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The Intensity and Polarization of the Light Diffracted by Supersonic Waves in Solids
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The intensity and polarization of the light diffracted by supersonic waves in solids are calcu-
lated by considering the photoelastic effect due to the strains created by the elastic waves. For
natural incident light the diffracted light is partially polarized. In glasses and cubic crystals the
diffracted light is partially depolarized if the incident light is polarized. The intensities are
evaluated with the help of the theory of Rarnan and Nath and it is shown that this theory
explains the measurements better than Brillouin's approximation. The calculated intensity
distributions for natural and polarized incident light agree with the observations of Schaefer and
Bergmann on glasses, quartz and calcite. This agreement justifies Fues' and Ludloff's assump-
tion that all forced vibrations of the same frequency oscillate with the same amplitude.

CHAEFER and Bergmann' have shown that
supersonic waves in crystals act as diffraction

gratings for light. Their results justify the
assumption that the piezoelectric oscillator ex-
cites over a narrow frequency range all the
standing waves which can exist in a crystal
according to the theory of specific heats. Fues
and Ludloff' have given a theory of the diffrac-
tion pattern. They calculate the wave-lengths of
the infinite number of progressing waves of a
given frequency which can travel in an infinite
crystal, and then consider the diffracted light
as due to Bragg reflections on the wave fronts.
Since the positions of the interference maxima
are the same for standing and traveling waves
this theory gives the locus of all diffraction
spots produced by the finite number of standing
waves in a finite crystaj.

In some diffraction patterns all spots appear
to be of nearly equal intensity. This observation
led Fues and Ludloff to conclude that the
coupling between the different modes of vibration
of a crystal results in an equipartition of energy
for all sound waves of the same frequency.
Since this conclusion, if correct, i.s of considerable
theoretical importance, and since no theoretical
proof of its validity has been given, it seems
worth while to see whether it really is justified
by the experimental evidence. Many of the
published photographs of the diffraction pat-
terns, particularly those taken with polarized

light, reveal a systematic variation of the light
intensities along the diffraction curves. Some
parts of the calculated curves are not observed.
A test of Fues and Ludloff's hypothesis calls
therefore for an investigation of the intensities
of the interference maxima. We will show below
that a large part' of the observed intensity
variations can be accounted for by assuming
that all waves oscillate with approximately the
same amplitude. Hence the proposed principle
of equipartition appears to be validated by the
observations.

The intensity of the diffracted light depends
primarily on the periodic variations of the
refractive index which are produced by the
sound waves. The calculation of these index
variations is a problem of photoelasticity. An
elastic wave creates periodically varying strains
which in turn introduce local periodic alterations
of the optical index ellipsoid. These pulsations
of the index ellipsoid determine the fluctuations
of the index of refraction for light polarized in
any direction. As was first shown by Brillouin4
the angle of deviation of the diffracted light is
given by Bragg's law, but the intensities must
be calculated by using the theories developed
by Raman and Nath' and Estermann and

' C. Schaefer and L. Bergmann, Naturwiss. 22, 685
(1934).

2 E. Fues and H. Ludloff, Sitzungsber. d. preuss. Akad. ,
Math. phys. Kl. 14, 222 (1935).

2

' Some diffraction patterns, for instance those for glasses
(C. Schaefer and L. Bergmann, Naturwiss. 23, 799 (1935)),
show also intensity variations which apparently are due
to the method of excitation of the sound waves. The waves
which are directly transmitted from the piezo quartz to
the glass or crystal are much stronger than all others.

4 L. Brillouin, "La diffraction de la Lumiere par des
Ultra-sons, "Act. Sci. et Ind. (1933).'C. V. Raman and N. S. N. Nath, Proc. Ind. Acad.
Sci. 2, 406 (1935).
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a, (k'Q„—pro') +a„k'Q, y+ a,k'Q„= 0,
a k'Q„,+a„(k'Q» —pcs')+a, k'Q„, =O,

a,k'Q„+a„k'Q„,+a,(k'Q„—pea') =0.
(3)

The wave-length ), of the sound wave is deter-
mined by the condition that the determinant of
Eqs. (3) must vanish.

