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The Structure of Electronic Excitation Levels in Insulating Crystals
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In this article, a method is devised to study the energy spectrum for an excited electron con-
figuration in an ideal crystal. The con6guration studied consists of a single excited electron
taken out of a full band of N electrons. The multiplicity of the state is N'. It is shown that
because of the Coulomb attraction between the electron and its hole ¹"states are split off
from the bottom of the excited Bloch band; for these states the electron cannot escape its hole
completely. The analogy of these levels to the spectrum of an atom or molecule is worked out
quantitatively. The bottom of the 8loch band appears as "ionization potential" and the Bloch
band itself as the continuum above this threshold energy.

~OR several years, there have been two com-
peting pictures in use to describe the be-

havior of electrons in crystals. The one adopted
in most theoretical calculations and especially
successful for metals describes each electron by a
running wave, but Frenkel has shown that in

many cases the more elementary atomic picture
may be the better approximation. ' This ap-
parent contradiction has been removed by
Slater and Shockley, ' who showed with a simpli-
fied model that the two types of states actually
coexist in a crystal. I t is the purpose of the
present paper to treat this question in a quantita-
tive way, starting out from the actual Hamil-
tonian of the system.

%e shall restrict ourselves in this article to
insulators containing one electron in the lowest
excited state, and we shall study the energy
spectrum of this single configuration, neglecting
perturbations arising from other configurations.
As to the method we shall proceed in the fol-
lowing way:

(1) We shall construct orthogonal "atomic"
wave functions and express the energy matrix in
this vector system.

(2) The energy matrix contains many terms
having the periodicity of the lattice and a few
which have not; we shall develop a method
which takes them both into account.

(3) We shall derive some general results and
discuss their consequences.

1. BASIC %AVE FUNCTIONS AND ENERGY MATRIX

.It would no doubt be more satisfactory for
insulating crystals, to discuss the Hamiltonian
using atomic functions rather than Bloch func-
tions. But this line of attack has been hampered
by the fact that atomic functions are not
orthogonal. %e can, however, build up or-
thogonal functions having all the advantages of
atomic ones by starting out from a Bloch
approximation. Let us assume then that a Bloch
or Fock method has given us functions b(k, x) of
energy W(k). Then the required functions are

a(x —n) =1/(X)& P exp L
—ik„n)b(k„, x),' (1)

where N is the number of cells in the crystal and
the k's are as usual determined by some bound-
ary condition.

Formula (1) applies to any set of Bloch func-
tions, but it might be interesting to get some
insight into the structure of the a' s. For this
purpose let us 6rst make the ad koc assumption
(valid for free electrons) that b is of the form

b(k„x) =exp Cik„x] b(x),

* I want to express my thanks to Princeton University
for the grant of its Swiss-American Exchange Fellowship
for the year 1936—37.' J. Frenkel, Phys. Rev. 1'7, 17 (1931); Physik. Zeits.
Sowjetunion 9, 158 (1936); Physik. Zeits, Sowjetunion 8,
185 (1935).

~ J. C. Slater and W. S. Shockley, Phys. Rev. SG, 705
(1936).

where the periodic factor b(x) is independent of k.
Then we find explicitly:

'The unit of length adopted in this article is the ele-
mentary translation in the direction of each of the crystal
axes. In some deductions the crystal is assumed to be
simple cubic, but this could easily be removed.



192 GREGORY H. WANNI ER

a(x —n)

sin ~(xi —ni) sin zr(xz —nz) sin zr(xz —nz)
b(x),

(xi 'ni)(xz n2)(xz nz)

which gives us the desired concentration around
n&, n2, n3. Their. orthogonality is immediately
scen bccausc

whose integrals are

J'P*(x)P(x —n) dr

= exp [—pi I
ni

I pz I
nz

I pz I
nz

I ]
Then we get

A (k) = C(pi, tzi) C(pz li.z) ' C(pz k)z) ~

J
~+ sin mx sin zr(x+zi)

I
b(x) I'rex

x x+n

where
(1—2e t'cosk+e '&) ''

c(p, ~) =I

= ( —) "/n.

