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from the positive ion which it has left, describing
an orbit similar to a large atom, but not going
to infinite separation. This type of energy level
and wave function, the energy lying only slightly
below the continuum so that it will be important
only at low temperature, and the wave function
being very extended so that it will have large
diamagnetism, may well be important in the

theory of superconductivity, as discussed in the
following paper.

The writer wishes to thank Professor J. H.
Van Vleck for valuable discussions of the subject
of this paper. He also wishes to thank the
Institute for Advanced Study for the privilege
of conducting these investigations in residence
at Princeton.

AUGUST I, 1937 PH YSI CAL REVIEW VOLUME .52

The Nature of the Suyerconducting State. II
J. C. SLATER

Institute for Advanced Study, Princeton, New Jersey*

(Received May 7, 1937)

The discrete levels of the electrons of a metal, lying
below the continuum of levels predicted by the energy
band theory, and interpreted in an earlier paper as leading
to the superconducting state, have been further investi-
gated, though a quantitative discussion in the general case
is still impossible. The wave functions correspond to
electrons which can wander for some distance through the
metal, but are held to a finite region by forces of interaction
with positive ions. Such wave functions will carry no
current in the ordinary way, for they correspond to the
correlation of an electron and a positive ion, and the two
move together. On the other hand, being similar to large
atoms, they have a large diamagnetism, aIId hence may
perhaps lead to London's form of theory of supercon-
ductivity. In the second section, this possibility is dis-
cussed. It is shown, by reference to the ordinary theory of
diamagnetism, that the two conventional types of theory,
one for bound electrons, the other for free electrons, are

treated in such different ways that one cannot in all cases
interpolate between them. Instead, as wave functions
become larger and larger, one can continue to treat them by
the method appropriate to isolated atoms, until they be-
come so large that the energy associated with the Larmor
precession becomes comparable with the atomic energy.
Then the properties change, and the method appropriate to
free electrons gradually becomes correct. This limiting size
depends on the magnetic field, or conversely the limiting
magnetic field depends on the size. It is shown that to
produce superconductivity the orbits must be of the order
of magnitude of 137 atomic diameters, a not unreasonable
figure with our model. Then the limiting magnetic field,
above which the large diamagnetism or superconductivity
would be expected to disappear, proves to be of the order
of a few hundred gauss, or the order of magnitude of fields
actually necessary to destroy superconductivity.

I. THE WAvE FUNcTIONs

N an earlier paper, the author has suggested'
that the electrons in the superconducting

state may be in special stationary states of the
system as a whole, lying a little below the lowest
state as described by the Bloch theory of energy
bands, and expressible only as a linear combi-
nation of Bloch functions, meaning that a certain
correlation or cooperation between the electrons
is necessary to bring this state about, which
would be disturbed by temperature agitation.
These special stationary states have now been
further investigated, and in the present paper
their nature is described in more detail, and it is
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' J. C. Slater, Phys. Rev. 51, 195 (1937).

shown that it is even more plausible than before
that they may be really responsible for super-
conductivity. In the first section we discuss the
nature of the wave functions and energy levels
of the problem. The second section is devoted to
showing that the wave functions are of the sort
to be expected for superconductivity. London~
has objected quite properly to the earlier paper,
on the ground that superconductivity has much
closer resemblance to diamagnetism than to
ordinary conduction, a point of view which he has
elaborated on previous occasions. ' It is very

2 F. London, Phys. Rev. 51, 678 (1937).
3 F. and H. London, Proc. Roy. Soc. A149, 71 (1935);

Physica 2, 341 (1935); F. London, Proc. Roy. Soc. A152,
24 (1935), and others. See particularly F. London, Une
Conception 1Vouve//e de la Supra-Conductibi/ite, Actua/ites
Scientigques et Industrielles (Paris, 1937).
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gratifying that the present theory has rather
automatically developed along the lines of
London's ideas, in that the special states previ-
ously described prove not to carry current in the
ordinary way, but on the other hand prove to be
just the sort capable of showing an extremely
large diamagnetism.