~k2Q, „—pcu28 y~ =0. (4)

The wave vector k has the length 2m. /X, and
points in the direction of propagation. The Q,„'s
are quadratic forms

Q.„=Q„,=+pc„,„„n,.n„. (5)

where n„o.„, a, are the direction cosines of k,
and c„,„„=c,I, are the elastic constants of the
crystal. ' To every direction of propagation there

' R. Estermann and G. Wannier, Helv. Phys. Acta 9,
337, 520 (1936).

7 Using Voigt's notation for the elastic constants the
coefficients of the Q, .„'s are given by the following array:

a&az

Wannier' for the Debye-Sears effect in liquids.
Since these theories give the intensities as a
function of the amplitude of the index variations
and since their results are applicable to solids
without any modifications we have to discuss
here only the photoelastic problem.

The first part of the calculation involves the
determination of the wave-lengths and directions
of oscillation of all sound waves of a given
frequency which can travel in an infinite crystal.
I'ues and Ludloff have given the solution of this
problem. The three differential equations of a
sound wave in a crystal

8 Q~
p -= Pyric. .. , „„(I)

Bt " " Bx By

have the solutions

u = a exp i [&et (kr)]— (2)

provided the components of the amplitude
vector satisfy the three linear homogeneous
equations

BN
xs-

Bx

BQ„ BQ,
Z„=y,= +

Bs 8y
(6)

Let us assume that the axes x, y, s have been
chosen to coincide with the axes of the crystal's
optical index ellipsoid:

~2/rt 12+y2/rt22+ s2/z 32 —1,

where n~, n2, n3 are the principal indices of
refraction. The local strains will rotate and
deform this ellipsoid and its equation takes the
general form

+11+ +~22y'+ ~ 33~ +2+23y~

exist three solutions of Eq. (4). In an isotropic
solid these correspond to one longitudinal and
two transversal waves. In crystals the waves
are usually neither longitudinal nor transversal,
but the amplitude vectors of the three waves
traveling in the same direction are always
mutually perpendicular.

The solutions k(n„n„, a,) of Eq. (4) determine
the so-called "form-frequency surface. " Fues and
Ludloff have shown that the diffraction pattern
is a curve geometrically similar to the inter-
section of this surface with a plane normal to
the direction of the incident light. This means
that only those waves which travel in directions
normal to the light beam are effective in the
diffraction.

By introducing the solutions of Eq. (4) in

Eqs. (3) one finds the direction of oscillation of
each wave. The absolute value of the amplitude
remains of course undetermined. In accordance
with the proposed principle of equipartition of
energy we assume that the amplitude has the
same value for all directions of oscillation and
propagation.

After all possible sound waves in a crystal
have thus been found, the next step is to calcu-
late their photoelastic effects. Differentiation of
Eq. (2) gives the strains due to the sound waves

Q..
Qv.
Q..
Qu=
Q.
Q.v

C11

Cee

Css

Cse

Cls
C16

Cee

C22

C44
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C46

C26

Css

C44
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Ces

C4s

2C56
2C24
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(C25+ C46)

2cl 5
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2c45
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+&a3is~+2ai2~y= l. (&)

The polarization constants a;~ in the deformed
state differ from those in the undeformed state
by quantities which are to a first approximation
linear functions of the loc31 strains. Hence
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all I/nl pllz*+p12y, +p18s +pl4sy

+PI5Xa+P&6$~&
(g)

+23 p41x +p42y, +p43~=

+P44~, +P4~x, +P46y ..
The 36 constants p;A,. +pq, are Pockels' elasto-

optical constants. ' They are known for a large
number of glasses, where their number is reduced
to two, for the cubic crystals NaCl, KC1 and

CaF& (3 constants) and for quartz and calcite

(8 constants).
The erst three equations of (8) determine the

fluctuations of the lengths of the axes of the
index ellipsoid, the last three give the change of
orientation of these axes. The variations of the
indices of refraction of the two plane polarized
components of a light beam are determined, of
course, by the variations in lengths of the axes
of the ellipse which is formed by the inter-
section of the index ellipsoid with a plane normal

to the direction of propagation of the beam.
For a triclinic crystal these calculations would

be very laborious. They are, however, fairly
simple for crystals of the rhombic, rhombohedric,
hexagonal and cubic systems provided the light
is incident parallel to one of the crystallographic
axes. If, for instance, the light enters in the x
direction and oscillates in the y direction the
amplitude of the variation of the index of
refraction is

