Hyperfine Structure of the Resonance Lines of Rubidium

The resonance lines λ 7800 and λ 7947 of rubidium have been photographed with Fabry-Perot etalons of spacing 1.5 and 1.8 cm. Two experimental arrangements were used : (1) The light from a helium-filled Geissler tube containing a small quantity of rubidium was focused directly on the slit of the hyperfine structure spectrograph. The tube was cooled below the point of appreciable self-reversal. (2) Light from the same source was passed through a Jackson-Kuhn atomic beam tube before entering the slit.

Patterns shown in Figs. 1 and 2 were observed for the two lines. Relative positions of the components were measured within 0.003 cm⁻¹. The measured values of the separations agree with those of Kopfermann and Krüger¹ within the error of these measurements. The values of the separations are compared in Table I.

TABLE I. Comparison of measurements on Rb resonance lines.

Kopfermann and Krüger 96 220 82 107 255 Author 97 217 79 107 252	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
--	--

The components A, B, C, and D are ascribed to isotope 85 and a, b, c, and f to isotope 87, the isotopes being present in the ratio 3:1. Values of $\Delta^2 S_{\frac{1}{2}}$, $\Delta^2 P_{\frac{1}{2}}$, and $\Delta^2 P_{\frac{3}{2}}$, the hyperfine structure separations of the levels, obtained from the above data, were 0.102 cm⁻¹, 0.016 cm⁻¹, and 0.009 cm⁻¹ for isotope 85, and 0.225 cm⁻¹, 0.027 cm⁻¹, and 0.015 cm^{-1} for isotope 87. $\Delta^2 P_{\frac{3}{2}}$ represents a total separation of extreme levels; S_{i} and P_{i} being double only.

In addition to the above measurements, experimental arrangement (2) made it possible to resolve components C and D each into two components whose separation is due to $\Delta^2 P_4$. The separation of components C was measured and a value of 0.015 cm⁻¹ obtained for $\Delta^2 P_4$, in agreement with the above value. This experimental value in conjunction with the separation C-D of the unresolved components leads to a value of 0.102 cm⁻¹ for $\Delta^2 S_{\frac{1}{2}}$. Millman and Fox² obtained 0.1018 cm⁻¹ for this separation by the atomic beam method of "zero moments."

The value of $\Delta^2 S_4$ for isotope 85 gives, from Goudsmit's

FIG. 1. Hyperfine structure pattern for λ 7800.

FIG. 2. Hyperfine structure pattern for λ 7947.

formula for s electrons g(I) = 0.55. $\mu = 1.4$ nuclear magnetons on the basis of the value I = 5/2 of Millman and Fox. The experimental value of $\Delta^2 P_{\frac{1}{2}}$ obtained from experimental arrangement (2) makes it possible to calculate g(I) from Goudsmit's formula for p electrons, giving g(I) = 0.68 and $\mu = 1.7$ nuclear magnetons. The percent difference between the two values for μ is the same as the percent error in the measurement of $\Delta^2 P_{i}$.

	A. V. HOLLENBE	RG
New York University,		
Washington Square College,		
New York, New York,		
June 18, 1937.		
¹ H. Kopfermann and H. Krüger, Zeits	s. f. Physik 103, 485 (193	36).

36). ² S. Millman and M. Fox, Phys. Rev. 50, 220 (1936).

Artificial Radioactivity Produced by Alpha-Particles

Bothe and Gentner¹ have reported the production of a radioelement of 38 minutes half-life in zinc bombarded with 16 Mev gamma-radiation; this activity they have attributed to Zn⁶³, produced in the reaction Zn⁶⁴ (γ , n)Zn⁶³. In an earlier communication,² we stated that this activity did not appear in the case of Ni bombarded with 7 Mev alpha-particles, although it might have been expected according to the reaction Ni⁶⁰ (α, n) Zn⁶³. We did find a new radioactive isotope of copper, Cu⁶¹, formed in the reaction Ni⁵⁸ (α, p) Cu⁶¹. The same activity has been reported by Thornton³ in nickel bombarded with deuterons.

We have now removed the thin platinum foil which served as an exit window for the alpha-particles, so that targets can be bombarded directly in the main vacuum chamber of the cyclotron. The additional 1 Mev of particle energy gained thereby has enhanced greatly the total activity in Ni bombarded with alpha-particles, and the presence of a radioelement of half-life about 37 minutes is now evident. The short-period activity is chemically separable from the much stronger Cu⁶¹, and is doubtless due to Zn63. The relative initial intensities, corrected to infinite bombarding time, are in the ratio Cu⁶¹: Zn⁶³ = 1.9 : 10. We believe that a small amount of Zn^{63} was present in Ni bombarded with the 7 Mev alpha-particles, accounting for the fact that the period given by us² for Cu⁶¹ (3.25 hours) was too low, the correct value being that reported by Thornton:³ 3.4 hours.

A paper dealing in detail with our experiments is in preparation.

Palmer Physical Laboratory,	Lo
Princeton University,	W
Princeton, N. J.,	••
July 1, 1937.	

OUIS N. RIDENOUR . I. HENDERSON

¹ Bothe and Gentner, Naturwiss. 25, 191 (1937).
² Ridenour and W. J. Henderson, Phys. Rev. 51, 1102 (1937).
³ Thornton, Phys. Rev. 51, 893 (1937).