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The elastic scattering of neutrons by deuterons is considered for energies small enough so
that only the /=0 part of the incident wave is different from the corresponding part of a plane
wave. The Breit-Feenberg Hamiltonian is used, assuming the same potential between all pairs
of particles. Any possible polarization of the deuteron by the neutron is neglected, although the
individual particles in the deuteron are taken into account by an approximate method. This
method is capable of including exchange between the two neutrons. When the exchange term
is included, the theory gives a cross section for thermal neutrons two to three times greater than
observed; the cross section for 2.5 Mev neutrons is slightly greater than observed.

N this paper we shall consider the elastic scattering of neutrons by deuterons at energies small

enough so that only the /=0 part of the incident wave is different from the corresponding part of a

plane wave. The interaction potential will be assumed to be the same for all pairs of particles! and to
have the form used in previous researches;*™*

V(r)=J(n[(1—g)P"+gP?]=J(r)[1—3g+2¢go1 05 ]P",
J(r)=De 2 —2De~¢", €=2/r,.

(1

Here, P¥ and PH are the Majorana and Heisenberg operators, respectively, and the ¢'s are the Pauli
spin matrices of amplitude %. Using nuclear units of length (8.97 X107 cm) and of energy (0.506
Mev), we have 7=0.3, D=71.2,and g=0.3.°

GENERAL THEORY

Taking particle 1 to be the incident neutron and particle 3 to be the proton, we wish to find a
solution of the wave equation (in nuclear units)

[—=3(A142s42) 4 V(r12) + V(r15) + V(res) — Wo— W]I¥ =0 )
that has the asymptotic form (see Fig. 1a) as r—
\I,_)l:eikr cos 9+r~leikrf(0):]¢0(723)S(123>’ (3)

in the rest coordinate system (center of mass at rest). The beam of neutrons is directed along the
negative z axis. .S is a function involving only the spins (to be discussed in the next section), ¢o(?) is
the wave function for the symmetric normal state of the deuteron with (negative) energy Wy, and W
is the kinetic energy of the incident deuteron in the laboratory reference system (deuteron initially
at rest).

* Preliminary report presented at the Washington meeting of the American Physical Society, April 28, 1937.

! Breit and Feenberg, Phys. Rev. 50, 850 (1936).

2 Morse, Fisk and Schiff, Phys. Rev. 50, 748 (1936); 51, 706 (1937). See also Ochiai, Phys. Rev. in press.

3 Fisk, Schiff and Shockley, Phys. Rev. 50, 1090 and 1191 (1936).

4 Schiff, Phys. Rev. 51, 783 (1937).

5 The breadth used here (ro=2.7X1071 cm) is somewhat larger than the breadths used by other workers (Bethe and
Bacher, Rev. Mod. Phys. 8, 82 (1936), Feenberg and Share, Phys. Rev. 50, 253 (1936), and Rarita and Present, Phys. Rev.
51, 788 (1937)) even considering the difference in shape of the various potentials. The broader potential agrees (reference
2) with the older data (Harkins, Kamen, Newson, and Gans, Phys. Rev. 50, 980 (1936), Kurie, Phys. Rev. 44, 461 (1933))
on neutron-proton angle scattering. On the other hand, it seems to be incapable of explaining either the more recent data
on this point (Bartlett, Phys. Rev. 51, 889 (1937)), which is not yet certain, or the binding energy of H3, if the variational
method of Rarita and Present, Phys. Rev. 51, 788 (1937) is as accurate as it appears to be. The calculations of the present
paper were completed before the appearance of the paper of Rarita and Present. Since our calculations are essentially
qualitative, it hardly seems worth while repeating them at this time. It does seem that the assumption of a narrower po-
tential might bring the computed values closer to the experimental data on neutron-deuteron scattering.
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150 I.. I. SCHIFF
try to find a wave function which is the product of
the normal deuteron function and a function for
the scattered neutron. The coordinate system
natural to the problem is that shown in Fig. 1a, in
which the variables are 7,3 for the deuteron, and
and 6 for the incoming neutron. The V’s given by
(1) involve space permutation operators, and will
introduce functions of the medians of the (123)
triangle other than » when they operate on a
function of such coordinates. If a successive ap-
proximation method is used, this will make the
resultant integrals exceedingly difficult to evalu-
ate. This can be avoided by using the coordinate
system of Fig. 1b, in which the incoming neutron
is referred to the proton 3 rather than to the
center of mass of the deuteron. The wave func-
tion then depends on the coordinates 7q3 of the
deuteron and 7,3 and 6, of the incoming neutron;
the space permutation operators introduce only