=0.

1 1
si ' !b(x) ~'I —— ldx.' ix x+n)

from which it follows that the expansion coef'fi-

cients (4) are

The formula without A gives orthogonal b's, but
they are not normalized, if the P's are not or-
thogonal. We find for 1/A"-:

1/A'(k) = P exp [ikn] J'P*(x)P(x —n)dr. (3a)

From this we can find in principle the value
of A(k):

A (k) = Q exp [—zkn] a(n), (3b)

where the a's depend on the integrals in (3a).
Putting (3b) and (2) into (1), we find

These new functions provide us also with a
method to orthogonalize standard atomic func-
tions without doing very much harm to them.
For this purpose let us take atomic functions
P(x —m) and build up from them running waves:

b(k, x) =A(k)/(N) i P exp [zkm] P(x —m). (2)

a(n)=c(pi, Inil) c(pz lnzl) '(pz Inzl)

where

c(P, 0) = 1/(1 —e-'e) i F( —-'„—-'„1, e 'e),

1 (2n —1)!!
c(P, n) = —1/(1 —e 'e)'

2n —1 (2n)!!
Xe "~F(—-'„n ——'„n+1, e '").

By m!! is meant nz(m 2)(m —4—) down to 1

or 2. F is the hypergeometric function

ab a(a+ 1)b(b+ 1)
F(a, b, c, x) = 1+—x+ g~+ e ~ ~

1 c 1 2c(c+ 1)

The F's used here are very slowly varying
functions. Mfhen x increases from 0 to 1,
F(—z, ——',

, 1, x) increases monotonely from 1

to 4/zr=1. 273 and F(—-'„n ——'„n+1, x) de-

creases monotonely from 1 to

a(x —m) = Pa(n —m) P(x —n), (4) [(2n)!!/(2n+ 1)!!](4/m).

which is the required result. If, in particular, the
integrals are small and fall off slowly, then we
can write

a(x —m) = P(x —m)

—-', P P(x —n) J'P" (x—n) P(x —m)dr;
num

but if they fall off rapidly, the integral with
nearest neighbors determines the coefficient of
all P's.

As an example let us carry out the orthogona]-
ization (4) explicitly for a set of atomic functions

In most cases one may replace them by 1.
These two examples should show that the iiew

functions defined by (1) go over into atomic ones
for large separation and are their natural sub-
stitute at smaller distances.

The building up of many electron wave func-
tions from this basis is discussed elsewhere in
full detail (e.g. reference 2, appendix). There is a
unique wave function for a full band, but for a
state having one excited electron and a hole in

its full band, three basic types can be con-
structed:
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(a) The atomic wave functions A(m, n) built
up from our "atomic" one-electron functions
a,„„„„&(x—s) and a, , „.„.(x —s). They contain no
electron in the mth cell and an extra excited
electron in the nth cell.

(b) The Bloch wave funct. ions 8(k„, k„) built
up from one-electron Bloch functions. They
contain no electron of wave vector k„and an
excited electron of wave vector k „.Between the
two there exists the relation:

B(k„,k,)

=1/N PP exp Lik,n —ik„m] A(m, n),

(~)
A(m, n)

= 1/N PP exp I
—ik,n+ik, ,m j 8 (k„, k,).

