative dilation raises the temperature. How-

ever, just as in a gas, the time required for the
establishment of thermal equilibrium between
regions separated by a half wave-length is much
longer than the period of vibration. A solid
differs from a gas in that fluctuations in dilation,
and hence also in temperature, may exist be-
tween regions much closer together than a half
wave-length. For example, the two sides of a
reed vibrating transversely have dilation s of
opposite signs. Again, the dilation varies rapidly
in the immediate vicinity of imperfections in the
solid.

The purpose of this paper is to investigate
whether the local fluctuations in temperature

ithin a vibrating solid may be of importance in

(1. INTRODUCTION

N spite of numerous experimental investiga-
- - tions of the internal friction in solids, no
satisfactory theoretical study has been given.
Our ignorance as to the mechanism of internal
friction is due partly to the fact that no one
mechanism is responsible for the energy losses in

all cases of vibrating solids. As an example of
the complexity of the phenomena, when the
strains are increased beyond a critical value the
losses increase more rapidly than as the square
of the strains, '

In searching for possible mechanisms of in-

ternal friction in solids, it is natural to seek
suggestions from the much studied field of in-

ternal friction in gases. Here sound waves are
damped most strongly in bands whose periods of
vibration are comparable to the relaxation times
of the gas. ' For example, sound waves in N2 are
damped most strongly for those periods of
vibration which are comparable to the time re-

quired for temperature equilibrium to be estab-
lished between the vibrational and the trans-
lational degrees of freedom of the N2 molecules.
We are thus led to investigate types of thermal
nonequilibria within a solid.

The following possibilities present themselves.

(1) A close analogy to the above mentioned case
of N2 gas would arise from the unequal cooling
during expansion, or the unequal heating during
compression, of the Debye normal modes of
different frequencies. Thermal equilibrium be-

3 Sayre, Rheology 3, 206 (1932),

' See Voight, Anz. d. Physik 47', 671 (1892); Wegel and
Walther, Physics 6, 141 (1935).

~ P. S. H. Henry, Proc. Camb. Phil. Soc. 28, 249 (1932).
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I NTERNAL FRICTION 231

internal friction. After defining the various yard-
sticks of internal friction ()2), the effect of the
temperature fluctuation across a vibrating reed
upon its internal friction is calculated ()3).
The results are discussed quantitatively in f4.
It is predicted that over a wide frequency band
the effect here discussed will be the predominant
cause of internal friction. This thermodynamic
effect disappears at low temperatures.

A direct experimental check of this theory may
be obtained by observing whether the internal
friction of a reed has a maximum in the fre-

quency range predicted by Eq. (11).

f2. YARDSTICKS OF INTERNAL FRICTION

The displacement vector U(r, t) in a vibrating
solid is determined by a differential equation of
the form

O'U/Bt'+LU =F+f, (1)

and by a set of boundary conditions. Here the
applied body force (per unit mass) is represented
by F. The term —IU represents the force acting
upon unit mass due to the elasticity of the solid.
The elastic coe%cients in the operator I. are
taken to be the isothermal coefficien ts. The
forces, per unit mass, which arise from tempera-
ture changes, 4 from viscosity, etc. , are denoted
by f. In particular, the surface forces due to the
air are taken care of by a term in f which is
zero everywhere except near the surface.

We shall examine first the solutions of (1)
when F is a periodic function of time. We elimi-
nate time from this equation by the usual
artifice of complex symbols. Using German
characters to denote vectors which are functions
of the coordinates, but not of time, we set

F(r, t) =It(r)e'"',
f(r, t) = f(r)e'"

U(r, t) =11(r)e'"'

Equation (1) now becomes

ff11o fodsJ
Q

—I

(
J'llo Lllodo)

(3)

is a measure of the internal friction of a solid, the
integration being over the entire solid. The
definition (3) is analogous to the definition of the

Q of an electrical circuit. Here, as in the electrical
analogy, Q is in general a function of frequency.

When co is nearly equal to one and to only
one natural angular frequency, co&, the form of
the vector function 11 will be nearly identical to
that of a vibration vector 11o of the free un-

damped oscillation. This vector satisfies the
equation

(L—ooo')llo = O.

The amp/itude of 11 will depend upon the im-

pressed frequency a&/2n. . We shall take 11& to be
normalized, i.e. ,

llo ' llodv = 1,

and set 11= Clio,

where C is a function of the impressed angular
frequency oo. The force f will then also be pro-
portional to C. We shall denote by f& that force
which is associated with the normalized func-
tion UI, . Then we may set

f=Cfo.

We substitute these expressions into (2), multiply
to the left by 11o, and integrate over the solid.
We obtain

imaginary parts, respectively, i.e. ,

f = fI+ifo.

