
JULY 1, 1937 PH YSI CAL REVIEW VOLUM E 52

Magnetic Interaction and Resultant Anisotropy in Unstrained Ferromagnetic Crystals

L. W. MCKEEHAN
Sloane Physics I.aboratory, Yale University, New Haven, Connecticut

(Received May 5, 1937)

The mutual potential energy of two equal and parallel
magnets is derived for several especially symmetrical dis-
tributions of magnetic moment in each. If R is the distance
between magnet centers the first three terms in order of
importance depend upon R 3, R ' and R '. These may be
called "dipole, " "quadrupole" and "sextupole" terms,
respectively. Magnets previously considered as represent-
ing the atoms in a ferromagnetic crystal are special cases
of one of the general cases here treated. Sextupole terms
have not heretofore been included. The distributions of
magnetic moment now dealt with permit a closer corre-
spondence between the model magnet in iron, cobalt, and
nickel and the probable distribution in these atoms of the
electrons responsible for ferromagnetism.

In order to compute ferromagnetic anisotropy —differ-
ences in potential energy for differences in direction of
magnetization in a crystal —sums of zonal harmonics over
the points occupied by atoms are also needed. Such sums

for second and fourth-order harmonics have previously
been reported for the crystal structures of interest. Sums
of sixth-order harmonics are now given.

Within the space assigned in current pictures of the
atom to "ferromagnetic" electrons we find ample room for
distributions of magnetic moment, agreeing in total
amount with observed saturation values, to account in
general for reported anisotropies in iron, cobalt, nickel and
their cubic alloys. These distributions seem to depend
principally upon the maximum number of codirected elec-
tron spins. Reported changes of anisotropy with rise of
temperature are such as would result from relative rota-
tions 'of atomic axes out of exact parallelism.

The effects of magnetostrictive strain, here omitted from
consideration, may explain some discrepancies in the sign
or magnitude of the sextupole terms. In hexagonal cobalt
it must be assumed that the molecular field itself is aniso-
tropic.

I. ELEMENTARY MAGNETS

E first consider the mutual potential en-

ergy, 2U, of a pair of equal and parallel
magnets each of magnetic moment P and sepa-
rated by a distance R. In order to distinguish
numerical factors from those involving physical
dimensions and units we put P =Pp, where p is a
unit vector, and R =err, where r is a unit vector
and u is the length chosen as a unit. (When we
deal with crystals a will be the length of one edge
of the unit cell. ) This makes r a pure number, the
values of which depend only upon the symmetry
of the crystal.

The simplest possible magnet is a dipole,
anything more complicated than this involves
some spatial distribution of magnetic moment
and may be called a multipole.

Dipole magnets

The mutual potential energy per magnet can
be expressed in closed form if the magnets are
simple dipoles. It is

U2 ———(P'/a')r 'P, {cos (p, r) }.

Here P2{u} is the second-order zonal surface
harmonic, argument N.

Multipole magnets

For magnets more complicated than simple
dipoles the mutual potential energy per magnet
must be expanded in series form. One such form is

n=co

~=-V"/ ') 2 " 'f-(p. , p, p. , ), (2)
n=2

wherein the structure of the multipole fixes the
number' and the directions of the unit vectors

p, to p~, and the form of the numerical functions
f .There is no term for n & 2 because the magnets
are supposed to have no net magnetic charges.

In (2) the magnets are much more generalized
than necessary. If we make all the characteristic
directions p, to p~ parallel to a single direction

p, and make the structure as symmetrical as
possible about a plane perpendicular to p
through its center, the magnet is still compli-
cated enough for practical purposes. It is now

what Kornfeld, ' called a zonal multipole and the
f„can be written F„P„{cos(p, r)}, F being in-

dependent of p and r, so that (2) becomes

' H. Kornfeld, Zeits. f. Physik 22, 27—43 (1924).
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U,„=—(P'/a') [Fmr-'P2{cos (p, r) }

+F4r 'P4{cos (p, r)}

+F6r 'P6{cos (p, r) }+ ]. (3)

Upon discovering that F2 ——1 in all cases we
recognize the first term as the dipole energy, (1).
By analogy it is customary to call the second

term the quadrupole energy, the third, term the
sextupole energy, and so on. Going still farther
some authors proceed to define a "quadrupole
moment, " "sextupole moment, " and so on. The
definitions, proposed by Kornfeld, ' and used by
Akulov, ' correspond. to the following rearrange-
ment of (3), the terms in braces being the
squares of the successive moments.

P'F4a'
U, = —{P'F~}(ar)-'P~{cos (p, r) }+3 (ar) 'P4{cos (p, r) }

P2F,a4 (n-1)!—10 — (a r) rP6{cos (p, r) }+ —(—1)& +'
10 (n/2) !(n/2 —1)!

(n/2)! (n/2 —1)!
( 1) in+1 P'F a"-' (ar) " 'P„{cos(p, r)} . (4)

(n —1)!

These higher moments are of little or no
physical importance, since magnets cannot be
constructed which have, let us say, quadrupole
moment with no dipole moment. Their definitions
also ensure that some of them will be imaginary,
e.g. , the quadrupole moment of nickel.

Magnetic form factors (F4, F6)

In our further analysis we will need F4 and
F6 for elementary magnets appropriate to atoms
of iron, cobalt and nickel. (F2 ——1 for all models. )
The method of deriving the F„ is as follows.
Distribute the proposed magnetic moment of
one atom, P, consistently with the symmetry
already explained, so that the magnetic moment
per unit volume is known at all points where it
is not zero. Choose a point on the axis of this
multipole, well outside its limits. The magnetic
field at this point lies along the axis, and can be
expressed as a series in ascending negative
powers of the distance of the point from the
center of the multipole. The potential energy
of a dipole with axis parallel to the multipole
axis, placed at the point in question, is minus the
product of its magnetic moment by the field

intensity. The potential energy for nonaxial
positions of the dipole is derived from the series
thus found by multiplying each term by the
appropriate zonal surface harmonic.

Now suppose a second multipole like the
first (or of some other type, in case of alloys)
and with its axis parallel to that of the first.
Place the center of the second multipole on the

axis of the first at such a distance that their
magnetic structures do not overlap. The mutual
potential energy is found by integrating the
expression for the energy per unit magnetic
moment, already found as a function of distance
and polar angle, over points where the magnetic
moment of the second multipole divers from
zero. Under the given conditions the series thus
obtained converges. Arrange it in ascending nega-
tive powers of the single coordinate defining the
relative positions of the two structures.