I t is now possible to discuss fairly completely
the problem of a crystal containing two energy
bands, each capable of holding N electrons, but
one actually occupied by N —i, the other by one,
electron. 4 We shall first describe the solution in
nonmathematical language, hoping to under-
stand its nature well enough so that we can
indicate its extension to the actual problem in
which a number of energy bands are partly
occupied. This general problem is much too
difficult to work with mathematically at the
present time, and it is hard to see how the theory
can be applied quantitatively to it without
extreme complication, so that a qualitative dis-
cussion must suffice for the present.

At the outset it should be stated that we shall
regard an energy band as a group of N levels,
capable of holding N electrons per crystal of N
atoms, of a given spin, and that we shall regard a
group of N levels associated with one spin as
being a diff'erent band from the group of N levels
associated with the opposite spin. The essential
point is that the one electron changing from one
band to the other must change its atomic wave
function, and it is immaterial to the general
theory whether it changes the dependence of this
atomic wave function on coordinates or on spin.
It is for this reason that the ferromagnetic
problem, where an electron reverses its spin but
stays in the same band as far as orbital functions
are concerned, is closely analogous to the optical
absorption problem, where the electron changes
its orbital function without change of spin. This
observation shows that in the previous paper on
superconductivity, ' it was incorrect to suppose
that the alkali metals, and copper, silver, and
gold, are essentially diff'erent from other metals
on account of having electrons in only one energy
band. For they have electrons of both spins, and
from the standpoint of the general theory that

4 J. C. Slater and W. Shockley, Phys. Rev. 50, 705
(1936); G. Wannier, Phys. Rev. 52, 191 (1937); J. C.
Slater, Phys. Rev. 52, 198 (1937).

amounts to two bands, just as with other metals.
In view of this fact, and of recent experimental
work pointed out by Mendelssohn, ' it seems
unlikely that the theory in its present form is far
enough advanced to predict which metals should
show superconductivity and which should not.
As we shall describe it, it certainly seems like a
phenomenon which might be very widespread.

Let us call the almost filled band A, the almost
empty one B. First consider the state where A is
entirely filled, B entirely empty. Then the Pauli
principle operates between all the N electrons in
state A, in such a way as to prevent two of them
from piling up on one atom at the same time. The
result is an extraordinarily uniform charge distri-
bution, quite without local fluctuations, except
of course in going from one part of an atom to
another. If we suppose that there are enough
electrons just to neutralize the nuclei, this means
a very constant electrical potential throughout
the crystal. Whenever an electron moves from
one atom to another, the Pauli principle demands
that one move from the second atom back to the
first. This shows us at once why no current can
flow in such a state, since every motion of
electricity is compensated by an equal and
opposite motion.

Next imagine that one electron is removed
from- state A, placed in state B, and let us
describe the situation in terms of energy bands,
so that there is an empty level among the N
states of band A, a filled level in band B. Of
course, the lowest resulting energy, in the energy
band theory, is found if the electron is removed
from the highest state of band A, put in the
lowest state of band B.We shall refer to the zero
of energy throughout as the energy of the state
where band A is filled, and we shall now consider
the energy of this new state, which we shall call
the excited state, referred to that zero. This
excited state can be higher than the original
state, in which case the system tends to have
band A filled, band B empty, or it can be lower,
in which case electrons tend to occupy both
bands.

If the electron in band B is in a modulated
wave function such as one has in a periodic
lattice, that means that it is circulating freely
through the crystal, and is as likely to be found

' K. Mendelssohn, Phys. Rev. 51, 781 (1937).
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on one atom as on another. This circulation is
now permitted by the Pauli principle, for this
electron no longer has the same atomic wave
function as the other electrons, and can occupy
an atom already holding another electron. But
there is a price demanded for the privilege of free
circulation. This price is the energy required for
the electron to be removed from its original atom
(essentially the ionization potential, as distorted
by the existence of the lattice), minus the energy
recovered when it forms a negative ion on
another atom (the electron affinity of the neutral
atom, again distorted by the lattice). If the
electron is not removed to a very distant atom,
this is diminished by a Coulomb term: as the
negative ion is removed from the positive ion left
behind, work must be done against the Coulomb
attraction between the ions, so that the total
work which we reckoned above, representing the
work necessary to remove the ions to infinite
separation, must be decreased if the separation is
only fin. ite. Now the actual excited electron is