An = ',ng'(a 2g—1/n2'—),
where (a&2 —1/nP) is obtained by introducing in

Eq. (8) the amplitudes of the strains given by
Eq. (6). This value of An determines the in-

tensity of the diffracted light component which
has the same polarization as the incident light.
Due to the periodic change of the orientation of
the index ellipsoid the diffracted beam will also
have a component oscillating in the s direction.
If the crystal is naturally birefringent for light
traveling in the given x direction this "de-
polarizing" component along s is very small and
can be neglected.

The situation is, however, entirely different if
the light travels in the direction of an optical

'F. Pockels, Lekrbuch der Kristalloptik (Leipzig, 1906)
p. 460. For amorphous solids the p;&.- can be rephced by
Neumann's strain-optical constants q = -,'-np», p = —,'np12,
P44 2 (P11 P12) ~

axis or in any arbitrary direction through a
cubic crystal or an amorphous solid. ' In this
case the intersect of a plane normal to the light
beam with the index ellipsoid is a circle for the
undeformed state. The deformations change this
circle to an ellipse whose axes have a axed
direction. For instance for light traveling in the
x direction the angle 0 between one axis of the
ellipse and the y axis is given by

tan 28=2a„/(a„—a„). (10)

Consequently for plane polarized incident light
the diffracted beam is usually partly depolarized,
and for natural incident light the diffracted
beam is partially polarized.

As mentioned previously the relation between
Dn and the intensity of the diffracted light has
been investigated by Raman and Nath and,

Estermann and Wannier. If An is large the
relation is very complicated and higher order
diffraction images appear. If An is very small

only the first order is visible and its intensity is

proportional to (An)' In t.he experiments of
Schaefer and Bergmann only the first order is

observed, but this fact is not sufficient justifica-
tion for the use of Brillouin's approximation
I=c(hn)'. According to Raman and Nath'0 the
best approximation for the intensity of the first
order diffraction images due to standing super-
sonic waves is

2x

I(v) =c J&'(v sin P)dP,
0

(12)

where J, is a Bessel function, v=2v&nL/& and

L/g is the length of the optical path in the
' The intensity ratio of the "depolarizing" and polarized

components is proportional to a»'/(a» —a33) For bire-
fringent crystals the denominator differs very little from
(1/n22 —1/n32)2. Hence the ratio is proportional to the
square of the small strains x„y, etc. For cubic crystals,
however, where n1=n2 ——n3 the denominator is propor-
tional to the square of the strains and hence the above
ratio is of the order of magnitude i.

C. V. Raman and N. S. N. Nath, Proc, Ind. Acad.
Sci. 3, 75 (1936).

Hence one resolves the incident light into two

components oscillating parallel to these axes.
The amplitudes of their index variations are

An= ,'n'[—(a~~ 1/n—')+ (a3~ —1/n')

~ ((a„—a~~)'+4a23')'*]. (1l)



226 HANS MUELLER

crystal. For v&0.2 this relation is identical with
Brillouin's approximation. For v) 2 the higher
orders have an appreciable intensity. Since they
do not appear in the experiments we are only
interested in the range where v & 2. In this range
I(v) increases continuously (a maximum is
reached at about v=2.2). Hence we conclude
that the observed intensities must be a monotonic
function of hn and that the intensity variations
are analogous to the variations of An.

At present only a qualitative verification of
the theory is possible because no intensi ty
measuremen. ts are available. We will show below
that all intensity variations observed in the
diffraction patterns of glasses, cubic crystals,
quartz and calcite agree qualitatively with the
variations of i=2hn /m'. The variation of this
quantity can be calculated with the help of
Eq. (9) or (11) from the elastic and elasto-
optical constants of the solid. The absolute value
of i is proportional to acogp, where a is the
amplitude of the sound wave, ~=2~v its fre-
quency and p the density of the solid. The data
given below are calculated" with a~gp = 10'.