Again extend the result to three dimensions

by introducing zonal surface harmonics of ap-
propriate orders. The coefficients of the zonal
harmonics in this series are the required F„.

We are interested in distributions of magnetic
moment suggested by, or at least consistent with,
spectroscopic data. Slater' gives tables from
which we can conclude that the 3d electrons
supposed to account for the unbalanced magnetic
moment in iron, cobalt, and nickel are concen-
trated at a distance from the nucleus which
can be estimated in each of these elements and
which does not vary greatly in this triad. Let us
call this distance pa, expressed as a numerical
multiple of the unit length a. We will find the
F„for a few simple structures.

Case 1. Sphere (spherical shell)

It appears without detailed analysis that all
distributions of magnetic moment which have

' N. S. Akulov, Zeits. f. Physik 57', 249-256 (1929).' J. C. Slater, Phys. Rev. 30, 57—64 (j.930).
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negative F4, but that F6 can only be positive in
either case. The ratio of pa to ya and o,a involves
elliptic integrals.
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FIG. 1. Cross sections of magnetic elements. (See Table I.)

spherical symmetry, except for the fact that all
the elementary volumes have parallel magnetic
axes, have F =0 for n& 2. Such structures are
therefore equivalent to dipoles. This means that
our analysis is not really restricted, as it seemed
to be, to swarms of point electrons. Spatially
extensive electrons, so long as the magnetic
moment per unit volume in each is a function
only of the radius, give the same results.

Case 2. Spheroid (spheroidal shell)

The next simplest case is that of a uniformly
magnetized spheroidal magnet, a spheroid filled

with uniform volume distribution of magnetic
moment. Symmetry requires the magnetic axis
to be the axis of figure. Fig. 1 shows a cross
section of such a spheroid, the corresponding
pa being shown as a broken circle within the
spheroid of semiaxes na, aa, pa. Table I gives
expressions for F4 and F6 in terms of n and y. It
will be noticed that when y=o. , F4 and F6
vanish as they should for a sphere.

Since F4 and F6 depend only upon (p' —n'),
which is the same for all confocal ellipses, it is
clear that spheroidal shells and distributions
built up by superposing such shells have con-
stant F4 and F6 so long as all shells are defined

by the same focal points. Notice that prolate
spheroids have positive F4, oblate spheroids

Case 3. Cylinder

A more conventional shape of magnet is a
right circular cylinder, uniformly magnetized
along its axis, and this is the only model hitherto
considered in magnetic interaction studies. Fig. 1

suggests how the length (&ra sin X) and radius
(oa cos X) of such a cylinder are related to the
mean radial distance pa of its volume elements
from its center. The actual relation is very
complicated. Table I shows how F4 and F6
depend upon the shape and size of the cylinder.

The expressions for F4 at the limits, X=O and
X=~/2, that is for a circular current loop and
for an infinitely thin bar magnet, have been
known for many years.

Case 4. Pair of dicircles

None of the structures so far discussed seems
suitable for a first approximation to actual
atomic magnets. The dependence of pa upon
limiting dimensions of the model structure is

highly inconvenient, and unduly increases the
labor of computation. There is only one way
to avoid this difficulty, by keeping all the mag-
netic moment on a sphere of radius pa. Symmetry
requires that the simplest general model of this

type have its magnetic moment spread uni-

formly along two parallels of latitude, at +)
and —). Each of these circles may be called a
dicircle (analogous to dipole). It is easy to see

that the limiting cases, X=O and X=~/2, must

give the extreme possible values of F4 for any
distribution not extending beyond pu. Table I
shows that this case, like case 3, permits both
positive and negative F6.

The restriction to zonal multipoles is not as

artificial as it seems, for unless the symmetry of
the model atom about the axis of magnetization
is equal to or higher than the symmetry of the

crystal about the same axis the analysis becomes
unmanageable. Since the axis of magnetization

is to be unrestricted this means that it must
tolerate both four fold and threefold rotations
in cubic crystals, that is, it must have complete
rotational symmetry. If a physical basis is
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TABLE I. Magnetic form factors, F4 and F6. (See Fig. 1 for
deff, nition of symbols. )

Case 1. SPhere
F4=0; Fe=O.

Case Z. Spheroid
F4 = 12(y' —n')/5 Fe =216(y' —a')'/35

Case 3. Right circular cylinder
F4 ——o-'(4 —7 cos' X)

F6 ——o.4(128—496 cos' ) +443 cos4 X) /8,
F4=0 for ) = &40' —54',

Fe =0 for X= +32' —11 ', +50' —34'.
Maxima: F4=4o' F6 = 16o-, 75o'/8.
Minima: F4= —3cr2; F6 ———600o.4/443 for X = +41 —34'.

Case 4. Pair of dicircles
F =6p (2 —3 cos ));

F6 = 15p'(32 —112 cos' ) +89 cos4 X)/4.
F4 ——0 for ) = +35'—16',

Fe=0 for X= +25' —07', &48' —32'.
Maxima: F4 ——12p,' Fe=120p, 135p /4.
Minima: F4 = —6p~

Fe= —1080 p'/89 for ) = +37'—31'.

desired, the model may be thought of as repre-
senting the average aspect of a rigid group of
electrons with random azimuths in the different
atoms of the crystal.

II. FERRQMAGNET Ic CRYsTALs

Magnetic potential energy density

In an infinite crystal with X zonal multipoles

per unit cell of volume V the mean magnetic
potential energy density is

8= (X/U) P'U, „,
where the primed summation is to be taken for
all pairs of magnets which have one selected
magnet in common. (If all the magnets are not
alike, or if their environments differ, the selected
magnets must include all sorts in proper propor-
tions, and a suitable mean value of E is to be
found; see Alloys, below. )

In perfect crystals the indicated summations
can be effected to any desired precision. In
actual imperfect crystals these ideal values will

be more or less departed from. Previous work4

has shown that results of computation will be
comparable with experiment in crystals where
the atoms at small r lie nearly at the points of a
perfect lattice with a point at the origin atom,
and where there is no systematic deviation from
perfect arrangement (no elastic strain).

4 L. W. McKeehan, Phys. Rev. 43, 913—923, 924—930,
1022-1024, 1025-1029; 44, 38-42, 582-584 (1933)

Collecting common factors and using the
abbreviation, S = g'r "-'P„(cos (p, r) I, we re-
write (5) in the form

Lattice sums —dipole terms

In finding S2 we must specify boundary condi-
tions, because an important part of S2 (in cubic
crystals all of it) depends upon magnets lying
outside a large sphere centered at the origin and
wholly inside the actual boundary of the speci-
men. The least special boundary to choose is one
at infinity, and this is essentially what we do
when we use the rapidly convergent series forms
given in Appendix I. Finite boundaries equiva-
lent at the origin to a boundary at infinity are
those for which the so-called demagnetizing
field is zero. This means that experimental re-

sults, corrected for demagnetizing fields, as they
usually are, may be compared directly with our
calculations, presented in Table II.