(c) The excitation waves E(K, L1) introduced
by Frenkel. ' They describe like Bloch functions
the motion of the center of gravity of electron
and hole by a wave vector K; but as in (a), the
two bodies have no relative motion and their
distance is given by a space vector L1. Their
relation to A and 8 is

E(K, L1)

=1/(N)i P exp [iK,nj A(n ——', Ll, n+,'-Il), (6)

If one works out the energy matrix (m.
n~II~m', n') one finds a very great number of
terms, which depend on m, n, m', D' only through
the combination m —m' and n —n'. The physical
reason for this fact is that a transition of the
excited electron (or the hole among the un-
excited ones) from one cell to another takes
place in a field which is very nearly periodic,
i.e. , the transition n —+n' and n+s —+n'+s must
have the same matrix element. In addition, one
finds for those periodic terms that if both
vectors m —m' and n —n' are different from zero,
the matrix element vanishes; one can therefore
distinguish between transitions of the excited
electron and transitions of its hole. There re-
main, however, two integrals which do not
follow these two rules if we write them out
explicitly EI takes the form:

(m, n~H~m', n') =8 II,.„„(n—n')

—8„„II,(m —m') —ffa„'(x—m)a, *(x'—n)
e2

X — a„(x—m') a „(x' n') d Td r'—
d /x —x'/

g2

+J' J'a„'(x-m)a, "(x' —n)
d /x —x'/

Xa„(x' —m') a, (x —n')drdr'.

B(k„, kq)

=1/(N)'' P exp [i-', (k„+k,)L1] E(k, —k„, Ll). (7)

The energy matrix is most easily calculated in
terms of the A' s. We start out from the Hamil-
tonian

g2

II= QT;+ Q' "d. ~x, —x„~
—e P V(x, —m) (8)

+terms independent of x;,

where T; is the kinetic energy of the ith electron,
d the length of the elementary crystal-translation
in cm, and x; the coordinates of the ith electron.
The energy is written here in such a form, that
only the electrons of the band under considera-
tion are treated as such; the influence of the
others is only taken into account through the
screened potential V(x —m) arising from the
mth cell.

These integrals evidently come from the Coulomb
attraction between the electron and its hole;
they depend on the relative position of the two
par ticles.

There is, however, no term depending on their
absolute position in space. We can separate out
therefore the motion of their center of gravity
and go over to excitation waves.

2. DISCUSSION AND APPROXIMATE SOLUTION OI

THE MATRIX EQUATION

There are two limiting cases in which (9) is
diagonalized immediately. The one is the "in-
finite separation, " where only diagonal terms
remain appreciable and either . atomic wave
functions or excitation waves may be used.
The second, which we may call "negligible
correlation, " occurs when the two integrals can
be omitted; then Bloch functions are correct.

This last knowledge can be exploited further,
because it means that a Bloch approximation
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can take care of all terms FI+ in FI, except the
two integrals. Let us assume in the future that
such a calculation has been carried out and that
we know the energy as a function of the wave
vector for both bands:

(k„, kq
f
II+

f
k„., kq )

= 8„„6„,[W.(kq) —W, (k„)], (10)

term in his expression arising from the change in
the self-consistent field is absorbed in 5', and
W„but a further transformation is in some cases
very useful. Let II. operate on an arbitrary
function F(n) satisfying our boundary con-
ditions:

F(n) = Q exp [ivn]G(x).

and therefore, transforming with (5) and com-
paring with (9):

H, (n —n') =1/X P exp [ik, (n —n')]W, (k,),

H, (m —m')

QH, (n —n') F(n')
n'

=1/E PPP exp [ik,n+n'(x —k,)]W,(k,)G(v)
q x n'

=1/~ p exp [—ik„(m —mi)]W, (k„)
——QW, (x) e"p [ixn]G(x)

p

Equation (9) is now identical with Eq. (21)
in Slater's paper, 4 but looks somewhat simpler,
because the spin of the electron is assumed to
be unchanged in all states involved, and the last

( 8 8 8't
=W,

f

—i, i—, i —
f F(n).

