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The Effect of Tension on the Electrical Resistance of Single Tetragonal Tin Crystals
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The adiabatic tension coefficient of resistance of single tetragonal tin crystals has been
determined for various orientations. Bridgman's theory, as modified by Cookson, has been
extended to the tetragonal case and the experimental points found to lie within experimental
error on the curves computed according to this theory. As measured directly, the tension
coefficients depend both on the primary and secondary orientations of the crystal; for 8 =90'
they depend on the secondary orientation which is contrary to what has been found in the
case of the trigonal crystals studied. The tension coekcients for specific resistance are found
by allowing for the change in resistance which necessarily arises from the change in dimensions
and these are found to be independent of the secondary orientation whatever the primary
orientation, again contrary tp what holds for trigonal crystals.

N previous papers' the author has studied
- - experimentally the effect of tension on the
electrical resistance of the trigonal crystals,
bismuth and antimony, and of the hexagonal
crystals, zinc and cadmium. In the meantime
Bridgman' has developed a general theory, con-
sistent with these experimental results, which he
applied specifically to the case of trigonal
crystals, giving the tension coefficient of the
specific resistance as a function of the primary
and secondary orientations of the crystals with
respect to the cylindrical axis of the casting. This
theory was slightly modified by Cookson' who
pointed out that on the basis of the necessary
symmetries the matrix representing the piezo-
resistive coefficients was not required to be sym-
metrical, in that p„, was not necessarily equal to
p„, as Bridgman had assumed; there is, however,
as yet no experimenta1 evidence as to this. It was
easy to pass from the trigonal to the hexagonal
case since some of the coefficients appearing in
the case of the trigonal crystals need only be put
equal to zero to give the hexagonal case. Thus it
came about that the tension coefficients of the
hexagonal crystals were independent of the
secondary orientation. It is therefore of interest
to extend both the experimental and theoretical
considerations to the study of a more drastically
different type of crystal; and so tetragonal tin wa
chosen. The tetragonal case, however, is not corn

pletely unrelated to those previously studied

inasmuch as the hexagonal case may be con-
sidered a degenerate example of the tetragonal;
for one may pass from the comparatively com-
plicated theory of the tetragonal to the simpler
hexagonal by postulating a suitable relation
between its piezoresistive coefficients.

APPLIcATIQN oF THE BRIDGMAN THEoRY
To TETRAGQNAL CRYsTALs

To find the dependence of the tension coef-
ficient on the primary and secondary orientations,
the procedure is similar to that for the trigonal
case.' As before the change in specific resistance
is taken as a linear vector function of the six
components of the tension tensor:

p11X*+p12 Yy+ p 13Z

+p14 Yz+ plsZ*+ p16Xy~

dry =p21X,+p22Y„+ p23Z,

+p24 Y,+p2sZ. +p26Xy,

Ar3 ——p31X,+p32 Y„+p33Z,

+ p34 V,+ p35Z +p36X„, (1)
25r4 ——p41X.+p42 Yy+ p43Z,

+p44 Y.+p4sZ*+ p46Xy,

2~rs= pslX.+p52 Yy+ p53Zz

+ps4 Y.+pssZ*+ p56Xy,
2~r6= p61X.+p62 Yy+ p63Z,

+p64 Y.+p6sZ. +p66Xy.

1Mildred Allen, Phys. Rev. 42, 848 (1932); 43, 569
(1933);49, 248 (1935).' P. W. Bridgman, Phys. Rev. 42, 858 (1932).

3 John %'. Cookson, Phys. Rev. 47, 194 (1935).

The factor 2 is introduced into the last three
equations to bring the notation into agreement
with that of Bridgman which has been used
throughout this work. Taking the Z axis in the
direction of the crystallographic axis, the crystal
has a tetragonal axis of symmetry in the Z direc-
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tion and digonal axes of symmetry in the X and
Y directions. When these conditions are applied
to the general relations of Eq. (1) these take the
simplified form:

~r.=pllX +p12~ +p13Z

p12X +pll ~ +p13Z
Ar, = p31X +p31 Y„+p33Z„ (2)
Ar4 ——

2 p44~. ,
1

1Ar5 ——
2 p44Zz&

ar6 —— —,p«Xy.1

The total change in the specific resistance AR is
then found from these values using the relation

DR=Dr, cos2 a+Dr„cos P2+Ar, cos2 y
+2hr4 cos P cos y+2hr, cos u cos y

+2hre cos n cos P, (3)
where n, P and y are the angles made by the X,
7 and Z axes with the axis of figure of the
cylindrical casting and so are related to the
primary orientation 0 and the secondary orien-
tation' p in the following way:

cos n =sin 8 sin ip, cos P =sin 0 cos y,
cos y=cos 0. (4)

Carrying out these indicated substitutions, the
final equation connecting the tension coefficient
P (the relative change in specific resistance per
unit applied tension) with the orientation angles
1S

6pll+2 p12+ p«
PP1 = sin4 0+ p33 cos4 8

+ (p13+ p3i+ p44) sin' 0 cos'

2 pll —2 p12 —p«+ — sin' 0 cos 4p, (5)

where p& is the specific resistance for the primary
orientation 8. Since the term in cos 4p is mul-
tiplied by sin4 0 it is immediately evident that
the tension coefficient must vary with p when 0
is 90'. In this it differs markedly from the trigonal
case where the coefficient of cos 3p was a
function of sin 0 cos 0 and so was necessarily
zero for 0=90'.