TABLE I I. Coegczents in zonal harmonic latti ce sums S2,
S4, and Se.

ATOMIC ARRANGEMENT

CUBIC
HEXAGONAL,

c =2 $6i3

COEFFI- BODV- FACE-
CIENT PRIMITIVE CENTERED CENTERED PRIMITIVE

CLOSE-
PACKED

$2 2.09440 4.18879 8.37758
Seo
S2o
S4o —3.10734
Sso 5.44656
See
See

2.75741 2.96023—3.82936 0.00507—7.19838 0.95461 0.33815—26.63489 —1.91857 —4.15924
2.66930 2.5185 1

3.10823
0.57333

F.= —(XP'/ Ua') [F2S2+F4S4+ F6Sg+. . . g. (6)

The volume of the unit cell can be expressed in
terms of the parameter a and axial ratios. In
cubic crystals the edges of the unit cube being
each equal to c, we have V=a'. In hexagonal
crystals the edges of the unit prism are a, a and
ca, the first two being 120' apart and the third
(principal) axis perpendicular to these, so that
U =u'c+3/2.

We need S2, S4 and S6 for body-centered and
face-centered cubic lattices and for hexagonal
close-packing. It involves no extra work to get
these sums for simple cubic and simple hexagonal
lattices (primitive lattices) as well.



22 L. W. McKEEHAN

In cubic crystals S2 does not depend upon the
direction (p) of the magnetization. The series
form (Appendix I) is not needed here, since
S2 ——22rX/3 in all cases.

In hexagonal crystals

S2 =$26+ S22P3'. (7)

Here P3 is the component of p along the hexagonal
axis. The series in Appendix I contain a general
axial ratio, c, but only a particular value of
c=2+6/3 has been used in computing S26 and
S22 for Table II. This is the axial ratio for hex-
agonal close-packing of spheres. It differs a little
from the axial ratio in hexagonal cobalt, c= 1.624,
but is much more convenient, since many values
of r' are integers when c=2+6/3. Table II does
not show what part of S2p depends upon remote
magnets. This may be computed directly as
42rX+3/9c. For the two arrangements chosen
'/8/= 1,42rX/3/9C = 1.48096, and N = 2, 42rX/3/9C
=2.96192. It will be noticed that in hexagonal
close-packing nearby magnets contribute very
little to S~p.

Lattice sums —quadrupole terms

The sum S4 converges absolutely, that is, it
does not depend appreciably upon remote mag-
nets. In cubic crystals

S4 ——S46{1 —5(P2 P8 +P3 PP+Pl'P2 ) }, (&)

wherein Pl, p2, p3 are the direction-cosines of p
with respect to the cubic axes.

In hexagonal crystals

S4=S46{1 —10P32+(35/3)P3'}. (9)

This may also be written

S,=(8S.,/3) P, {P,}.
Lattice sums —sextupole terms

Though S6 converges more rapidly than S4
its convergence is still so slow that the special
forms in Appendix I must be used if precision
is desired. In cubic crystals

S6=S6o {1—(21/2) (P2'P3'+P8'Pl'+Pl'P2')
+ (231/2)Pl'P2'P8'}. (11)

In hexagonal crystals a rectangular frame of
reference is inappropriate, since it conceals the
true symmetry of the functions of direction. We

therefore define p by 03, the angle it makes with
the hexagonal axis, and by the azimuth, p, of
the plane through p and the hexagonal axis,
measured from the nearest prism face of form
{100}.In terms of these coordinates

S6——S63P6 {cos 03 }+S«cos 6p sin' 08. (12)

III. CQMPARIsoN BETwEEN THEoRY AND

EXPER IMENT

There is already a considerable amount of
information about ferromagnetic anisotropy,
especially regarding iron, cobalt, nickel and their
alloys. ' The best way of presenting the experi-
mental findings is to give the values of coeffi-
cients appearing in an empirical equation for the
magnetic potential energy density as a function
of the direction of magnetization. In cubic
crystals this is

E0++1(P2~P8 +P8 Pl +Pl P2 )
+&2Pl'P2'P3' (13)

In hexagonal crystals the analogous equation is,
to the same degree,

E=Ep+IZj cos 03+II2 cos 03

+H3 cos 03+II4 cos' ttl sin' 03. (14)

The way in which El and Z2, in (13), can be
derived from experimental data of various kinds
has been described by Bozorth. ' No attempt has
yet been made to evaluate all the possible
coefficients appearing in (14).The constant term
in (13) and (14), Z6, cannot be found by experi-
ment and is of slight interest, anyway, since it is
completely negligible in comparison with the
potential energy decrease arising from non-
magnetic interaction (the molecular field). The
forms of (13) and (14) depend only upon crystal-
line symmetry, though (13) may be written in

various ways by using the identity: P82+P22

+P3 =1.
Among various ways of fitting model magnets

to the experiments the one here chosen is to
select an extreme model of plausible type for
each of the atoms present, to compute the
coefficients in (13) or (14) consistent with these

~ For a recent compilation of results see L.W. McKeehan,
Phys. Rev. 51, 136-139 (1937). This should be consulted
for the sources of data concerning cubic metals and alloys.' R. M. Bozorth, Phys. Rev. 50, 1076—1081 (1936).
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model atoms in the actual crystal structure and
to compare these computed values with available
experimental values. If the computed coefficients
are too large we can get a better fit by reducing
the dimensions of the model magnet, or by allow-
ing for heat motions and other displacements
from ideal arrangements. If the computed coeffi-
cients are too small or are of the wrong sign we
must admit other causes for anisotropy than
those discussed above. One such cause may be
given special mention at this point.

Effects of homogeneous strain

It is well known that elastic strains may be
large enough to confer extra stability on one of
the preferred directions for magnetization in a
cubic crystal (directions for minimum F) and
may even make magnetization easiest along a
direction not preferred in the unstrained crystal. '
The lattice sums S2, in our notation, become
dependent upon the direction of magnetization,
p, even in crystals originally cubic. They depend
also upon the strain tensor. The magnetostrain
may be considered' as that self-imposed strain
which makes the total potential energy —mag-
netic and elastic —minimal. Our computation
of 8 has ignored these effects upon S2 and is
therefore certain to be inexact. The sums S4 will
also be affected by strain, though less seriously,
because the strain does not here upset an exact
balance as it does when S2 ——0 in the unstrained
crystal.