8n~ Bn2 Dna)

This gives for (9)

g2tt' 8't ( 8 $
(m, n

f
IV

f

m', n') = l„„B W,
f

i
f

———W,
f

i —
f

—J'fa,*(x—m) a,*(x'—n)
Bn) ( Bml d fx —x'

f

g2

)&a, (x—m')a, (x' n')drdr—'+ J'Ja,*(x m')a. *(—x' —n) u, (x' —m')a„(x —n')drdr'. (9a)
d fx —x'f

In accordance with the remark at the end of
part 1, we now go over to excitation waves as
basic wave functions and write our solution in
the form

4 = E U-(5)&(K-. 5) (11)

Then from (6) and (9a), U($) has to satisfy the
equation

t'
exp [—i-', K $] W,

f
i

f
e—xp—[+i', K,y]-

aL3)

—exp [+i2K y] Wg
f

—i—
f

exp [—i2K.y]
a )

+&(Il) U(5) =& U(5) (12)

g(g) is a potential which is very much like
—e'/(d

f g f) for large values of
f g f, but has no

' J. C. Slater, this issue.

singularity at ii=0. For simplicity the non-
diagonal Coulomb terms have been omitted, for
they do not influence the discussion given below
and they are so small that they may be neg-
lected in an approximate solution.

The transformation of difference operators into
differential operators, as has been done in our
transformation from (9) to (9a) and (12), is not
much favored by mathematicians. There exists
however a book by Davis' in which this point of
view is adopted, although it is developed for
one independent variable only. With this re-
striction, the theorems on pp. 100-105 of his
book ensure that our operator has a sense if
W(k) is an entire function of its argument,
i.e. defined and regular for complex values of k.
Its equivalence with a difference operator may
then be shown from the operational identity

' H. D. Davis, The Theory of linear Operators (Bloom-
ington, Ind. 1936).
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exp l
—ikg] Wl i —

l
e—xp I +ikIlj

ski

=Wl k —'—l, (13)
ay)