(a)

F1G. 1. The coordinate systems used in the theory. Particle
3 is the proton.

It soon becomes evident that in order to treat

the problem in a reasonably simple manner, it is
necessary to neglect any possible polarization of
the deuteron by the incoming neutron, and to

the three sides of the (123) triangle into the suc-
cessive approximation integrals. The Laplacian
is no longer separable, but has the form

1 9 Ii}
(A1 Ao+ Ag) U (733, 71, 91)={——— 7232”‘“)

1 0 lé] 1 é] . lé]
+— 7132——*) -+ — —{ sin 01-—)
725° 723 0793

7’132 6713 67’13 7‘32 Sin 01 801 601

+COS 012

9?2 cos 0y —cos 6, cos 0,2 02
+( )

}‘I’(f’z.n 13, 01). (4)
d(cos 61)9713

97130723 713

Since we have decided to neglect polarization effects, (4) can be averaged over the orientation of the
deuteron. Then the last two terms vanish, leaving

A1+ A0+ A5) W (72n, 713, 01) = (D93’ + AL )W (723, 713, 01), (5)

where we adopt the definitions

1 9 a 1 0 a 1 a 0
Azs':'—“_(7232—), A1/=”—‘_‘—<7‘132 )+ , **“(Sil‘l 91——)-
7’232 (97'23 67’23 7132 6713 6713 7’132 sin 0} 601 601

Equation (3) gives the asymptotic form of the “‘ordinary” wave, in which the initially incident
neutron is observed. There is also the ‘‘exchange’ wave, in which the incident neutron changes
places with the neutron initially bound in the deuteron, and the latter is observed. In the coordinate
system of Fig. 1b, which we shall adopt throughout this paper, the asymptotic forms corresponding
to the ordinary and exchange waves are

(5)

W—s[eikr1s cos 01ty ~lgikrisf(§,) |o(723) S (123),
V723 le*2g (02) po(r13).S" (123),

as r13—> ®,

(6)

and as ro3— o,

When ¥ is made antisymmetric in the two neutrons (particles 1 and 2) as required by the Pauli
principle, it has the asymptotic form when 73 (say) is large
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W(123) — W (213)—>o(r2s) {ei 713 c03 1S5(123) 47157 Te* 3] £(0,).5(123) — ¢(6:).5'(213)]}. )

The forms (7) and (3) must of course involve the same k. On noting that the kinetic energy in the rest

coordinate system is 2W/3 and the reduced mass is % of the neutron mass, it is readily seen that

k2=8W/9.
Since we are neglecting polarization and want ¥ to have the asymptotic forms (6), we write it as

U = ¢o(723) F (712, 01)S(123) +0(713)G(723, 02)5'(123)+, (8)

where ® involves a sum over excited and unbound states of the deuteron and will be neglected
hereafter. We assume that in the zero-order approximation G vanishes and F is a solution of the
equation

LA/ 4k2— U(r13) JFo(713, 6:) =0, )

where U is the average field of the deuteron for the incoming neutron and can be written approxi-
mately as

U(r) = Doe 207 — 2 Dye= <07, (10)

It is clear that U must not contain a Majorana operator.

It has been shown by Morse® that the solution of (9) is given quite closely by a function of the
form?