The reason for ignoring the effects of strain
in this first approximation is that the strain
argument gives the wrong sign for the magneto-
striction of nickel, ' and cannot therefore be as
important as was first supposed. The extreme
smallness of magnetostrains in comparison with
elastic strains known to alter preferred directions
for magnetization also means that something
else than strain must explain the relatively large
differences in Z for different directions in well-
annealed crystals.

The idea at the bottom of the present analysis,
that the shape of the atomic magnet principally
accounts for preferred orientations of these
magnets in crystals, is not of recent origin.

'R. Becker, Zeits. f. Physik 62, 253—269 (1930); F.
Bitter, Phys. Rev. 42, 697—708 (1932).

N. S. Akulov, Zeits. f. Physik 52, 389-405 (1928).

What is new is the suggestion' that the appro-
priate shape differs in different atoms, particu-
larly in iron and in nickel.

Theoretical anisotropy

In cubic crystals we find by comparing (6)
with (13) that

Xp = —(NP'/ Ua')

X [F2S2+F4S4o+ F6Foo+ . ], (1&)

Xl ———(NP'/ Va')
X[—5F4S40 —(21/2) F6Sop+ ~ . . ], (16)

X2 ———(NP'/ Ua') [(231/2) F6Soo+. . . ]. (17)

In hexagonal crystals we will compare values of
E for three important directions: the hexagonal
axis, [001]; a close-packed line and twofold
axis in the basal plane, [100];one of the other
set of twofold axes in the basal plane, [210].
For these directions we find

Bool — (NP / Va ) [F2S20+F2S22

+ (8/3) F4S4o+ F6S62+. . . ], (18)

&lop= —(NP /Va )[F2S2o+F4S40
—(5/16) F6S62+ F6S66+. . . ], (19)

&210= —(NP'/ Va') [F2S20+F4S40
—(5/16) F6S62 —F6S66+. . .]. (20)

For reasons already given we confine ourselves
to dicircle models, case 4 of Fig. 1 and Table I.
Data used in computation are collected in
Table III.
Pure metals (Table III)

Iron (body centered-cubic) We put.—74=0 for
an equatorial concentration of magnetic moment
in iron. That this is necessary was first clearly
stated by Mahajani. " It is consistent with the
large number, four, of disposable spins in iron,
since not more than two electrons could occupy
the other extreme position, X = lr/2, without
interference. We reject the most symmetrical
arrangement of four points —in a regular tetra-
hedron with two of its edges perpendicular to
the magnetic axis—because this puts dicircles at
) = ~35' —16', making F4 ——0, F6 negative, so
that E& becomes negative, contrary to experi-

~ R. M. Bozorth, L. W. McKeehan, Phys. Rev. 51, 216
(1937).

Io G. S. Mahajani, Proc. Camb. Phil. Soc. 23, 136—143
(1926); especially footnote on page 138.
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ence. Furthermore, the average number of un-
balanced spins per atom lies between two and
three so that the existence of four in one atom
cannot be typical.

With this assignment of X we find X1——25.46
X10' erg. cm ', X2 ———167.1)&10" erg. cm '.
(Hereafter we suppress the constant factor 10"
erg. cm 3 in E and its parts. ) As far as Zq is con-
cerned a smaller or less extremely equatorial
structure would be better, since the experimental
value of E& at room temperature is only 0.42.

The sign of X2 is wrong and it is about one
thousand times greater than necessary. It re-
mains to be seen whether this discrepancy in
sign can be accounted for by magnetostriction.
The persistence of relatively high X2 right up
to the temperature (600'C) at which Z~ reaches
a very low value is in favor of the dependence of
E2 on some factor which does not change as
rapidly with temperature as we expect sextupole
magnetic interaction to change.

Nickel (face rent-ered cubic) H.a—ving selected

TABLE III. Calculated amsotropy of pure metals.

Part 1. Cubic crystals

ELEMENT

Magnetic moment per atom*
Atomic weight
Diameter of 3d shell**
Crystal structure
Number of atoms per cell
Lattice parameter***
Relative radius of 3d shell
Latitude of dicircles
Magnetic form factors

Quadrupole factor
Sextupole factor

Anisotropy coefficients
First (quadrupole part)
First (sextupole part)
First (total)
Second (sextupole)

PX]020
A

2pa

N
aX10s

F4
F6

FE

2.055
55.85

1.53
B.C.C.

2
2.861
0.267
0

—0.4290
0.1725

10.26
15.20
25.46—167.1

(FE)

2.055
55.84

1.53
F.C.C.

4
3.646
0.210
0

—0.2641
0.0654

6.84—13.16—6.32
144.7

Co

1.5794
58.94
1.38

F.C.C.
4
3.545
0.195
~/2

0.4546
0.1722

—8.23—24.21—32.44
266.4

(Co)

1.5794
58.94

1.38
B.C.C.

2
2.846
0.242

m/2

0.7054
0.4146

—10.29
22.26
11.97—244.9

Nr

0.5883
58.69
1.27

F.C.C.
4
3.517
0.181
m./2

0.3912
0.1275

—1.03—2.61—3.64
28.7

(N1)

0.5883
58.69
1.27

B.C.C.
2
3.00
0.212
x/2

0.5376
0.2409

—0.79
1.31
0.52—14.4

Part Z. Hexagonal cobalt

Magnetic moment per atom*
Atomic weight
Diameter of 3d shell~*
Crystal structure
Number of atoms per cell
Lattice parameter***
Axial ratio —observed
Axial ratio —assumed
Relative raidus of 3d shell
Latitude of dicircles
Magnetic form factors

Quadrupole factor
Sextupole factor

Energy density differences
+100 +001

Dipole part
Quadrupole part
Sextupole part
Total

&210—&001
Sextupole part
Total

&2iO —~100
(Sextupole) total

PX 1020

A
2pa

2q6/3
P

Fg
F6

1.5794
58.94

1.38
H.C.P.

2
2.507
1.624
1.633
0.275
0

—0.4545
0.1937

0.0072
0.7279—5.5878—4.8527

—5.0949—4.3598

0.4929

m/2

0.9090
0.6886

0.0072—0.3640—1.5716—1.9284

—1.4330—1.7898

0.1386

+ Values for Fe and Ni based on M. Fallot, Dissertntion (Strasbourg, 1935). Magnetic moment per gram-atom, eo =221.74 for Fe, 00 =60.41
for Ni; P =rroA/No with No =6.026)&10"atoms per gram-atom. Value for Co based on R. I. Allen, F. W. Constant, Phys. Rev. 44, 228—233 (1933).
Saturation magneization I»t = 1418, P =I&~t/Na3.