Further let llo be the solution of (2) when f is
neglected. Since the force f has only a small
effect upon the solution of (2), it may be calcu-
lated assuming the displacement of the solid to
be given by llo. Then the ratio

(L— ')U =8+f. (2)

In general U and f are not in phase with each
other. In fact, it is just this difference in phase
between U and f which gives rise to damping.
If we choose the origin of time so that 11 is real,
f will be complex. Let f~, fo be its real and

4 Love, The Mathematical Theory of Elasticity (Cam-
bridge Press, 1920), p. 106.

where

and

F~
C(~) =

((dk CO ) +ZlJo

uk= J~Uo food~



232 CLARENCE ZENER

A plot of
i
C„l' against &a has a sharp maximum

at co=co/, . The width of this resonance curve at
half maximum is a second measure of internal
friction. Denoting this width by Ace/„we have

Since 11k LIIkdv=~k,

we have, setting cv/,
——2+vI„.,

~vk/vk gk/&A Q (Pk) ~

Neglecting (d/dt) log Ck in comparison to &uk, we
obtain, after multiplying (1) to the left by Ilk
and integrating over the solid,

d CI,/dt = —(jk/2&uk) Ck.

Comparing the solution of this equation,

Ck(t) = Ck(0) exp (
—(nk/2~k)tI,

with the definition of the logarithmic decre-
ment, BA, ,

Ck(t) = CI„.(0) exp ( hkvktI, —

we obtain

One favorite method of measuring internal
friction is to observe the logarithmic decrement
of free oscillation. In order to obtain the relation
between this yardstick of internal friction, and
the two previous yardsticks, Avk/vk and Q ', we
must solve (1) when F is zero. Taking the solid
to be initially vibrating in the kth normal mode,
we set

U(r, t) = Ck(t)IIk(r) e'""'

f(r, t) = Ck(t) fk(r)e' "'

$3. CALCULATION OF INTERNAL FRICTION

The equation which governs the transverse
vibrations in a reed may be written in a simple
form, provided the wave-lengths are long com-
pared to the thickness of the reed. Let the reed
lie along the x axis, with its face normal to the

y axis. Further let y(x, t) denote the displace-
ment function of the reed with respect to its
position of rest. Then y is governed by the well-
known equation'

82y 823'
p + =f

bt2 6X2

Here p is the mass per unit length, M(x, t) is
the bending moment, and f(x, t) is the normal
component of the applied force per unit length.
The bending moment may be calculated directly
from the function y, and from a knowledge of
the distribution of temperature across the reed.
This is done as follows.

We separate M into two parts, Mi and M2.
The first part is the moment which would arise
from the bending of the reed if the temperature
gradient across the reed were zero. The second
part is the bending moment which arises from
the variation of temperature across the reed.
The first part is commonly written as

M, =EIb'y/Bx',

where E is Young's modulus, and

I= fta'/12.

Here h is the width, and a the thickness, of
the reed.

If we let s denote the y coordinate inside the
reed, with origin at the center of the reed, and
Tp the average temperature, then

Ak = 'gk/(2vkCOk) = 7I Evk/Pk = 7I'Q (Vk).

Summary

(4) a/2

M2 ——o,k
i

T—Tp ds.J—a/2

One yardstick of internal friction is defined
by (3). For each type of applied force, torsional
or tensile, Q is a continuous function of fre-
quency. Two other yardsticks are defkned, Dvk/vk

and 6&. These have a meaning only with ref-
erence to the natural modes of vibration. They
are related to each other, and to the value of Q
at the natural frequencies, by Eq. (4).

Here a=(5X /bT),

the suffix x denoting that the normal stresses
across the xy and the sx plane are kept constant
in the partial differentiation.

In order to calculate 3II2 explicitly, we must
find the temperature fluctuation T—Tp across

'Southwell, 2keory of E/nsticity (Oxford Press, 1936),
pp. 172—174.
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the reed. Now the time derivative 6T/bt may be
written as the sum of two terms. The first is due
to the flow of heat by diffusion, and is given by
Db'T/bs', where D is the thermal diffusion con-
stant. The second term is due to the generation
and absorption of heat by the dilation. Since
the stresses Y„and Z, are both zero, ' the strains

e» and e„are completely determined by e„.
The second part of 3f2 may thus be written as
pbe„/bt, where

The suffix m has the same significance as before;
the suffix Q refers to an adiabatic change of e„.
Now the e„ in a reed is given by —s&'y/&x'.

Since we need only consider the steady state of
forced oscillation, we set

Here
a/2

sl, ——(2/a) ]P s sin {(2k+1)mrs/a}ds. (8)j—a/2

and p, = {(2k+1)~/a}'D.