IsoTRopIc SoLIDs

For isotropic solids the diffraction pattern
consists of two concentric circles. The ratio of
their radii is k~/k2=P(1 —2o)/(1 —0)]*', where
0 is Poisson's ratio. Let x be the direction of the
incident beam, y the direction of oscillation of
the plane polarized light, and consider a diffrac-
tion spot on the diameter which forms an angle
y with the y axis.

The inner circle is due to the longitudinal
waves. The Eqs. (8), (10) and (11) furnish 9= p,
i&= »p=2 /qn, iq=pq2=2p/n, where i, refers to
the light component which oscillates in the
direction 0 and i2 to the component normal
thereto.

The outer circle is a double solution since it
corresponds to the two transversal sound waves.
For those transversal waves which oscillate in
the x direction we get i3, ——i2 ——0. Hence they do
not contribute to the diffraction pattern. The
outer circle is produced exclusively by those

"In the experiments (poP =10'" a'=10 '4) a~/ p is
probably about 10, hence i is of the order of magnitude
10 ' (see Table I and the figures). For a crystal 1 crn thick
v=~n'i/X is therefore approximately 1 and our assump-
tion v &2 appears tenable.

shear waves which oscillate in the. ys plane. "For
these waves 8= y+~/4, i& i 2——=p44= (q p )/n

It is now a simple matter to find the intensity
distributions for any experimental condition.
If we denote with A, 8, C the values of the
intensity function (12) for the arguments
vg =4~n'k gaqL/), , vs = 4nn'ka -pL/X and v v

=2vn'kga(q p)—L/X, where k~ and k2 are the
lengths of the wave vectors for the longitudinal
and transversal waves and p and q are Neu-
mann's strain-optical constants, we have:

For observations with crossed Nicols

Inner ring I=-,'(A+8) sin' 2p,
Outer ring I= —,'C cos2 2q.

Far observations with parallel Nicols

Inner ring I=A cos4 q+8 sin4 p,
Outer ring I= —,'C(1+sin' 2q ).

For observations with a single Nicol the results are the
same whether it is inserted in the incident or transmitted
beam

Inner ring I=A cos' ~+8 sin' q,
Outer ring I= C.

For observations with natural light all spots on each ring
have of course the same intensity. The intensity ratio
between spots on the inner and outer circle is (A+B)/2C.

The experimental results on glasses are in
good agreement with the calculations. For glasses

(q —p) is always much smaller than either q or p
and it may even vanish. Hence the outer circle
appears always much weaker than the inner
one." The photographs made with crossed
Nicols" show clearly that the intensity vanishes
for y =0' and 90' on the inner circle, and for
q = ~45' on the outer circle, in agreement with
the above equations. For parallel Nicols the
intensity variations are less pronounced but they
follow the theoretical predictions.

"The discovery o diffraction patterns produced by
transversal waves is due to E. Hiedemann and K. H.
Hoesch, Zeits. f. Physik 98, 141 (1935).The statement of
Fues and Ludloff that transversal waves should not pro-
duce a diffraction pattern, since they create no density
fluctuations, is of course incorrect, In solids a shear creates
index variations without changing the density. On the
other hand the diffraction patterns from the longitudinal
waves are not solely due to density variations. The values
of p and q depend also on other effects, as was shown by
the author, Physics 0, 179 (1935)."(q —p) has the largest values for quartz glass and light
crown glasses and is very small for the heaviest flints. All
published photographs were made with light glasses. AVe
suspect that it is very difficult to observe the outer ring
if heavy glasses are used.

'4 C. Schaefer and L. Bergmann, Naturwiss. 23, 799
(1935).
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Recently Bergmann" has measured the ratio
A/8 for a series of different glasses. His data
show definitely that A/8 is not proportional to
(g/P)', as Fues" assumes. Fues' result would be
correct if Brillouin's approximation were appli-
cable. The fact that it is inadequate shows that
the Raman-Nath theory is of importance not
only for liquids but also for solids. The value of
A/8 depends on the amplitude of the soundwave
and if p and g were known Bergmann's data
could be used to determine this amplitude.