*+J. C. Slater, Phys. Rev, 36, 57—64 (1930), column (5), Table I(d), p. 62.
***Yalues for stable metals and F.C.C. cobalt from M. C. Neuburger, Zeits. f. Krist. 93, 1—36 (1936).
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X=0 for iron we put X=7r/2 for nickel, noticing
that this is the best of all possible choices for a

pair of disposable spins. In this case we have
unique data at very low temperatures, " so that
our model should receive its severest test. We
compute X1———3.64; X2 ——28.7 and can derive
from the published curves the following values
for comparison at —252.3': K1———2.8, K2 ——4.2.
The experimental values are rendered rather
uncertain by the fact that saturation was
attained only along I 111]at the lowest tempera-
ture, so that extensive extrapolations were
necessary in finding E1 and X2. The agreement is

very gratifying.
Cobalt (hexagonat close pack-ed) In.—this crystal

structure there is some preference for axial
magnetization due merely to dipole terms. But
the whole difference in energy in favor of axial
magnetization" is much too large to be accounted
for by dipole terms alone. At —190'C we find

100 +001 8 81 ) +210 F001=9.44, and the part
due in each of these to dipole interactions is
only 0.0072 for the axial ratio c = 2+6/3 = 1.633.
Shrinking the axial ratio to its experimental
value, c=1.624, increases the dipole coeScient
S22 from 0.00507 to 0.03497 and correspondingly
raises EI00 —F001 and 8210—+pp] to 0.0500 which
is still far too low. " It is therefore necessary to
look for higher order terms of proper sign. The
first guess, since the number of disposable spins
is greater than two, is to put X = 0. If we consider
only the quadrupole terms in addition to dipole
termS, We find fOr X=0 &100—E001=E210—&001
=0.735, which is still inadequate in amount and,
moreover, leaves the experimental finding 8210
—E100——0.63 unaccounted for. The last defect is
remedied by including the sextupole terms. These
yield E»0 —8100——0.493, in reasonable agreement
with what seems to be needed. The differences
@100 +001 and 8210—F001 Change Sign, hOWeVer,

"K. Honda, H. Masumoto, Y. Shirakawa, Sci. Rep.
Tohoku Imp. Univ. 24, 391-410 (1935)."S.Kaya, Sci, Rep. Tohoku Imp. Univ. 17, 1157—1177
(1928); K. Honda, H. Masumoto, Sci. Rep. Tohoku Imp.
Univ. 20, 323—341 (1931):for energy differences based on
these experiments see L. W. McKeehan, Trans. A. I. M.
E. 111, 11—52 (1934), especially Table 3, p. 47.

"The effect of small changes in c has been discussed in a
previous paper, L.W. McKeehan, Phys. Rev. 43, 1025—1029
(1933). In using the formulae there given notice that the
present S~ is —ui2 in the earlier notation.

so that the principal problem, to explain the
high stability for axial magnetization, is farther
from solution than before.

If we try X=x/2, which is not impossible
since the average number of unbalanced spins
per atom is here less than two, thesextupole
terms account for E210—E1pp =0.138, wh ich
is hardly enough. The computed values of
+Ipp

—8001 and E»0 —E100 are again of the wrong
sign, though not so negative as for X=O. The
quadrupole terms now contribute to the anomaly
and this is a clue to a possible choice between
X=O and X=vr/2, for above 260'C the experi-
ments" show that the hexagonal axis is avoided
rather than preferred. The relative importance
of quadrupole terms, as compared with sextupole
terms, should of course be greater at higher
temperatures.

We suggest as the best way out that the low

temperature preference for the hexagonal axis
must have a nonmagnetic origin. This amounts to
saying that electrostatic interactions are re-

sponsible, or that the molecular field has a
maximum along the hexagonal axis at low tem-
peratures, and that this maximum decreases
rapidly as the temperature rises so that above
260'C the magnetic interactions, now mainly of
quadrupole order, predominate. For the magnetic
interactions we therefore propose X =x/2 as the
best first approximation.

Unstable forms

Face-centered cubic cobalt can be preserved at
room temperature by quenching from tempera-
tures at which it is the stable form. The metal is
ferromagnetic in both modifications and has
about the same saturation magnetization. "The
ferromagnetic anisotropy of the cubic arrange-
ment has not been studied experimentally. We
include in Table III pred, ictions of its anisotropy
constants at low temperatures (total Zi, X2)
and at higher temperatures (quadrupole part of
E&). The anisotropy of body-centered cubic
nickel and cobalt (neither of these is known to
exist) and that of face-centered cubic iron (not
known as a pure metal) have also been computed.
In these cases it has been necessary to estimate

"R. I. Allen, F. W. Constant, Phys. Rev. 44, 228—233
(1933).
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lattice parameters by extrapolating the param-
eter-concentration curves of appropriate alloy
series, and to assume that the magnetic moment
per atom remains the same as in the forms
stable at low temperatures. Neither of these
procedures is justice. ed. In all these cases the
value of ) chosen for the low temperature form
has been used throughout.

Alloys (Table IV)

%e can now proceed to compute anisotropies
in alloys of iron, cobalt, and nickel. gee postulate
that the magnetic form factors found most
suitable for the pure metals are unaltered by
mixture. Two types of alloy will be considered,
In the solid solution type the distribution of the
component atoms over the occupied points is
entirely at random. In the perfectly ordered, or
superstructure type, the distribution of each
component has the full symmetry of the space
lattice. This restricts the composition to de6nite
proportions, different in superstructures derived
from solid solutions with dift'erent space lattices.
There is no difficulty, in principle, in dealing
with intermediate cases, partial order in com-
positions consistent with perfect order, or in
compositions differing from these, where perfect
order is impossible. Such intermediate cases are
merely more cumbersome to formulate and
compute.

Sohd solutions

In Eq. (6) we need to use instead of P'F0, P'F4
and P'F6 suitable mean values of these quantities.
Let the fractions of the nickel, iron, and cobalt
nickel be, respectively, fA, f8, fc, and let their
magnetic moments per' atom be I'A, I'B, I'c.
There will be form factors, F4A, I"6A and others
corresponding to pairs of like atoms, already
given in Table III, and new factors, F4AB, I'6AB,

and others, corresponding to pairs of unlike
atoms. With XB=O, RA=Le=4r j2 we have the
following cross factors:

F48C 3pB +6pc y

F4cA —6Pc +6PA )

I 4AB = 6PA —3PB &

F08c= (4S/8) pB' —4SpB'pc'+4Opc',
~6cA ~SPc +90Pc PA + j.SPA

F0AB = 40pA' 4SpA'pB'+ (4Sj8)pB—'.