As our final step in obtaining 3I2, we substitute
T from (7) into (5). Setting

Mg(x, t) =Kg(x)e'".

and separating K2 into its real and imaginary
parts, we obtain

b' Y
KK2 ———',apad Zg sg',

BX 07 +pa

b2 Y o)p/,

3K2 = z npad Zg sg .
BX CO +Pje

y(x, t) = Y(x)e'"'.

We thus obtain the following equation for T:
b'T

t
5'Yq

=D —
{ 't&oP }se'"'

8s' 4 8x')
(6)

The Q of the reed is now, by definition,

82 b2

Q-'=Q K R K
BX BX

This may be written explicitly as
The boundary conditions for this equation are
obtained by observing that the establishment of
temperature equilibrium in the reed is due
almost entirely to a flow of heat across the reed,
and not to and from the air. N'ow a zero flow of
heat across the surface of the reed implies that
the temperature gradient is there zero. Our
boundary condition is thus

8T/6s =0 at s = &a/2. (6a)

(np/E) ZI (6sl, '/a)
CO +Pk

1+(np/E) Zp (6sg'/a)
M +Pg

From (8) we obtain

6si2/a=96ir 4(2k+1) 4.

(9)

That solution of Eq. (6) which satisfies the
condition (6a) may readily be obtained as a
trigonometric series. This series will automati-
cally satisfy the boundary condition (6a) if each
term satisfies this condition. Such a series is

given by

T= To+Zing~(t) sin {(2k+1)ms/a}. (7)

The functions g&(t) are obtained by substitu-
tion of this series into (6), multiplying by
sin {(2k+1)mrs/a }, and integrating across the
reed. We obtain

(icupb' Y/bs') sge'"'

Z(V+ P/e

For k=0, 1, 2 the right member has the values
0.986, 0.012, 0.0016. Hence very little error is
made in replacing 6si'/a by unity when k=0, by
zero for all other values of k.

In the appendix we find that

where o is Poisson's ratio. Since the right member
of (10) is always less than 0.01, we make only a
slight error by neglecting the second term in the
denominator of (9). We finally obtain as a very
good approximation

1 —2o. C„—C„cop,

3 C or'+y'

' Reference 5, p. 161. where ti = (7r/a)'D, (12)
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and where the suffix th is a reminder that the
right side of (11) gives only that part; of Q

'

which is due to the thermodynamical effects
above discussed.

$4. QtixNTiT&nvE DisciissioN

That part of the internal friction which is due
to the Huctuation of temperature across the reed
is given by Eq. (11). Considered as a function
of the angular frequency, co, Q, i,

' has a maximum
at ~ =p, where p ' is the relaxation time for the
establishment of temperature equilibrium across
the reed, and is given by (12). When cv((&«,

the vibration proceeds isothermally, when ~&&~,

it proceeds adiabatically. In the transitional
region between isothermal and adiabatic vibra-
tion, co p, stress and strain are no longer in

phase. The hysteresis loop caused by this phase
shift gives rise to a so-called "internal friction. "

The maximum value of Q&h
' is given in Table I

for several metals. The last column gives the
thickness of the reed, aIppp, for which the maxi-
mum of Q&h

' occurs at a frequency of 1000
cycles sec. ' (expressed in cm).

The actual Q
' of a reed will be equal to the

sum of the Q&h
' given by Eq. (11), and the Q

'

which arises from all other causes of internal
friction. The rrteasured Q ' of a reed will also
contain a contribution resulting from energy
losses at the supports of the reed, and from
acoustical losses. The very careful experiments of
Wegel and Walther' indicate that the Q

' of
metals measured by nearly all previous investi-
gators consisted principally of terms arising from
apparatus losses. They found that the Q ' of a
metal was a structure sensitive property. Thus
(see Table II of reference 1) they obtained values
of Q, at 10,000 cycles per second, ranging from
9000 to 52,000 for aluminum, from 500 to 10,000'
for copper, from 3800 to 40,000 for steel. These

TAB&.E I. Values of Qtf, ' for various metals aI, ZO C and the
thickness (a) of the reed for which the maximum

value of QtI, occurs at 1000 cycles per sec.

Metal

W
Pl
Au
Pb
Ni
Cu
Ag
Sn
Zn
Cd

(Cp —&'~) /Cu*

0.006
.020
.038
.0:67
.0&1
.028
.040
.040
.052
.060

0.17
.387
.42
.45
.31
.34
.38
.33
.33
.30

Max. of
u, »-1 XIoa

0.66
.76
.81

1.0
1.3
1.4
1.6
2.3
3.0
4,0

+&ooo X &02

3.5
2.0
4.3
2.0
1.5
4.2
5.1
2.5
2.5
2.7

*Eucken, Handbuch der L'xperimentaL I'hysire Vol. 8, p. 21k.