equally likely to be found on any atom of the
crystal, so that there is only a negligible chance
that it will be near the positive ion, and this
Coulomb term can ordinarily be neglected. The
price demanded for the formation of the excited
state then is essentially an ionization potential
minus an electron affinity, a matter of several
volts. But in the cases we are interested in, it is
worth the price, for we shall assume that the
bottom of band 8 lies well below the top of band
A, far enough below so that the gain in energy is
more than the loss, and the excited state really
lies below the normal one. If the excitation
consists of reversal of spin, without change of
orbital motion, this means that we are not
dealing with a ferromagnetic system. If it con-
sists of change from one band to another, it
means that the second band 8, though it may be
higher than A, still overlaps it enough so that the
bottom of 8 is decidedly below the top of A. We
find in either of these cases that the lowest state,
in the language of energy bands, is that in which
the excited electron is essentially at rest at the
bottom of band 8, the hole in band A being at the
top of that band, and therefore again essentially
at rest (since the slope of the energy vs. k curze
gives the velocity, and this is zero both at the
maximum and minimum energies). But these

ions are both distributed with equal probability
on each atom of the system, so that they have no
relation to each other.

The state which we have thus derived is one in
which there is a fluctuation of charge distribution.
The positi've and negative ions are equally likely
to be found anywhere within the crystal. There
is no longer the uniformity of charge and
potential found in the normal state. Now a
nonuniform charge distribution results in an
increased potential energy. This can be seen from
the fundamental principles of electrostatics. The
electrostatic, potential energy can be written as
(ss )J'E'd r, reducing to zero in a uniform
potential where E is zero, but increasing wherever
there are nonuniformities of potential. It is this
increase of potential energy which we have
described as the price which must be paid in
order to excite an electron. We now ask, have we
perhaps paid too great a price? Could we have
set up some other state, with less fluctuation of
charge density and potential, which would have
had an even lower energy& To have less fluctu-
ation, we must correlate the motions of positive
and negative ions, arranging the state so that the
chances are large that they will be found close
together, small that they will be far apart. This
can be done by building up a wave packet of
excited states of the form we have used, each
corresponding to an electron removed from one
level of band A, and placed in one level of band
B. If we wish to go to an extreme, we can arrange
the packet so that the negative and positive ions
are practically sure to coincide, and we have to
pay no price at all for our excitation in the matter
of potential energy. But we have a compensating
loss in other energy, for it turns out that to make
such a packet we must use all possible excited
states, with equal coefficients, amounting to
removing the electron from a mean position in
band A, placing it in a mean position in band 8,
instead of going from the top of A to the bottom
of B. In the particular case of ferromagnetism,
bands A and 8 coincide in energy, so that in
some cases it can turn out that the resulting loss
of energy is very small. But if band 8 lies above
A, the loss of energy would be considerable, and
this state would probably have about as high an
energy as the energy band state, or even much
higher.
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The situation we have just described can be
looked at in a more graphic way. If the electron
in band 8 practically coincides with the hole in
band A, its wave function must decrease very
rapidly as it leaves the hole. This rapid decrease,
perhaps of an exponential sort, means a large
kinetic energy. In other words, the increase of
kinetic energy associated with such a concen-
trated packet more than makes up for the
decrease of potential energy, in. most cases. To
get the really lowest energy, we must make a
compromise. We build a more extended packet,
so that the positive and negative ions may be
found at a distance of a good many atomic
diameters, but still will not wander to infinite
separation from each other. This wi]1 not de-
crease the potential energy so much as before, but
neither will it give a function that varies as much
with position, so that the kinetic energy will not
be as much increased. The resulting wave func-
tion can be looked at in a very physical way.
Both electron and positive hole are capable of
moving through the crystal (the hole "moving"
by the shift of neighboring electrons into the
hole, leaving a new hole on the neighboring
atom). Each has a certain "eRective mass, " as
found in the usual theory of metals, determined
by the curvature of the energy-momentum curve.
There is a potential energy of interaction between
them. Then the wave function is approximated
by that of a two-body problem with the effective
masses and potential energy just described. Such
a two-body problem would be similar to a
hydrogen atom, except that both positive and
negative particles are mobile. It has many energy
levels and wave functions, the wave functions
getting more and more extended as we pass to the
limiting continuum at the limit of the series, and
the energy levels getting closer and closer to-
gether. The levels considered in the conventional
theory are simply the continuum of levels beyond
the series limit, in which the electron and hole
independently wander through the crystal. The
discrete stationary states correspond to the
discrete energy levels of a two-body problem.