As an example, we have for a ternary solid
solution,

P'F4= fA'PA'F4A+2fA fBPAPBF4AB

+2fB PB F48+2fefcPBPCF48C

+fc'Pc'F4c+2 fcfAPcPAF4cA (21)

Formulae like this have been used to get the
values of E» and X2 in Table IV for several
series of solid solutions.

Superstructures

In a superstructure alloy the two or more
kinds of atom present do not have, even on the
average, the same environments, so that in
finding the mean energy density we have to
indude the lattice sums among the variable
factors. The only exception to this occurs in
cubic structures, the mean environment of each
species of atom continuing to possess cubic
symmetry so that 52 still vanishes separately for
each species. One formula for a binary alloy will.

be expanded as an example of what has to be
done.

P'F4&40= fA&40AAPA'F4A

+ (fA&40AB+f8~40BA)PAPBF4AB

+f8' oBBPB'F48 (22).
Here 84AA is the mean 1attice sum of the fourth
order zonal harmonic over those points sur-
rounding an atom of component A which are also
occupied by A atoms. This mean 1s found by
considering in turn the various A atoms in the
unit cell as origin. Similarly 840AB is the mean
sum over those points surrounding an A atom
which are occupied by 8 atoms. Notice that
840BA is not necessarily the same as 840AB.

Binary a11oys

Iron cobalt (body -centered cu-bic) In co.m--

puting X~ and K~ for iron-cobalt alloys we have
assumed that the lattice parameter e varies
linearly with atomic composition, "and that the

"A. Osawa, Sci. Rep. Tohoku Imp. Univ. 19, l09—121
(1930).Values of a for iron and for a 50—50 alloy, from un-
published work of F. E. Haworth„agree closely with
Osawa's curve of u-vs. -composition.
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TABLE IV. Calculated anisotropy of alloys.

Part. 1. Iron-cobalt —body-centered cubic solid solutions

Iron atomic percent
Cobalt atomic percent
Anisotropy coefficients

First (quadrupole part)
First (sextupole part)
First (total)
Second (sextupole)

100
0

90
10

80
20

70
30

10.26 7.80 5.43 3.14
15.20 11.27 8.32 6.89

Xi 25 46 19 07 13 75 9 53
Xg —167.1 —123.9 —91.6 —70.2

60
40

0.94
5.47
6.41—60.1

50
50

—1.16
5.58
4.42—61.4

40
60

—3.18
6.75
3.57—74.2

30
70

—5.10
8.98
3.88—98.8

Iron atomic percent
Nickel atomic percent
Anisotropy coefficients

First (quadrupole part)
First (sextupole part)
First (total)
Second (sextupole)

Nickel atomic percent
Iron atomic percent
Anisotropy coeAicients

First (quadrupole part)
First (sextupole part)
First (total)
Second (sext upole)

Nickel atomic percent
Cobalt atomic percent
Anisotropy coe%cients

First (quadrupole part)
First (sextupole part)
First (total)
Second (sextupole)

Nickel atomic percent
Iron atomic percent
Cobalt atomic percent
Anisotropy coeScients

First (quadrupole part)
First (sextupole part)
First (total)
Second (sextupole)

Part Z. Iron-nickel —body-centered cubic solid solutions
100 90 80

0 10 20

10.26 7.89 5.87
15.20 11.34 8.91

Xi 25.46 19.23 14.78
E2

—167.1 —124.8 —98.0

Part 3. Nickel-iron —face-centered cubic sohd solutions
100 90 80 70 60

0 10 20 30 40

K]
E2

—1.03—2.61—3.64
28.7

—0.81—1.71—2.52
18.8

—0.43—1.38—1.81
15.2

0.10—1.57—1.47
17.2

0.76—2.21—1.45
24.3

Part 4. Nickel-cobalt —face-centered cubic solid solutions
100 90 80 70 60

0 10 20 30 40

—1.03—2.61—3.64
28.7

—1.45—3.84—5.29
42.2

—1.95—5.29—7.24
58.2

—2.51—6.69—9.47
76.5

—3.14—8.83—11.97
97.2

1.54—3.26
1 072

35.8

0.39—3.60—3.21
39.6

—0.72—3.99—4.71
43.9

—1.80—5.28—7.08
58.0

—2.84—7.56—10.40
83.2

Part 5. Nickel-iron-cobalt —face-centered cubic solid solutions
50 50 50 50 50
50 40 30 20 10
0 10 20 30 40

50
50

1.54—3.26—1,72
35.8

50
50

—3.83—10.91—14.47
120.0

50
0

50

—3.83—10.91—14.74
120.0

40
60

2.42—4.67—2.25
51.4

40
60

—4.59—13.19—17.78
145.1

30
70

3.40—6.40—3.00
70.4

30
70

—5.41—15.67—21.08
172.4

Composition
Anisotropy coefficients (solid solution)

First (quadrupole part)
First (sextupole part)
First (total) Xi
Second (sextupol, .) X2

Anisotropy coeKcients (superstructure)
First (quadrupole part)
First (sextupole part)
First (total) Xi
Second (sextupole) Xg

—1.16
5,58
4.42—61.4

—0.18—1.42—1.60
15.6

—1.62
0.28—1.34—3.0

—5.26—4.73—9.98
52.0

Part 6. Comparison of solid solutions and snperstructure alloys
FeCo Ni3Fe Ni3Co

—2.22—6.10—8.32
67.0

—1.60—5,28—6.88
58.1

atomic moments are unaltered by mixture. The
latter assumption is probably wrong, in view of
the high magnetizations possible from 30 Co to
50 Co, but the general picture of what happens
is not much altered by mistakes in the magnetic
moments (Pq and Pc).

The experimental values of Ei at room tem-
perature agree fairly well in general trend with
the computed values of the quadrupole part of
X~, not at all with total Xi. We conclude that
the relative importance of sextupole terms, which
account for positive X~ at high cobalt contents,
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is already greatly diminished at this temperature.
The transition point from E~ positive to X~
negative cannot be brought to a cobalt content
of less than 45 atomic percent even by ignoring
sextupole terms entirely, so the quantitative
agreement is not wholly satisfactory in this
respect. The anomalous sign of observed. X2 in
iron is replaced by the expected sign at or near
the composition for which X~ passes through
zero. The present theory does not offer any
explanation of this.