Fo(r, 0) = (kr)~'e[sin (kr+08) —e=¢" sin § cos kr ]+ (21+1)7'Pi(cos 8) 7i(kr) (11)
>0

whenever U has the general shape of a potential hole. For the potential (10), Morse® has found that
when ¢ is set equal to €, and 4 is obtained by setting J Fo(A,'+k*— U)Fodr equal to zero, the =0
phase shift 6 obtained in this way is never more than 7° from the phase shift obtained by exact
solution of (9), and is generally less than 3° off, for a range of values of k, Dqand ¢. The depth D, of U
depends strongly on spin orientation and on the manner in which the omission of the Majorana
operator in U is corrected for; the mean breadth (2/¢) of U, however, depends principally on the
mean breadth (2/¢) of the two-body potential (1). We take for the normal state deuteron function the
normalized variational form?

do(r) =(a*/m)te~ ", a=3.236, (12)

which gives within five percent of the deuteron binding energy (4.35 nuclear units) obtained from an
exact solution of the deuteron equation

[A23l+ Wo"' V(723):]¢0(1’23) =0. (12/)

Then we can fix 713 and average the potential [ J(r12) +J(r15) ] over 73 and ;5. The resulting estimate
€=>5.701 is relatively insensitive to D and g. This ¢ is somewhat smaller than the corresponding
quantity e=6.667 appearing in (1), as would be expected.

Morse’s method for finding the /=0 phase shift using the potential (10) would serve to give the
scattering for energies up to the point where the /=1 phase shift becomes appreciable, if we had some
knowledge of the depth D, of the equivalent field U which best accounts for the operator nature of the
V’s. Dy can be estimated by writing (2) in a form which can be used to calculate the next approxi-
mation to F. Neglecting the G and ® terms in (8), we obtain on substitution into (2), using (5) and
(12’) and subtracting U¢oF.S from each side

LAY 4k — U(r13) Jpo(728) F(r13, 61)S(123) = [V (r12) + V(r1s) — U(r13) Jopo(r23) F (715, 81)S(123).  (13)

¢ Morse, abstract 26 at the Washington meeting, April 28, 1937.
7 Morse, Vibration and Sound (McGraw-Hill, 1936), p. 246, defines the functions: Jn(8) = (w/22)3- Tnyy(2), and gives
several of their properties.
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Multiplying both sides of (13) by ¢¢*(723)S(123), integrating over 7,3, and putting the approximate
form F, for F on the right side, we obtain

[A+ k2~ U(r15) JF1(713, 61)

= f¢o*(793)5(123) |: V(_f’lz) + V(7’13) —_ U(f'[a) :|¢o(?'23) Fo(f']g, 01)5(1 23)dT23 (14)
Remembering that Fy is a solution of (9), the asymptotic form of the solution of (14) is (see Fig. 1¢)

Fl(f, 0')"“)F0(7’, 0) - (47T7’)'1eikrfF0(1’13, ‘n'*“w)(f)()*(fzs)s(lzs)[V(712)+ V(1’13) - U(f';g)]
X o(723) Fo(r1s, 61)S(123)d 7123,

as r— o,

(15)

We now have an expression for the first approximation F; which involves the difference between the
true potential [ V(r12) + V(r13) ] and the average potential U(ry3). Then the best approximation to U
from our point of view is that which makes the integral on the right side of (15) vanish, so that
F1 = F().

A form like (15) for the first approximation to G can be obtained by similar methods. Neglecting the
& term in (8), we obtain on substitution into (2), using the equations obtained from (5) and (12) by

nterchange of 1 and 2

[AY +E2— V(r1s) — V(r23) Jpo(r13)G (713, 62)S(123)

= [V(f'lz) + V(r13) —A/— k2]¢0(723)F(713191) S5(123).

(16)

Putting approximately V(r1s)+ V(ra3) = U(r2s) on the left side of (16), and F, for F and
(A +EB2) Fo(r13, 01) = U(r13) Fo(713, 01)

on the right side, we obtain

[A2,+k2'—‘ U(7'23)]¢0(1’13)G(723, 02)5’(123) = [V(flg) + V(Tla) - U(7’13):|¢0(1’23) F0(1’13, 01)5(123)

(17)

Multiplying both sides of (17) by ¢¢*(r13)5’(123) and integrating over 713, we obtain an equation
analogous to (14) ; the asymptotic form of its solution is (see Fig. 1c)

Galr, 8)— — (47r)teibr f Fo(ras, 71— )bo*(r12) S (123) [ V(r1z) + Virg) — Ulraa) ]

SpiNn FuNcTions?