This elementary picture gives one definite
piece of information about these discrete wave
functions: they cannot carry current in the
ordinary way. For if such a function moves
bodily through the crystal, both the electron and

the hole move with the same rate, corresponding
to equal transports of negative and positive
electricity, which just cancel. Thus the existence
of such levels cannot lead to a theory of enhanced
ordinary conduction, as was suggested in the
earlier paper. ' In fact, if many electrons of the
metal went into such states, the ordinary con-
ductivity would be decreased, not increased.

On the other hand, there is another property of
these wave functions which is just what is needed
to produce a large diamagnetism. In most actual
cases, the wave functions will presumably be
quite extended, allowing the positive and nega-
tive charges to wander to a considerable distance
from each other. That is, they will be analogous
to large "atoms, " much larger than ordinary
atoms, but small compared to the crystal as a
whole. Now the diamagnetic susceptibility of an
atom is proportional to the square of its radius.
Thus wave functions of this type, having a large
radius, can correspond to very large diamag-
netism, and can lead to London's theory of
superconductivity. This. is discussed in the second
section.

The discussion so far has been concerned with
the case in which one electron only was in band
8, the remaining N —1 electrons being in band A.
Actually, most metals have a number of bands
simultaneously occupied by electrons. If the
metal is not ferromagnetic, each band of one spin
will be accompanied by the corresponding band
of the opposite spin, and each will be equally
occupied. Furthermore, practically all metals
except the alkalies, copper, silver, and gold have
at least two differen t energy bands partly
occupied. The resulting problem would be ex-
tremely involved to treat in detail, and we shall
not try it. But we can see qualitatively what will

happen. If we set up the lowest level according to
the theory of energy bands, with a number of
partly occupied bands, there can be large fluctu-
ations in the charge on each atom, for an
electron corresponding to any one of the bands
can be present or absent on an atom, inde-
pendently of the others. Thus, as before, this
state will correspond to considerable fluctuations
of the potential from point to point, and to a
considerable potential energy. In an effort to
reduce this fluctuation, there will be special
states into which each of the electrons can fall,
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localized near the minima of potential energy,
with energies slightly lower than those of the
continuum. We can imagine a crude method of
successive approximations by which these levels
might be found. We could start with the energy
band function. A particular, typical arrangement
of electrons in it would correspond to a certain
fluctuating charge distribution, with certain
minima and maxima of potential. We could
imagine all the electrons but one frozen in these
particular positions, and let the remaining one
move in the resulting field. I t would have
possible wave functions concentrated near the
minima of potential energy, avoiding the maxima.
Having found these functions, we could set up a
new approximation, by putting the electrons in

the lowest functions of this type, instead of in

the energy band states. We should presumably
find that the potential in this case had been over-
corrected, and a repetition of the same process
would result in more extended functions as a next
approximation, and so on. Whether such an
approximation would actually converge is a
question, and it certainly would not be practical
for computation, but it suggests a possible state
of the system as a whole in which many or most
of the electrons would have wave functions which

were damped off in space instead of extending

through the whole crystal.
This type of calculation reminds one of that

made by Wigner and Seitz' in discussing corre-
lation energy in a crystal. There they considered

particularly the way in which the wave function
of one electron kept out of the immediate
neighborhood of another electron. They found

that by setting up wave functions in which this
was accomplished, a very considerable gain in

energy can be secured. Surely this calcujation of

Wiggler and Seitz accounts for the larger part of
the gain in energy which can be secured by
electron correlation, and of course this is such a
large energy gain that it is not affected by
temperature. The small scale fluctuations in

potential will be almost entirely ironed out by
this small scale correlation, and the only fluctu-

ations which may be supposed to remain will be
rather long scale fluctuations of small amplitude.
These will result in only a slight excess of

'E. Wigner and F. Seitz, Phys. Rev. 46, 509 (1934);
E. Wigner, Phys. Rev. 46, 1002 (1934).