Inner ring

NaC1 KCl caFg

0 0
134 6
19 6 10
25.4 15
31.7 22
45 45

iI is e

62.8 81.6 90
63.5 81.0 81
65.2 81.6 76
66.5 81.5 71
68.4 81.0 64
70.8 81.2 45

86.0 122.0
87.7 118.1
89.7 118.8
91.8 121.2
96.3 126.0

100.6 133.4

8 iI

90 55.8 13.5
87 553 154
86 54.2 17.4
83 52.7 20.1
79 50.0 24.0
45 44.6 30.8

TABLE I. The orientation and amplitudes of vibration of the
index ellipse due t'o supersonic waves in cubic crystals.

CUBIC CRYsTALs

The calculations have been carried out for
NaC1, KC1 and CaF2 using the elastic constants
of Voigt and the elasto-optical constants of
Pockels. " If the light travels in a direction x
normal to a cube face the observed diffraction
patterns consist of two rings, which are not
circular but have the symmetry 4 mm (C4.).
A third ring, a circle, which should be present
according to the theory of Fues and Ludloff,
does not appear. It can easily be shown that the
intensity of this circle is zero, because it would
be due to transversal waves vibrating in the x
direction. The strains created by such a wave
do not alter the cross section of the index
ellipsoid normal to the x axis and hence i~ ——i2
=0. The vibrations which give rise to the inner
ring are "quasi-longitudinal, " i.e. , their direction
of oscillation forms a small angle with the
direction of propagation. Similarly the outer ring
is due to "quasi-transversal" waves oscillating
in the ys plane. In Table I we give the quantities
8, i~, i2, defined in the previous sections, as
functions of the angle y which determines the
position of the diffractions spots on the rings.
Due to symmetry conditions y has to be varied
only between 0 and 45'. The intensities of the
diffracted light are given by the formulas '.

I(q) =4(A+8) sin' 28 for crossed Nicols, I(y)
=A cos4 0+8 sin4 0 for parallel Nicols, the
Nicols being parallel to the crystal axes. For

"L.Bergmann and E. Fues, Naturwiss. 24, 492 (1936).
Although the strain-optical constants of the glasses used
by Bergmann are not known, their values can be estimated
by using the formula of H. Mueller, Physics 6, 179 (1935).

'6 Except for KC1 where the elastic constants have been
corrected to satisfy Cauchy's relation. The diffraction pat-
tern of KCl offers a very simple method for the verification
of this relation.

Outer ring

0 45
13.4 65
196 72
25 4 77
31.7 84
45 90

9.5 9.5
17.4 4.5
19.9 4.7
21.6 5.3
20.4 8.6
15.6 15.6

45 344 344
35 1.2 61.2
30 9.0 66.7
25 13.5 670
18 13.3 63.3
0 23.4 23.4

45 12.7 12.7
17 13.4 26.1
12 16 5 32.1
8 20.2 36.1
5 24.7 38.5
0 35.2 35.2

natural incident light the diffracted light is
partially polarized and has the intensity (A+8).
A and 8 are the values of the intensity function
(12) for the arguments

sg = m.n'iiL/X, vs= em'"igL/l

QUARTZ AND CALCITE

Both crystals belong to the rhombohedric class.
Hence the calculations involve 14 parameters

» L. Bergmann, Physik. Zeits. 3V, 867 (1936).
"Hans Mueller, Phys. Rev. 4V, 947 (1935).

Bergmann' has published photographs of the
diffraction patterns for all three crystals. They
were made with natural light and show very
little intensity variations. This agrees with the
results in Table I because wherever i~ is small i~
is large and vice versa, and hence the sum of the
intensities of both components varies but little.
The observations also agree with the theory
insofar as the outer ring appears less intense
than the inner one. No observations with polar-
ized light have been published. They should
show pronounced intensity variations. Owing to
the fact that NaC1, KC1 and CaF~ belong to
three different photoelastic groups" these varia-
tions must have a different character for the
three crystals. Vice versa it will be possible to
decide to which photoelestic group other cubic
crystals belong by studying the diffraction
patterns with parallel and crossed Nicols.
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FIG. 1. Quartz, light passing in y direction. The arrows in the first quadrant give the directions of oscillation of the
sound waves traveling normal to the y axis. The dotted vectors are the components of the amplitude vectors in the y
direction. Second quadrant: the intensity distribution for natural incident light. Third quadrant: for polarized light
oscillating in z direction. Fourth quadrant: for polarized light oscillating in x direction.