To pass from the tetragonal case with its seven
characteristic coefficients to the hexagonal one
with six it is only necessary to substitute for p«
its value for the hexagonal case 2(pii —pi~). This
causes the coefficient of the term in cos 4@ to
vanish, as it must to agree with both theory and
experiment according to which the tension coef-

ficients of hexagonal crystals are entirely inde-
pendent of the secondary orientation, and reduces
the coeAicient of sin' 0 to its value-pll for the
hexagonal case.

EXPERIMENTAL PROCEDURE

The experimental procedure in the case of tin
crystals was much the same as that used for zinc
and cadmium.

The crystals themselves were made of Kahl-
baum metal by the author in Bridgman's labora-
tory by slowly lowering the bent glass mold con-
taining the tin through an electric furnace in an
atmosphere of CO2 to prevent oxidation. They
had a diameter of approximately a sixteenth of
an inch and a length of from one to two inches.
They were also very pliable and needed to be
handled with great care to prevent undesirable
bending. The sensitivity of the galvanometer
used, with the scale at about five meters, was
0.98)&10 ~ volts per centimeter deflection, or
about twice the sensitivity of the one that had
been available previously. The readings could
not be made closer than to one-half a millimeter.
Even under these favorable conditions, since the
specific resistance of tin is small, the tension
coefficients not large, and the elastic limit of tin
crystals very low, it was rare to get a deflection
greater than 2 cm and many of the measurements
made involved deflections much smaller than
this.

RESULTS

Some two dozen tin crystals of varying orien-
tations were measured, their temperature being
kept close to 30.0'C. The reading with one
crystal was discarded since it was found to be
twice as large as any other and so indicated some
discrepancy.

Computations were made from the observed
tension coefficients of resistance in two ways. In
the first the observed values of P were introduced
directly into Eq. (5) and the p"s determined
from the twenty-three measurements using the
method of least squares. Logically this procedure
is scarcely defensible, since the theory does apply
to the change in specific resistance and not to the
observed resistance which is affected by the
changes in dimensions which must accompany
the application of tension. However, since the
change in dimensions produced by the tension
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FIG. 1.Relative change of resistance per unit tension due
only to changes in dimensions and orientation and com-
puted from Bridgman's determination of the elastic
constants of tin. a, q =45', b, q =22~2'; c, q =0'.

has a symmetry very similar to that of the change
in resistance the observed values fit Eq. (5) very
well, and the p"s found in this way enable one
to compute directly the change in resistance
which will be actuaLLy observed by the application
of a given tension to a crystal of a given orienta-
tion. The primes are used to indicate that the
changes in resistance have not been corrected for
the change in dimensions and are therefore not
the piezoresistive coefficients which appear in
the theory. Their values as found for tin are

(6pii'+2 pi2'+ p66')/8 = (0.69&0.44) X 10 ",
p3,

' ——(11.36&0.76) X 10 ",
pis'+ p3i'+ p44' ——(28.5&2.2) X 10 ",

(2p»' —2p»' —p«')/8= ( —1.88~0.52) X 10 ";
The tension is as usual expressed in kg/cm'.

The second method of computation is to sub-
tract from every observed relative change in
resistance the computed relative change in
resistance which would result from the change in
dimensions and orientation caused by the
application of the tension. That which remains
then gives the relative change of specific re-
sistance, arising perhaps from a slight rearrange-
ment of the atoms in the crystal lattice, and is
that change of resistance to which Bridgman's
theory directly applies. To compute the relative
change in resistance per unit applied tension
which arises directly from the change in dimen-
sions and orientation the theory sketched in the
antimony paper' is developed for the tetragonal
case and the values of the elastic constants given
for tin by Bridgman4 are used. The resulting

4 P. %. Bridgman, Proc. Am. Acad. 60, 379 (1925).

values are presented in Fig. 1. It is to be noted
that these values depend on the secondary orien-
tation for 0=90' and that at 0=90' the maxi-
mum spread with variation of secondary orienta-
tion is 3.84&10 '. From every observed tension
coefficient there is then subtracted the appro-
priate value as interpolated from this graph, and
the result is substituted in Eq, (5). Least squares
are again applied and the p's determined which
are now the real piezoresistive coefficients to
which the theory sketched above applies. The
numerical values found for these coefficients of
specific resistance are