potential energy, so that no great energy gain
will result from removing them. Nevertheless it
seems reasonable to suppose that states are
possible in which these large scale fluctuations
are largely ironed out as we11, resulting in a still
further slight energy gain. In such states, the
wave functions of the electrons would show large
scale modulation, again resembling the large
"atoms" of our earlier picture of one excited
electron, though we can no longer think of a
single electron and hole as being correlated, but
rather of an electron being correlated with a
region of slight net positive charge. To make any
significant energy gain by combining such func-
tions, we should have to arrange them all in a
very accurate way, just balancing charges so as to
neutralize the potential fluctuations. This would
mean that such a state would be one demanding
large scale cooperation of the electrons, so that it
would have analogies to other cooperative phe-
nomena such as ferromagnetism and the forma-
tion of superlattices. We should expect, then,
that such a state would be realized only at low

temperatures, and that there would be a sharp
transition point between it and the ordinary
state of the metal, as is characteristic of the
transition from ordered to disordered states.

We arrive, then, at a picture of the ordinary
state as one in which the electrons move more or
less freely through the metal, but modifying their
wave functions in the way described by Wigner
and Seitz when two electrons happen to come
close together, so as to remove smal 1 scale
fluctuations of potential, the ones which con-
tribute most to the excess potential energy. At
lower temperatures, a different phase would come
in, in which the remaining large scale fluctuations
would be largely removed, by replacing the wave
functions by others which, rather than extending
through the crystal, are damped off in a certain
finite distance, and arranging the electrons in

these functions in such a way as to reduce
fluctuations as far as possible. This picture is
unfortunately very vague, and it seems difficult
to make it less so. In particular, we cannot
calculate with any degree of accuracy the energy
difference between the two types of states, or the
size of the wave functions in the correlated state.
The energy difference certainly must be small,

compared with the ordinary correlation energy,
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and the wave functions large compared with the
size of an ordinary atom. Our suggestion is that
this correlated state corresponds to the super-
conducting state. If that is the case, the energy
difference must be of the order of magnitude of
k T for a few degrees absolute. And we shall show
in the next section that the wave functions must
be of the order of magnitude of several hundred
atom diameters, on the average. We shall not
attempt to show that the model actually leads to
such figures, though of course it is to be noted
that the change from wave functions modulated
on a large scale, to those extending. through the
crystal, will be accompanied by a smaller and
smaller energy change, the larger the range of the
modulation is.

2. THE SUPERcoNDUcTING PRoPERTY

In this section we shall largely free ourselves
from the details of our model, and ask a definite
question: Is it, possible to have wave functions,
falling off in a certain distance so as to act like big
"atoms, "which would show the superconducting
property& At first sight, we may think of the
theory of diamagnetism of single atoms, in which
the diamagnetic susceptibility increases pro-
portionally to the square of the radius. By making
the radius as large as we please, we can in-

crease the diamagnetism to any desired extent.
London's' theory corresponds in most, though
not quite all, details to the supposition that a
superconductor is a substance with magnetic
susceptibility p= —47f-, so that B=O inside the
material. (As London points out in the references
above, this is not a very accurate description, but
it can serve for the moment in determining orders
of magnitude. ) Let us see how large the atoms
would have to be to achieve this amount of
diamagnetism. If there are N diamagnetic elec-
trons per unit volume, each with a mean square
radius Lr'$A„, the theory of the diamagnetism of
separate atoms gives x= e'fr']&„N/6mc', where-
e, m, c have their usual meanings. We equate this
figure to ——,'~. Further, we let N= 1/d', where d

is the side of a cube containing one diamagnetic
electron. We shall assume this to be of the order
of magnitude of interatomic distances, so that
there is essentially one such electron per atom.
Then an elementary calculation gives

(Lr'$ /d') 1 = 137(3d/2mao) '*,

where ao is the atomic unit of distance. If d is of
the order of interatomic distances, (3d/2~up)
will be of the order of unity. Hence to get enough
diamagnetism to agree with London's theory, the
wave functions of our large "atoms" would have
to be of the order of magnitude of 137 times an
ordinary interatomic distance. And yet we should
have to have as many electrons per atom as
usual, so that these electronic functions would
have to overlap a great deal. This is not incon-
sistent, as a simple model will show.