The formation of the possible superstructure in
FeCo should reverse the positive sign of X~, and
negative sign of E2, predicted for very low
temperatures in the solid solution. If the quad-
rupole terms predominate, as we see that they
do at room temperature and above, E~ should
merely become more negative, X2 should still
reverse its sign. It would probably be difficult to
detect the latter effect because E2 must be small
in comparison with its low temperature limit for
either structure.

Iron nickel (body-centered-cubic) A few.—points
have been computed for body-centered iron-
nickel alloys. Nothing is known of their ferro-
magnetic anisotropy and the assumptions of
unaltered moment per atom and of linear change
of lattice parameter with increase in nickel
content are very rough approximations.

Nickel iron (face cen-tered cub-ic).—Jette and
Foote" have shown that the lattice parameter
varies linearly over a wide range in the nickel
rich nickel-iron alloys but not over quite so
wide, a range as here assumed. As in body-
centered iron-cobalt solutions the change in

sign of X& actually occurs at a composition
(24 percent iron) a little too near the starting
point to be accounted for, even by ignoring
sextupole terms altogether. Except for this the
qualitative agreement as to X& is reasonably
good. The sign of E~ disagrees with observation.
As in all the alloys and pure metals the observed
values of X2 are extremely small in comparison
with calculated values. A possible superstructure
(not yet observed to occur) at Ni&Fe has been
investigated. The changes in X~ and X2 which
should result from the formation of the orderly
structure are not very striking.

~ E. R. Jette, F. Foote, Trans. A. I. M. E. 120, 259—276
(&936).

Nickel cob-alt (foce cen-tered cubic) T.
—his series

has been reported' to show a positive X~, over a
narrow range near the nickel end. The calculated
X& is everywhere negative, and the model does
not seem to be Aexible enough to accommodate
itself to a double change in sign of E~. The rapid
descent of X~ as we approach the cobalt end is in
agreement with experiment. We prefer to leave
the misfit for further study rather than to devise
an ad hoc hypothesis to explain it. It may be
mentioned, however, that if X~ does have two
zero values on this boundary of the ternary
diagram it is very surprising that no magnetically
soft nickel-cobalt alloys have been developed.

Ternary a11oys

Ni ckel iron co-balt -(face cente-red cubic) As.—in-

gle cut of the ternary diagram has been made at
50 percent nickel. As expected from the binary
alloys, E& must be ascribed mainly to quadrupole
terms in order to agree qualitatively with the
experimental results, ' of which several lie on
this cut.

IV. CoNcLUs loN

Most of the minor d.iscrepancies mentioned
above could be avoided by using a less extreme
type of model, in particular by allowing the
dicircle latitude, ), to have other values than 0
and m/2. This seemed inadvisable in a first
survey of the data, but is actually well justified
at temperatures far from absolute zero, for the
blurring of exact alignment of magnetic axes can
be simulated by allowing ) to vary from either
of its limits with rising temperature. It is in
favor of our model that moderate departures
from either extreme value of ) involve changes
in sign of anisotropy coefficients, for this is
consistent with the fact that the values of these
coefficients fall to very low values long before the
Curie point is reached. The quantitative agree-
ment could be bettered in most cases by ad-
justing the relative radius, p, of the sphere on
which the dicircles are supposed to lie. It seemed
better to carry out the analysis without such
refinements. The next logical step would seem
to be the inclusion of strain effects, hitherto only
considered for dipole magnets at atom centers.

It is a pleasure to acknowledge the part taken
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in this development of ferromagnetic theory by
Dr. R. M. Bozorth of the Bell Telephone
Laboratories, whose acute suggestion of the
difference in shape between elementary magnets
in nickel and in iron' was the starting point of my

renewed interest in computing magnetic inter-
actions in ferromagnetic crystals, and with
whom I have discussed ferromagnetic anisotropy
on many occasions, both before and after under-
taking the present analysis.

APPENDIX I

Convergent series for,zonal harmonic lattice sums

The notation here used is especially convenient for
numerical computations.

Taking a lattice point as origin, let the vector distance
to any other point be R=ayr where u is the length of a
convenient edge of the unit cell, y is a numerical multiplier,
and r is a unit vector in the proper direction. In the cubic
system a is an edge of the unit cube, in the hexagonal
system u is an edge of the rhombus forming the base of
the unit prism. Let y1, y2, y3 be numerical factors expressing
the coordinates of any point in terms of the three edges of
the unit cell, a corresponding to y1. In the cubic system,

y =y1 +y2 +y3 ' and y y = (y2 y3 +y3 y1 +y1 y2 )/3

In the hexagonal system,

y2 = y12 —y1y2+y22+y&2c2

where c is the axial ratio, the ratio of the prism height to a.
For abbreviation put

In primitive lattices y1, y2, y3, q1, q2, q3 must be integers
and f, a factor in q terms for the hexagonal system, is
unity. In body-centered lattices, 2y1, 2y2, 2y3, (y2+y3),
(y3+y1), (y1+y2) ql q2 q3 (ql+q2+q3)/2 must be in-

tegers. In face-centered lattices, 2y1, 2y2, 2y3, (y1+y2+y3),
q1, q2 q3 (q2+q3)/2, (q3+q1)/2, (q1+q2)/2 must be in-

tegers. In hexagonal close-packing q1, q2, q3, and e&hey

y1, y2, y3 oy (y1 —2/3), (y2 —1/3), (y3 —1/2) must be in-

tegers; if (4q1+2q2+3q3)/6 is an integer, f=2; if
(4q1+2q2+3q3~1)/6 is an integer, f=3/2; if (4q1+2q2
+3q3+2)/6 is an integer, f=1/2; and if (4q1+2q2+3q3
&3)/6 is an integer, f=0. In all the summations the
origin of coordinates, y1=y2=y3=0, or q1=q2=q3=0, is
to be omitted.

A numerical parameter e, which appears in each term
of the formulae, may be given any convenient value
provided it is the same in all terms. The product ey=x
appears as the argument of a series of numerical factors
depending upon the probability integral. These are defined

by the equations

y12 yl yly2+ y2 and ~12 y 1 y2 (y1 —y2)

Let n„be the number of points obtained by permuting
~y1, ~y2, ~y3 in ways consistent with the symmetry of
the lattice. (In the hexagonal system, for example, ~y3
does not permute with &y1 and &y2. )

Let a lattice reciprocal to the R lattice be defined by its
vectors Q=a 'qq, and by the equations

0 igj.
(q'~-) =

1 i=j

2
gp(x) =x ' 1 —— e ~'d~

p

g (x) = 'Lgo(x)+(2/ «)~ "j,
g2(x) =x 'L3g1(x)+(4/ «)e

g3(x) =x 't 5g2(x) + (8/'1t «)e

g4(x) =x 217g3(x)+(16/~«)e —'j,
gs(x) =x 'I 9g4(x)+(32/~«)e *'j
g6(x) =x 't iig3(x)+(64/~«) e ~').