(6pii+2pia+ p66)/8 = ( —4.41&0.45) X 10 i',
p33=(8.96&0.77) X10 ",

p,q+ p3i+ p44 ——(19.5&2.3) X 10 ",
(2pii —2p12 p66)/8= (0 07&0 53) X10

The significance of these experimental results
for the tension coefficient of resistance for tin can
perhaps best be presented graphically in Fig. 2,
where the curves marked a, b and cgive the directly
observed tension coefficients as a function of the
primary and secondary orientations 0 and p, and
the curve d the tension coefficients of the specific
resistance. The directly observed curves are seen
to depend on the secondary orientation y at
0 =90' (as did also the so-called correction curve
of Fig. 1). The maximum spread with variation
of p is 3.62&&10 ' which is within experimental
error of the maximum spread of the correction
curve. Hence it is to be expected that when the
method of least squares is applied to the data
for the tension coefficients of the specifi resist-
ance alone they will cease to be a function of the
secondary orientation p. This is shown to be true
both graphically in Fig. 2(d) and in the numerical
values of Eq. (7) where the coefFicient of the
term in cos 4p is zero well within the probable
error. This lack of dependence of the tension
coefficients of the specific resistance on the
secondary orientation for a/L values of the
primary orientation is the most striking and
unexpected result of this work on tin.

One or two other points deserve note. As is
indicated in Fig. 2 negative values of the tension
coefficients occur for certain orientations, giving
further evidence that negative tension coefficients
are not abnormal. These negative values were
actually found for five of the crystals measured.
As regards the order of magnitude of the results,
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Tomlinson' gives for the tension coefficient of
polycrystalline tin the value 5.89X10 ' which
appears reasonable in the light of these present
results. Rolnick's value' of 10.6X10 ' causes one
to wonder whether his specimen was actually
polycrystalline.

One test of the success of a theory lies in the
agreement of the observed values with those
computed according to the theory. Using the
numerical values of the p"s (or p's) in Eq. (5) to
compute the tension coefficients it was found
that the average deviation between these com-
puted values of the tension coefficients and the
corresponding ones found experimentally is about
1.05X10 ', where the actual values range from
—1.33 X 10 ' to +10.12 X 10 ' the largest actual
difference between the two being 3.0 X 10 '.
Various factors contribute to this somewhat
large discrepancy which is consequently seen not
to be exorbitant. The lower limit to which the
galvanometer scale can be read introduces an
uncertainty in the measured value of the tension
coefficient of about 0.5X10 ', the exact value
depending of course on the size of the total
resistance involved. The average deviation of the
individual values of a single determination of the
coefficient found with different tensions and with
reversed current is only in three cases greater
than this, so that 0.50X10 ' represents well the
uncertainty arising from the galvanometer
readings alone. A further uncertainty of about
the same magnitude is caused by the difficulty
of measurement of the orientations which had to
be determined, as in the case of cadmium, by the
reRection pattern method since tin does not
cleave. The primary orientation is probably good
to 3' while the secondary is uncertain to 4' or 5'.
An uncertainty of a few percent in the area of
cross section of the crystals is relatively not of
great importance.

As noted in the paper on zinc and cadmium, '
sufficient data are lacking, without further ex-
perimental work involving the torsion of the
crystals, to allow one to disentangle the piezo-
resistive coefficients further. However, in the
interests of collecting all the known data con-
cerning the effect of stresses on the resistance
of the tetragonal tin crystals, the pressure coef-

~ Tomlinson, Phil. Trans. 1'74, 1 (1883).
'H. Rolnick, Phys. Rev. 36, 506 (1930).
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ficients of specific resistance as determined by
Bridgman~ are given for reference.

2pg3+ p33 (1 AR
= —10.96X10 ',

po 4p R ~ e=o.

p»+ pie+ por (1 ~&)

poo' &p & ) e=oo'

These pressure coefficients give two relations
between the seven piezoresistive coeScients in
addition to the four relations given by the appli-
cation of longitudinal tensions described in this
paper. The seventh necessary relation can be
furnished by experiments on torsion which have
not yet been carried out.

The author is much indebted to the National
Research Council for a generous grant towards
acquiring apparatus and supplies; in particular
it made it possible to have one of the Leeds and
Northrup galvanometers of high voltage sen-
sitivity (HS No. 2285-a) as well as a large
capacity 6-volt storage battery. She is also much
indebted to Miss Haigouhi Haigazn, a graduate
student at Mount Holyoke College in the year
1933—1934, who reassembled the.apparatus after
its removal from Harvard and who made the
measurements on six of the crystals.

7 P. W. Bridgman, Proc. Am. Acad. 60, 371 (1925).

= —10.28X10 '
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FrG. 2. Tension coefficients of tin directly observed:

a, @ =45'; b, q =22-,"; c, p=0'. Coefficients of specific
resistance —curve d.