Let us suppose that the electrons were entirely
free, but that the box containing them was
divided into a set of cubic cells by impenetrable
walls. We imagine these cells to have sides of the
order of 137 atomic diameters, and assume that
there are enough electrons per unit volume so
that there are of the order of (137)' electrons in

each cell. Then all the wave functions will

decrease to zero at the edge of the cell, so that
they will fall off in such a way as we have
described. The energy levels of electrons in such
a cell would be similar to those given by the
ordinary theory of free electrons in a metal, and
the lowest (137)'of these levels would be occupied
by the electrons, each extending throughout the
cell. Thus we should have the same number of
electrons per unit volume as before, but with
wave functions falling off in a distance of the
desired order, many electrons occupying the same
region. With the radius 137 times that of an
atom, the diamagnetism could be of the order of
(137)' times as great, which is roughly what is
required to produce the complete diamagnetism
of London's theory. The energy levels, further-
more, are now discrete. The total width of the
occupied levels will be very closely the same as in

the absence of the barriers, or of the order of a
few volts. The energy difference between levels
will then be of the order of a few volts divided by
(137)3, or the order of 10 volts, a very small

energy difference, of the order of magnitude of
kT for 0.01' Abs. Hence we may expect the
temperatures required to produce changes in this
state to be correspondingly low. It thus seems
possible by a simple model to secure something
like London's theory, and this model has essential
points in common with that to which our theory
of the metal has led us.

A difficulty will at once occur to the reader. It
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is not plain from this argument why we could not
let the size of our cells increase, from 137 atom
diameters, to any desired size. Then the diamag-
netic susceptibili ty should increase without limit,
as [r']«continues to increase. And yet the model

would approach the ordinary case of free elec-

trons, from which we know by the work of
Landau' that the diamagnetism has a very small

value. We shall now consider this paradox, and
show that our model is in fact consistent with the
usual theory, and that there are points in con-

nection with this theory which have not previ-

ously been brought out. What we shall do
essentially is to consider the problem of N free
electrons in a box, in which we vary the size of
the box from a very small size, of atomic di-

mensions, through our size of the order of 137
atomic dimensions, to the whole size of an
ordinary crystal, keeping the number of free
electrons per unit volume (rather than the total
number of free electrons) approximately con-

stant. Then the energy separation of the levels

will be of the order of a few volts divided by N,
giving a few volts for a box as small as an atom
(%=1), something like 10—' for the box of the
order of 137 atoms, as we have seen, and some-

thing like 10—"volts for a whole crystal.
We shall consider first the two limiting cases

of the single atoms and the entire crystal. The
first is essentially the case of isolated atoms, or of
the diamagnetism of bound electrons as treated
by Peierls. ' The second is the case of free
electrons as treated by Landau, 7 In both cases the
diamagnetism is small, and the methods used for
treating them are similar in some respects. Hence
it has been assumed naturally that one could

interpolate between them, and that there was no

place for large diamagnetism in the theory. We
shall find that this view is erroneous, that the
treatments of the two cases are essentially
different, and that we make no error in supposing
a large diamagnetism in our case of X= (137)'.

Assume that a magnetic field is present, given

by H= curl A; where A is a divergenceless vector
potential. Then the relation between velocity v

and momentum p is

mv = p —(e/c)A = —(Ii/2~i) 7—(e/c)A, (2)

' L. Landau, Zeits. f. Physik 64, 629 (1930).
' R. Peierls, Zeits. f. Physik 80, 763; 81, 186 (1933).

the second equation representing the operator
form. In this case Schrodinger's equation
(2nw'+ U)P=EP becomes

h2

8m2m

ieh e2A2
—A. q+ + U 8—/=0. (3)

2mme 2mc2

For a wave function possessing no permanent
magnetic moment, the second term, proportional
to H, vanishes, so that since we are not con-
sidering paramagnetism we can leave it out of
account. The effect of the magnetic held, then,
is to add the term in H2. This has quite different
results in the two limiting cases we are con-
sidering.