FIG. 2. Quartz, light passing in x direction. Right side: directions of oscillation of the sound waves traveling normal
to x axis. Left side: intensities for natural incident light.

FIG. 3. Quartz, light traveling in —x direction. Right side: intensities for light polarized in z direction. Left side: for
light polarized in y direction.

FIG. 4. Calcite, light passing in x direction. Right side: intensities for polarized light oscillating in y direction. Left side:
for light oscillating in z direction.

(6 elastic constants and 8 elasto-optical con-
stants). Since the calculations, as outlined, are
based on well-known principles of classical
crystal physics they are of little interest and can
be omitted. We give therefore only the results

for those cases where a comparison with pub-
lished data is possible.

For light passing through quartz in the
direction of the optical axis the observed in-
tensity distribution is practically uniform and
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is not changed appreciably by using polarized
light. While the theory predicts a noticeable
variation for polarized light, it does not take
into account the optical activity of quartz, and
this smoothes out any intensity variation.

For light traveling in the y direction the
diffraction pattern for a rhombohedric crystal is
symmetrical with respect to the x and s axes.
Hence it is sufficient to give the results for one
quadrant only (Fig. 1). If the incident light is
plane polarized in either the x or s direction
the diffracted light has the same polarization.
For natural incident light the diffracted light is
partially polarized and its intensity is the sum
of the intensities of the two components. The
vectors in the first quadrant of Fig. 1 give the
directions of oscillation of the supersonic waves.
The inner ring is due to quasi-longitudinal waves,
the outer rings are produced by quasi-transversal
waves. The numbers in the second, third and
fourth quadrants are, the absolute values of
—,'(i~+i3), i3 Q33 1/n3' (Eq. (9)) and i& ——a»
—1/nP, respectively. Guided by the form of the
intensity function (12) we have sketched the
expected intensities for natural and for polarized
light.

Figures 2, 3 and 4 give the results for light
traveling in the x direction through quartz and
calcite. Since x is a polar axis the diffraction
pattern changes to its mirror image if the light
direction is reversed (Figs. 2 and 3). The patterns
consist of two rings which have central sym-
metry. Hence in all figures only half the pattern
is sketched for each case. The theory of Fues and
Ludloff predicts the existence of a third ring,
an ellipse, which is due to transversal waves
oscillating in the x direction. This ellipse has
everywhere the intensity zero.

When comparing these theoretical curves with
the observations' one must take into account

that in the experiments the patterns consist
of a finite number of spots, corresponding to the
finite number of standing waves in a finite
crystal. It may therefore happen that no spots
appear in places where the calculation predicts
a large intensity. The results must be judged by
the fact that strong spots appear only where the
calculated intensity is large and that no spots
are visible where the theory gives a very small
intensity. In this respect the agreement is very
satisfactory indeed. All the peculiarities of the
complicated intensity distributions agree in every
detail with the published photographs. We
believe that this is sufficient proof that both the
theory and the proposed principle of equi-
partition of energy are correct. A rigorous test,
of course, involves intensity measurements.

The agreement between theory and observa-
tion may be considered a verification of Pockels'
values of the elasto-optical constants. Bergmann
and Fues" have pointed out that the intensities
of the diffracted light might be used to determine
these constants, This method is, however, only
feasible after the intensity function (12) has
been verified, or if the experiments are carried
out with small enough sound amplitudes for
which Brillouin s approximation is valid.

Since, as we have shown, the light diffracted
by forced oscillations of solids is usually de-
polarized, it is natural to expect that also the
light diffracted by the standing waves repre-
senting the temperature motion will be depolar-
ized. This suggests a new explanation of the
results of Krishnan" on the light scattering in
glasses, which would not involve his assumption
of crystalline groupings.

"R.S. Krishnan, Proc. Ind. Acad. Sci. 3, 211 (1936).
The variation of the depolarization 1 jpq with the chemical
composition is similar to the behavior of the photoelastic
constant (g —P).