The spin function S(123) must represent a
neutron (particle 1) and a deuteron (particles 2
and 3) far apart, when the deuteron is known to
be in a triplet state; it must also be an eigen-
function of the operator ;- (o2+03) in order to
remove off-diagonal matrix components which
would prevent convergence of the successive
approximations. The spin states divide into
quartets (S,) and doublets (S,)

8 The treatment given here is similar to that given in
reference 4 in the section labeled ‘‘symmetry properties.”

X do(ras) Fo(r13, 61)S(123)d 7123,

as y—x,

(18)

Si=(++4+),
S¢=(1/VAL++=)+(+ =) +(=++)]
S8=/V3L(——+)

L, TRl @)
Si=(——-),
S =(/VOL(++=)+(+=+)=2(—++)]
Se=1//6)[(= = +)+(=+-)=2(+-—)]

Here, a term such as (+ — +) signifies that spin
state in which particles 1 and 3 have spin
components whose eigenvalues are +1 along
some arbitrary axis, and particle 2 has a spin
component whose eigenvalue is —3% along the

same axis. When neutron 2 is free, and particles
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1 and 3 are bound in the deuteron (exchange
wave), the spin states are given by (19) except
that positions 1 and 2 are interchanged; thus
S'(123) = S(213).

If an energy M has the general form
Ao+Boﬂ'1‘02+C001'03+D002'03, where Ao ,etc.,
may be permuting functions of the space coordi-
nates, it is readily shown that all matrix elements
of this energy of the form SM.S or S’ M.S vanish
unless the two spin functions correspond both to
quartet states or both to doublet states. Thus
only quartet-quartet and doublet-doublet transi-
tions are possible. Since the final quartet and
doublet states are orthogonal, we can compute
the quartet and doublet scattering separately,
and later combine the cross sections in the ratio
2 : 1 of their statistical weights. With the help of
(7), we have the result that the whole differential
cross section in the rest coordinate system is

7(0)dw=%[2]f.(6) —gq(6) |
+ [ fa(6) — g4(6) [ *Jdow.
The subscripts refer to the use of quartet and

doublet spin functions. in calculating f from (15)
and g from (18).

(20)

REsuLTs

The integrals (15) and (18) can be evaluated
analytically for all energies (k values) with the
help of the relation®

e—are—Briz—yra3
f dT19;
712713723

»

167%

T @B BN (v +a)

although the computations become exceedingly
complicated for £>0. When £=0, (11) becomes

Fo(r, 0)=14(A/r)(1—e=¥7), (22)

and the integrations are readily carried through.
The f and g in (20) are then independent of 4, and
the scattering is spherically symmetric in the rest
coordinate system. In (22), A= +lim (sin §/k) as
k—0, according as & approaches an even or odd
multiple of =. The criterion for determining
whether §—0, m, 2w, - -+ as k—0 is whether the
potential hole U contains 0, 1, 2, - - negative
energy levels;? these levels may not correspond
to physical reality. It turns out that the U’s
obtained below for both the quartet and doublet
cases each contain one level, so that § ap-
proaches .