For a single atom, or a box so small as to con-
tain only one atom, the term (e'/Smc')H'(x'+y')
is negligible for any magnetic field at our disposal.
It is convenient to express in terms of atomic
units. We measure distances in terms of the
radius ao of the first Bohr orbit, energies in terms
of the Rydberg energy. The natural unit of II is
that magnetic field for which (ek/2mc)H, or the
energy of a Bohr magneton in that magnetic field,
equals the Rydberg energy. This of course is an
enormous magnetic field, and turns out to be
approximately 3.8)& 10' gauss. In these units, the
term is 4H'(x'+y'). Then if x'+y' is of the order
of unity, and II of the order of 40,000 gauss, or
10 4 atomic units, this term in the energy is of the
order of 10 ' atomic units, entirely negligible
compared with the energy of an atom. Thus the
term can be neglected in the wave equation, and
we can determine the wave function by the
original wave equation, so that to the first order
there is no perturbation in the wave function
produced by the magnetic field. This is the
analog in wave mechanics to the Larmor theorem
in classical mechanics. The change in energy in

the magnetic field is then to be found from the

For a constant magnetic held of magnitude
H in the z direction, we can set A, = —IIy/2,
A„=Hx/2, A, =O, giving lines of A circulating
around the z axis. Then Eq. (3) becomes

li' iek ( 8 8 )
Hl x—-y—

(
Sx2m 47rmc 5 i7y Bxl

g2

+ H'(x'+y')+ U —& 4 =o (4)
8mc2
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average of the perturbation energy -',H'(x'+y')
over the unperturbed orbit, and is thus pro-
portional to H' (as is proper for diamagnetism)
and to the mean square radius of the orbit. This
is the basis of the ordinary theory of diamag-
netism of atoms.

The situation is reversed in the case of free
electrons in a box of the order of magnitude of
the size of real crystals. In this case, the maxi-
mum x in the box will be of the order of 10'
atomic units, so that if IX is of the order of
40,000 gauss the magnetic energy will be of the
order of 10' atomic units at the edge, an enormous
value. In this case, in other words, the magnetic
field furnishes a potential in which the electron
must move, and the wave functions to a first
approximation must be determined in this po-
tential, and are different from those of free
electrons. As is well known in the Landau
solution, the corresponding wave functions re-
semble those of linear oscillators surrounding
x =y = 0 in the xy plane, falling off exponentially
as the coordinates depart from these values, but
are periodic with respect to s. This corresponds
physically to the classical motion of the electrons,
in which the s component is unaffected by the
field, but the electrons spiral around the s axis,
executing a periodic motion in the xy plane,
which must be quantized in the quantum theory.
For a given value of the s component of mo-
mentum, this quantization leads to an energy
2H(n+-', ), where n is an integer, associated with
the xy motion, in these units. In this case, the
wave functions are changed in the first order by
the presence of the magnetic field. It is then a
complicated process to find the change in the
energy of the whole system with the magnetic
field. As the field changes, electrons have transi-
tions from one energy level to another, and when
the whole calculation is made, Landau's formula
for diamagnetism of free electrons is found.

It is clear that the theories in these two cases
are very different in nature. Now let us ask, what
happens in the intermediate cases? If we let our
box increase in size from atomic size, at what
point must we begin to consider the first order
effect of the field on the wave function& Up to
this point we are allowed to use the atomic
formula for diamagnetism, and the diamagnetism
per electron will increase proportionally to the

square of the dimension of the box. We shall not
set up and solve this problem, though it should
not be impossibly hard to handle it. But we can
easily find the qualitative criterion to apply. It
certainly seems most probable that if the spacing
of levels as determined by the magnetic term in
the potential energy (namely 2H, in atomic
units), is small compared to the spacing of the
unperturbed levels (of the order of 1/N, in
a.tomic units), then we may use the unperturbed
wave functions, and we have the atomic formula
for diamagnetism. On the other hand, if 2H is
large compared with 1/N, we must find the new
wave functions, treating the magnetic field as the
principal term in the potential, and we shall get
something much more like the free electron
theory.