/

~~~get+ t)e

which, because of the periodicity of W, gives

( 8&
Wl —i—

l
exp l 2~iP.j

yyi

—exp $2siP„)Wl —s—
l
=0, (13a)

ayi

i.e., a solution U may be multiplied with an
arbitrary f'unction having the periodicity of the
lattice, and still remains a solution.

Before using (12) for an approximation method,
let us 6rst find some general properties of the
U's and their energy spectrum.

For large values of g, all the Coulomb in-

tegrals and therefore p vanish and the solution
must then have exponential character with some
complex wave vector k= xi+ix2. Remembering
(13) we get the corresponding energy from (12):
E= W. (-',K,+xt+ixs) —W, (-', K —at —its). (14)

x~ and x~ are restricted by the condition that E
be real. Now we know in advance that E is
real, periodic and bounded for x2 ——0. Therefore,
its gradient vanishes at least at two points
within one period and we can conclude from
general mapping properties that lines of possible
complex values of k start out from these points.
The corresponding energies go upwards from the
maxima, and downwards from the minima.
Fig. 1 is a simple one-dimensional illustration
of this situation. g, —g, is taken to be 1—cos k.
The possible complex values of k are then
nx+i~ and their energy is —cosh f~:+1, if n is
even, and +cosh ~+ 1 if n is odd. However, two
restrictions reduce the number of these new
levels considerably. First of all, the Coulomb
held is an attractive field and it can never raise
any level; thus there will be no state above the
Bloch band. Secondly, a solution of (12) with
complex wave vector will in general be un-
bounded and the condition of boundedness co-
incides with the condition that U(g) vanish
exponentially at large distances. This restriction
will, for each K, select a number of discrete
levels out of all possible ones.

FIG. 1.Energy and wave vector for an excited electron in a
crystal.

-A, +A,
U(g) =exp i-,'K, g N(g)

A, —Ag
(16)

we 6nd for u the differential equation

( 2v1l.(y) =0
loli

with y =e'/(2d(A, —As)) (18)
' R. Peierls, Ann. d. Physik 13, 905 (1932},A. v, Hippel,

Zeits. f. Physik 101, 680 (1936}.' If this condition is reversed, the minimum energy in
the Brillouin zone does not lie at (0,0,0},but e. g. at (x,m, ~}
and one has to study IViss —s8/BI1). From (13) we see
that this gives simply an extra factor —1 for the wave
function U, if we pass from one cell to the next.

If we want more detailed information in
practical cases we may turn to an atomic picture
for the lowest discrete states' and to a Bloch
picture for the continuum. But for the bulk of
the discrete states and the lower continuum
there exists a better alternative, namely a local
exploration of the Brillouin zone, i.e. , if we are
interested in a particular region in the Brillouin
zone we develop the function W(k) around that
point into a power series and take the 6rst two
terms or so. The point to be taken in our case is,
of course, the bottom of the band where the
continuum and the discrete spectrum meet. For
practical reasons, let us also assume that the
crystal is symmetric enough to allow for a
spherically symmetric development of the form

W, (k) =w.+A.(kP+ kss+ kss),

W, (k) =w, +A, (kP+kss+kss).

Assuming A, —A, &0,' approximating pro-
visionally @(g) by e'/d l pl, and making the
substitution
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and E=w,, w„——K,P(A, .A„)/(cf, —3„)

+(A„.—2„)I;. (19)

Equation (17) is the Schnldinger equation for
the hydrogen atom, It admits for 8 all positive
eigenvalues and the negative eigenvalues —y'/n'.
One easily verifies that the positive eigenvalues
coincide with the Bloch band, while the levels

e4 1
E„(K ) = Wp(K ) — — (20)

4dP (A, —A „) n'

„E
Is

EXCITED+IONIZED STATE ~

GROUND STATE

I'IG. 2. Potential energy of electron anti hole as a function
of their clistance.

give us the discrete spectrum. The multiplicity
of the states belonging to E„ is n' as in atomic
spectra.

The expressions (19) and (20) are roughly
correct as long as approximation (15) holds, i.e. ,

as long as the distance of the level from Wo is
small compared with the width of the whole
Bloch band (Fig. 1). Secondly, no negative
energy level can lie below the excitation energy
of the electron within its own atom; the distance
of E from W0 must therefore also be small com-
pared with the distance of this level. But if one
wants to comp I ete these calculations, by a per-
turbation method, one must remove this second
restriction and cut off the Coulomb potential at
the origin in a suitable way (Fig. 2). In this case
one can at least make the first restriction some-
what less rigid, for one can show that the first
order perturbation of the infinite 'differential

operator W exists, It is to be hoped that the
perturbation method itself will also converge.

Let us now proceed to establish the chief
property of these discrete states, namely that
they carry no current.

The current operator in our system is ob-

t.ained by transforming it. fiom its expression i»
a Bloch syst;em. :

(k„, k„i Jik„', k, ')
= —e/fi, b„„b„[qW, (k,) —q W, (k,)].

The same argument that led from (10) to (9a)
a.nd (12) gives now

J U(L3) = —e/~

exp [—i-,'K, (t] qW„{ i —}—exp [+i', K„-g]
(

ay

8 $—exp [+i-,' K.Ll] qWp { i —}—exp [—i ,'K,g]-
ay)

XU(y). (»)
It can easily be shown that apart from surface