(C,—C.)/C, = const X TC„

we see that a lowering of temperature decreases
tile maximum of Q&g

values were obtained for the longitudinal vibra-
tions in cylindrical rods, in which the thermo-
dynamical damping discussed in this paper was
not present. If the same materials had been used
in the form of a reed, the damping due to causes
other than that here discussed would probably
have been of the same order of magnitude.
Comparing the minimum values of Q

' found by
VAgel and Kalther for, say, copper and alumi-

um, 10 ' and 0.2&10 ', respectively, with the
maximum values of Q&h

' in Table I, we find that
samples may be found in which Q&h

' is at least
10 times as large as the Q

' due to all other
causes over a broad frequency band.

The formula (11) may be checked both by a
variation of frequency, and by a variation of
temperature. Temperature has a two-fold effect
upon Q&i, '. (1) A lowering of the temperature
displaces the maximum value of Q,„'to higher
frequencies by increasing the diffusion constant
D. (2) From the empirical formula'

APPENDIX

The left membe~ of Eq. (10) may be written as

(a-1)

Here Young's modulus for constant temperature, 8, has
been written explicitly as (bX,/be, )z, , A standard
transformation in partial differentiation reduces (a-1) to

At this stage it is convenient to replace the strain
derivatives by more familiar forms. The temperature

7 Eucken, Handbuch der Experimental Physik Vol. 8, p.
209.
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change caused by an adiabatic stretching is equal to
(bT/bV)qbV, where bV is the change in volume accom-
panying the strain.

This expression may be written in a more illuminat'ing
form. If only two of the four variables x&, x&, x3, x4 are
independent, then the following identity is true:

Now
when
Hence
and so

eyy = ezz = ex'
Y„=Z,=0.

b V/ V= e„+e»+e„=(1—20)e„,
(bT/be. .)q, .——(1—2a) (bT/b log U)q.

(Bx~/Bx2), , (Bx3/Bx2)'=1—
(Bx~/Bx~), , (Bx3/Bx2)

The second factor in (a-2) may obviously be written as
-', (b log V/BT)„. Hence (a-2) reduces to

Replacing x&, x2, x3, x4 by U, T, Q, p, respectively, we find
that (a-3) becomes

1 —2~ aT aV
(a-3) (c,—c.)/c. .
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Collector Theory for Ions with Maxwellian and Drift Velocities

A. H. HEATLEY

Electrochemical Laboratory, University of Toronto, Toront'o, Canada

(Received February 15, 1937)

For a gaseous discharge in which the ions have a drift velocity superimposed on a Maxwellian
distribution, the Mott-Smith and Langmuir collector theory deals only with collectors having
a high ratio of sheath to collector diameters. The present paper removes this restriction, but
points out that except when there is negligible sheath distortion due to low drift velocity or to
low collector potential the theory gives only approximate results. It is also shown that for
ratios of drift to random current density as low as seven, the space potential is not indicated by
a break on the semi-logarithmic plot of the collector characteristic.

N electrical discharge in a gas is conveniently
~

~ ~

~

~

~ ~

~

~ ~

~

studied by the use of a collector or probe
connected to a suitable auxiliary circuit. Mott-
Smith and Langmuir' have shown that if the
logarithm of the collector current be plotted
against the potential applied to it, the resulting
"characteristic" is a line which departs from
linearity at the space potential. This holds for a
Maxwellian distribution of the ions (or electrons)
of the discharge; but when there is a small drift
velocity superimposed on the Maxwellian distri-
bution the characteristic is modified as shown in
their paper. Their results refer only to the case
where there is a high ratio of sheath' to collector
diameter. The present paper deals with sheaths
of all sizes.

The basic assumptions of this collector theory

'H. M. Mott-Smith and I. Langmuir, Phys. Rev. 28,
727 (1926).

'The sheath boundary may be briefly defined as the
surface beyond which the collector potential exerts no force
on the ions or electrons of the discharge.

are discussed by Mott-Smith and Langmuir. '
Special attention is directed to the two assump-
tions (1) that the gas pressure is so low that
collisions between ions or electrons and gas
rriolecules in the sheath have a negligible effect on
the collector current, and (2) that there is no
reHection of ions or electrons at the collector
surface.

Because of the drift velocity, the cross section
of the space charge sheath ~ound a cylindrical
collector (with its axis at right angles to the
direction of the drift) is distorted from the
circular shape. But obviously it still must have
bilateral symmetry about the direction of the
drift, which is therefore taken as the coordinate
axis. The length of the collector is assumed to be
so great that end effects may be neglected.

Without the restriction imposed by Mott-
Smith and Langmuir that the sheath is circular
and by methods analogous to theirs, it may be
shown that, as a first approximation,