It is instructive to consider the variation, not
with N at fixed H, but with H at fixed N. For any
size box, and small enough magnetic field, the
whole box will act like a big diamagnetic atom,
but as the magnetic field increases a point will be
reached where this is no longer true. Without a
complete solution we cannot say exactly how the
energy will act as function of H. In the region
where the atomic formula holds, the energy will
increase quadratically with H. When the formula
breaks down it will presumably still increase, but
much more slowly, so that the slope of the curve
of energy against FI, which gives the magnetic
moment, will not only not increase proportionally
with H, but may perhaps even decrease. As much
larger fields are reached, the curve will approach
another parabolic curve, with much smaller
coefficient, corresponding to free electron diamag-
netism. Physically, it is clear what is happening.
At low fields, the Larmor precession is slow
enough so that its frequency is negligible com-
pared with the frequency of oscillation of an
electron from one side of the box to another, its
energy small compared to the energy difference
between electrons. In particular, the term
4IP(x'+y2) represents the increased kinetic
energy on account of the Larmor precession, and
this is negligible. At high fields, however, this
added kinetic energy becomes large compared
with the energy already present, and the whole
motion is profoundly affected by the magnetic
field. It is affected in such a way that the energy
does not increase nearly as fast as the atomic



222 J. C. SLATE I&

picture would indicate. This occurs by having the
various electrons move in orbits much smaller
than the box as a whole, either in the spirals of
free electrons, or surrounding the atomic nuclei in
a real crystal, each orbit executing its own
Larmor precession about its center. As a result,
no part of the electron's path acquires a great
enough velocity from the precession to add
greatly to the kinetic energy.

The question now becomes, if N is of the
order of (137)', what is the order of magni-
tude of the magnetic field necessary to destroy
the highly diamagnetic state & In this case,
the spacing of levels is of the order of magnitude
of 1/%=4&(10 ' atomic units. To get the maxi-
mum value of x'+y', we may assume the inter-
atomic distance to be about five atomic units
(about 2.5A), so that with a radius of the cell of
the order of 137 (5)/2, we could have x'+y' up to
about (137)2 25/4= 1.2 &&10'. Then if we let
,'H'(x'+y'—) = 1/E, we have H=3.6)&10 'atomic
units = j.400 gauss. This very crude calculation,
in other words, has given us a critical magnetic
field of the order of magnitude of the fields
actually observed to destroy superconductivity;
it is obvious that in such a rough calculation a
factor of ten can be disregarded.

We are finally led to this very significant
result, then. If we assume large wave functions
for electrons in a superconducting body, which
become occupied at low temperature in the
superconducting state, then the theory of diamag-
netism as applied to them will predict that they
should be perfectly diamagnetic, which London's
theory has shown to be essentially equivalent to
superconductivity. The theory predicts, however,
that this should hold only for low magnetic
fields. And the order of magnitude of the limiting
field calculated in this way agrees in a rough way
with that actually found to destroy super-
conductivity.

Of course, it is obvious that the electrons will
not all really have orbits of the same size. Some
will be smaller than the size necessary to produce
perfect diamagnetism, some bigger. We cannot
expect the theory to lead to orbits just the right
size, except by coincidence. But it will do no
serious harm if they are somewhat too big, for
diamagnetism can clearly not be carried beyond

the point where the magnetic field within the
crystal is completely cancelled by the induced
currents. If the orbits were somewhat bigger
than we have calculated, on the average, the
effect would be to produce the transition at a
lower critical magnetic field, more nearly the
experimental situation. Also it is to be noted
that the type of theory we have spoken of here
would not lead to a sudden change of properties
with increasing field, but instead to a gradual
transition. We cannot expect to understand the
sudden change except by combining these mag-
netic considerations with a real long-scale cooper-
ative theory, for it is only in this way that sharp
transitions can be explained. This would have to
be done in a more elaborate theory.

Finally, to make the discussion more intelli-
gible, we should point out, as London has done,
the way in which the current appears in this
form of theory. Eq. (2) for the velocity has a
term —(e/mc)A, which is not present when the
magnetic field is absent. This term appears in the
presence of the field without any change in the
wave function. Thus in our case of low fields,
where the wave function is unchanged, there wij 1

be a term in the current, proportional to the
magnetic field. In a uniform field, A circulates
about the axis of the field, so that this additional
current will do the same. The curren t thus
produced is —(e'/mc)1t */A, a constant times A,
which is London's fundamental equation. It is
then clear that the resulting current produces a
magnetic moment of the sample as a whole.
More complicated cases will not be discussed in
detail, for London has fully treated the conse-
quences of this type of current. As London has
pointed out, a current produced in this way by
the magnetic field is not subject to dissipation by
interaction with the lattice, so that this con-
duction is of essentially a different nature from
ordinary conduction, and is not subject to
resistance of the ordinary sort at all.
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