21)
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To determine Do, we set k=0, ¢ =¢y=5.701,
and find by trial and error a pair of values of Dy
and A that will make the integral on the right

[
f

W Mev
N

) N "
o ! 2 3

F16. 2. Elastic scattering cross section of deuterons for
neutrons as a function of incident neutron energy; without
exchange (solid line), and with exchange (dotted line).

side of (15) zero and will also satisfy (9) ac-
cording 'to Morse's criterion (vanishing of the
average H —k?). This must be done twice, using
quartet and doublet spin functions. For the
quartet case, Dy=70.0 and A= —0.564; for the
doublet case, Dy=62.0 and A= —0.629. We can
then say that the U’s given by (10) with the
above Dy's and ¢ =35.701 in both cases are the
best representations of the average field of a
deuteron for an incoming neutron, when the
coordinate system of Fig. 1b is used. For k=0,
f=A; for k>0, the /=0 phase shift can be found
by Morse’s method, in which case f=sin §/k. The
higher I phase shifts cannot be found by this
method, so that our calculations are good only up
to energies where the /=1 phase shift becomes
appreciable. The total cross section computed in
this way (neglecting exchange) is plotted as the
solid line in Fig. 2. The effect of the exchange
wave can be computed at zero energy by using
(18) and (22). It is found that g is 4+0.352 for the
quartet case, and —0.248 for the doublet
case. The total elastic cross section at zero
energy (including exchange) is, from (20),
(47/3)[2X(0.916)2+4(0.381)2]=7.64 square nu-
clear units or 6.11X10~% cm? This is plotted as
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the solid circle in Fig. 2. The evaluation of (18) is
very difficult for £>0; however, it is reasonable
to assume that the exchange effect drops off
fairly rapidly with increasing energy. Although
further calculations should be made on this point,
the dotted curve shows roughly the expected
behavior of the total cross section, including
exchange. A further improvement in the theory
could be effected by evaluating (15) as well as
(18) for k>0 instead of using Morse’s more
approximate method; at the present time the
increased accuracy does not seem to warrant the
considerable computational labor that would be
required.

It is interesting to note that the cross section
at zero energy due to the initial quartet spin
state is almost six times that due to the initial
doublet spin state, even omitting the effect of the
different statistical weights (see preceding para-
graph). It seems likely that this arises principally
from the short-range repulsion between neutrons
with parallel spins due to the Pauli principle.

The only published experimental values for the
neutron-deuteron collision are those of Dunning
et al.,’ which include capture as well as elastic
scattering cross section. However there is good
reason'® to believe that the capture cross section
is negligibly small compared to the elastic
scattering cross section even at thermal energies.
The experimental cross sections using D.O
are 4.0X10~2 cm? for thermal neutrons, and

9 Dunning, Pegram, Fink and Mitchell, Phys. Rev. 48,
265 (1935). I am indebted to Professor Dunning for con-
firming these values recently.

¥ Kikuchi, Aoki and Takeda, Tokyo Inst. Phys. and
Chem. Research 31, 195 (1937).

SCHIFF

1.6 X10~* c¢m? for neutrons of about 2.5 Mev
energy. The effect of chemical binding of the
deuteron in the D;O molecule is negligible at the
higher energy, but will serve to reduce the
experimental value for thermal energy neutrons!
by an uncertain factor that is probably between
1.5 and 2.0. Thus the theoretical value is two to
three times too large at zero (thermal) energy,
and about 25 percent too large at 2.5 Mev
(see Fig. 2). The theory would give worse
agreement than indicated at the higher energy if
the /=1 phase shift were appreciable, but it
seems unlikely that it will be large at this
energy.

In conclusion, we can say that the agreement
between theory and experiment is at least
qualitatively satisfactory, and that it seems
likely that a more accurate theory (taking
polarization into account, for example) will be
capable of explaining the experiments quanti-
tatively. The assumption of a narrower and
deeper potential between pairs of particles® would
probably make the cross sections calculated here
somewhat smaller, improving the agreement
with experiment.

It is a pleasure to thank Professor Philip M.
Morse for helpful discussions of many points of
the theory, particularly in connection with the
positive energy wave function.

U Fermi, Ricerca Scient. 2, 13 (1936). The ratio 4 : 1
given by Fermi between the cross sections of slow neutrons
on rigidly bound protons and on free protons, becomes
2.25:1 for the neutron-deuteron collision. The precise
value of the ratio of the observed cross section to that for a
free deuteron depends on the molecular energy levels and
on the neutron energy; it is probably between 1.5 and 2.0