Second-order sums

(23)

and

q12 (4/3) (q12+q1q2+q22)

k126 ——(64/27) q12q22(q1+q2) 2.

The selection rules for y1, y2, y3 and for q1, q2, q3 may be
stated as follows. .

Here again q is a numerical multiplier, and q a unit vector.
Let q1, q2, q3 be numerical factors expressing the coor-
dinates of any point in terms of the three edges of the unit
cell (but e ' is not in general the edge parallel to q1). In
the cubic system,

q q1 +q2 +q3 and q q
2 = (q2'q3 +q3 q] +q1 q2 )/3.

In the hexagonal system

q'= (4/3) (q1'+q1q2+q2')+q3'c '.

For abbreviation put

Cubic:—

S2 ——(e'/6) Sn,x'g2(x) —(~'/2) Sn,g1(x)
(2~/3 )S+q exp ( 7f 2q2/ &2) +2 a3/3 m- «. (24)

Hexagoncl:—

S2p= (e /4)S~ry12 y x g2(x) —(t /2)Snrg1(x)
—(2m+3/3c)Sfnqq12'q ' exp (—m'q'/e')+2&'/3m«, (25)

S22 ———(e'/4) Sn„(y12' —2y32c') y 'x'g2(x)
+(2m g3/3c)Sfnq(q12' —2q32c ')q 'exp (—m'q2/e2). (26)

Fourth-order sums

Cubic:—

S4p= (e /72)Sn„(1 —6y42y y ')x'g4(x) —(c'/12)Sn, x'g3(x)

+ (&5/8) Szrg2(x) + (2~ /9) Sn q(q' —6qpq 2)q

Xexp (—~'q'/e') —e'/5~«, (27)
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S4p ——(~'/180}Sn„(1—15r 2' r ')x4g4(x)

1(47r3/45)Snq(g4 —15g 2g 2)g 2 exp (—~ g2/$2). (27a)

Hexa,gong, l:—
S4{}= (0'/64}Sn, r12'r 'x'g4(x) —(e'/8) Sn, r122r 'x'g 6(x)

+ (e&/8) Sn,g2(x)+ (~ g3/6c}Sfn, g12 g-
Xexp (—m'g2/e2) —e'/5n &, (28)

S4p ——(e'/320) Sn„(r12'—4r122r32c2) r 4x4g4(x)
—(e'/80) Sn„{r122—2r32C2}r-2X2g, (X)
+ (7r'+3 /30c}Sfn, (g12' —4g1 22g32c-2}g-'

Xexp (—m'g2 je2} (28a}
S4p ——(e'/2240) Sn, (3r12' —24r122r3'c'+ 8r3'c') r 'x'g4(x)

+(~'+3/210c) Sfn q(3g12' —24g122g3'c

+8g3'c ')g ' exp (—m2g2/e2}. (28b)

There are some errors in formulae corresponding to (28),
(28a), (28b), in Phys. Rev. 44, 38—42 (1933). In particular
Eqs. (37), (38), {42), {43), (44), (46) of that paper are
incorrect. Numerical results were correctly reported,
nevertheless.

Sixth-order sums

CNbk—

S6Q= (e'/2160)Sn, {1—9rs2rp r '+3r12r22r32r ')x'g6(x)
—(c'/144)Sn„(1 —6r r'r 4)x'g6(x)

+ (gv /48) Sn„x2g4(x) —(e'/48) Sn„g3(x)
—(4~/135) Sn, (g6 —9gpgpg2+3g&2g22g32) g-'

Xexp (—~2g2/e2)+ e'/21~&. (29)
S6p = (q~/14400) Sn, (2—33r.2r 'r +2 1r12r2'r3'r 6)x'g6 (x)

—(c'/720) Sn, (1—15r'r 'r 4)x4g6{x)

—(ms/225) Sn, (2g6 —33gs2gpg2+21g12g22g32) g
2

Xexp {—x2g2/e2) (29a)

S6Q —(6~/1 6800)Sn, (2 —63r 2r 'r '+23 1r12r2 r32r 6)x6g6(x}
—(2+/525) Sn, (2g' —63g;2g;2g2+231g12g22g32) g '

Xexp (—~2g2/e2). (29b)

S63= —(e'/720) Sn,r12'r 'x'g6(x)
+ (e'/40) Sn, r124r 'x'g6(x}
—(,7/10) Sn„r,,2r-2x2g, (x}+(.7/15) Sn,g, (x}
+ (8~'+3/135c}Sfn,g126g ' exp (—~2g'/~')

—16.~/105 ~. (30)

S„=—(ev/5040) Sn, (r12' —6r124ra2c2) r 'x'g6(x)
+{g7/420}Sn„{r124—4r122r32c2)r 4x4g6{x)
—(&7/210) Snr {r122 2r32c2) r-2x2g4(x)

+ (8w'Q3/945c) Sfn Q(g12 —6g12 g3 c )g
Xexp (—m2g2/e2). (30a}

S63= —(~7/15120) Sn„(r126—12r124rs c'+8r12'r3~c')r 'x'g6(x)
+(e7/7560}Sn„{3r124—24r122r32c2+8r34c4) r-4x4g6(x)

+ (8''+3/2835c) Sfn (g126-12g12'g32c '
+8g12'g6'c '}g ' exp (—m'g'/e'). (30b}

S63 = —(~'/166320) Sn, (5r12' —90r124r32c2

+120r122r34c' —16r26c6)r 6x6g6(x)

+ (8m'+3/31185c}Sfn, (5g126—90g124ga'c-2

+120gl22g3 c-4 16g36c-6)g—2 exp ( ~2g2/q2) (30c)

S66= (e'/46080}Sn, (2r12' —27l126)r 'x'g6(x)
+ (~'+3/1080c) sfn, {2g12'—27k12') g-'

Xexp (—7r2g2/e2}. (31}

Erratum: The Sign of the Magnetic Moment of the K" Nucleus

H. C. TORREY

Columbia Universify, ¹mYork CAy

(Phys. Rev. 51, 501 (1937})

HE tit1e of Fig. 6, p. 506 should read as fo1lows:
"Fig. 6. Asymmetries in deflection patterns of (a) m= —1 atoms with

negative strong field moments, (h) m= —1 atoms with positive strong field
moments. "

The description of these curves in the text is correct.