in tegrals which vanish if they are extended over
the whole cgstal, J'!&U*(L3)JU(g)dry is equal to
another volume integral which we denote by
J'„{U*JU}dre One can .easily give rules how to
build it up from a given J, but they are some-
what lengthy. In this connection, it is sufficient
to know that this new expression satisfies a
Green's theorem

—eJ', (U'(L3) WU(&) —U({l)WU*(L3))d e

=ik j~{U*JU}dsp,

where W stands for the whole differential
operator in (12) and the surface integral on the
right-hand side is extended over the boundary of
the volume on the left. This gives

( —e) (d/«) J,U*(Ll) U({l)d
+J;{U"JU}dse=0'

As in the case of atoms this law is sufficient to
prove that if U. vanishes exponentially at in-

finity, then

J'.U'(5) JU(5)dre=o

if the integral is extended over the whole crystal.
The true expression is however PU*(g) JU(g);

but one can dispose of the arbitrary periodic
factor of U in such a way that

Q U (g) U(Ll) = J'„U*(Ll) U(g)dre

and
~

PU"'(L3) JU(Ll)
~

=
~

J'„U' ({l)JU(g)dre~ +p,

which proves the theorem.
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3. GENERAL SURVEY OF TEiE RESULTS

The results of the above calculations suggest a
rather fundamental change in the picture used to
describe the behavior of electrons in crystals.

Since there has been so much talk about
discrete levels, one should perhaps first re-
member that there are no discrete absorption
lines to be expected in any crystalline spectrum,
because, as in molecules, there is a band structure
connected with each electronic energy level.
The value of this term in the approximation
(19) is

A,A gK.'

(A, —A, )

The analogy of K to the vibrational quantum
number of a molecular band spectrum becomes
evident, if we remember Frenkel's selection rule. '
It states that if a light wave of wave vector x
excites a state belonging to the excitation waves
of wave vector K the difference x —K must
appear as wave vector of a simultaneously
absorbed or emitted lattice wave. Since for
visible light x is very small, K may be con-
sidered as the wave number of this lattice vi-
bration.

The truly electronic spectrum underlying the
band spectrum is obtained by putting K =() in
the energy expression (20). It is divided into
two parts:

First there comes a lower part consisting of
discrete states. The electron does not escape its
hole and no photocurrent can be observed, The
very lowest states are widely spaced and corre-
spond to excitation of an electron within its cell
or to some direct neighbor. ' As one goes higher
up this individual character gets lost; the
spacing gets narrower and the electron moves in

an orbit determined by the Coulomb field of its
hole. ' For a finite crystal with N cells, the
number of such states is of the order N'".

Then there follows a continuum which is just
the Bloch band. Electron and hole move inde-

pendently and a current may be observed. But in
these states the electron cannot well approach its
hole and optical transitions into them are there-
fore unlikely. For our finite crystal, the number
of such states is of the order ¹

As far as can be told, experiment is in agree-
ment with these views. '

In the practical application of these results one
should keep in mind some serious restrictions
which underlie the calculations.

This paper deals with the excited states of a
single electron only. It will still be good for the
excitation of a number of electrons small com-
pared with the number of cells, but after this
qualitative changes may occur; the same is true
for conducting crystals,

Secondly these calculations deal with virtual
excited states of an unexcited crystal rather than
with truly excited states. And the-virtual states
considered are those compatible with the Frank-
Condon principle. Each electronic excitation will
however be followed by rearrangements of the
lattice and energy dissipation. Many authors
believe that this will result in an actual
"trapping" of the electron in its new position. ' '

One should think that these facts have no
inAuence on the absorption spectrum of a
crystal, but it has been pointed out to me by
Morse that, even for this case, the list of levels
given above may be incomplete, because there is
a possibility of weak absorptions violating the
Frank-Condon principle. This is especially true
for regions where no other absorption is possible.
It is perhaps the explanation for the photo-
electric absorption of many crystals on the long
wave-length foot of their ultraviolet band.

Finally I want to express my thanks to
Professor E. Q~igner, who has suggested to me
the present problem, and to Professor J. C.
Slater, Dr. C. Herring, Dr. F. Smithies and many
others for valuable advice. I also want to thank
Mr. R. C. Herman for his help in completing
this paper.

' This distinction is well known in the theory of electro-
lytes. Our lowest levels correspond to the classical theory
of weak electrolytes, the higher ones to the theory of
Debye-Huckel. This analogy may perhaps be extended if
one considers the motion of "trapped" electrons.

9 R. Hilsch and R. W. Pohl, Zeits. f. Physik 59, 812
(1930); E. G. Schneider and H. M. O'Bryan, Phys. Rev.
51, 293 (1937); B. Gudden and R. Pohl, Zeits. f. Physik
1'7, 331 (1923); F. C. Nix, Rev. Mod. Phys. 4, 723 (1932);
A. L. Hughes, Rev. Mod. Phys, 8, 294 (1936).


