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Collision of Proton anti Deuteron
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The present calculation is similar to that of Schiff on
neutron-deuteron collisions, and is based on the suggestion
of Morse that the function sin (kr+ 8) —e '" sin 8 cos kr
will be a good approximation to the actual wave function
if the parameters are properly adjusted. By joining this
function smoothly with the Coulombian field wave func-
tion, we obtain the scattering formula for proton-deuteron
collisions, while, by extending this function to infinity, we

get the neutron-deuteron scattering. The coordinate
system, in which the Hamiltonian is separable, was used,

and this is the main difference from Schiff's calculation.
The cross section for neutron-deuteron scattering was
found to be 3.2p10 "cm' at vanishing neutron energy, in
good agreement with experiments. For proton-deuteron
scattering, no good agreement was obtained. In the range of
angle of scattering less than about 70', the calculation gives
still a tolerable result, but, for larger angles, the experi-
mental scattering increases very rapidly. Such a rapid
increase does not seem to be explained without some other
important improvement of the theory.

HE wave equation for a system of a deuteron
and a proton, ' in the rest coordinate system,

1s

p, =reduced mass= 3',
WD ——binding energy of deuteron,
5"=collision energy in the rest system= 3',

Wp ——collision energy in the laboratory system
(deuteron initially at rest),

r~, r2 ——space coordinates of protons i and 2,
r3 ——space coordinates of neutron 3,

&2+F3

2
r =r2—

r1+&3

=P(r&r2)r,

r23 = &2 —&3 ~13= ~1—r3

and P is the interchange operator. We assume a
solution of the form

4 —1//D(23)p(r, e)S(1, 2, 3)
+lpD(13)p'(r', &')S'(1, 2, 3), (2)

S'(1, 2, 3) =S(2, 1, 3),
*At present a guest at the Massachusetts Institute of

Technology.' Schiff, Phys. Rev. 52, 149 (1937).
i

h2 h2
——~, ——hr„+ U12+ V13+ V23

2p M
2 It2 . k2

+——8'~ —N ~= ——~.——~. ,+U»
r12 2p 3II

e 2

+ V~3+ V~3+——WD —W +=0, (1)
r12

where

where S is the spin function, ' and QD(ij) is the
deuteron wave function, satisfying

L
—(Ii'/M) 4r;;+ V,;—WD j&D(ij ) =0.

0 and 0' are the angles between the direction of
the initial current and the vectors r and r',
respectively.

Putting (2) into (1), we have

L
—(h'/2p)if'(23)h„p+ Vif (2D3)p Wpp(23)p—jS

+[—(h2/2y) pD (13)6,. p'+ V'p~(13) p'

—WP~ (13)P' jS' =0 (3)
with

V= Ug2+ V23+(e'/rg2), V'= V)2+ V2g+(e'/rg2).

Considering the nature of nuclear forces, these
potential energies may be replaced by

V12+ U13, r &ro
(e'/r) r )ro

U12+ V23, r' &ro
(e'/r'), r') ro'

(4)

where rp is a certain distance of the order of
nuclear radius, at which nuclear forces practically
vanish.

We will try to solve the Eq. (3) by the method
of pertubation. ' For this purpose, it is convenient
to introduce a new potential U instead of U,
which can be interpreted as the average potential
of a proton in the field of a deuteron.

'For spin functions, see SchifE, reference 1. We will
write S and S' for S(1, 2, 3) and S'(1, 2, 3), respectively.

'This may be allowed for a qualitative discussion of
lightest nuclei, where statistical treatment is impossible,
although the method is in general inapplicable to heavier
nuclear collisions (Bethe, Rev. Mod. Phys. 9, 71 (1937)).
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U
+12++13 «r0

U(r) =
(e'/r), r & rp'

+12++23 ~ & r0Ujr'j =
(e'/r'), r' & rp'

Here V is some suitable average of V over the
deuteron coordinates, the position of the unbound
proton being Axed. If a good choice of this U
were obtained, we may consider

U —U(r) « U, V' —U(r') « U'.

Now we assume that, proton 2 is initially bound
to neutron 3. Then the main term in (2) is that
which contains P(r, 0). Dividing P(r, 0) into two
parts i/i(r, |t) =i/ip(r, 0)+i/ii(r, 0), where Pp satisfies

L
—(k'/2p)h, + U(r) —W]gp(r, 8) =0. (6)

we may consider solution (2) as consisting of
three parts: Pp (first approximation), Pi and P'
(second approximation).

Multiplying (3) by Srgz"(23) and integrating
(spin summation also included), we get

P —(k'/2p) 6, + U(r) —Wfgi

Jt SQD*(23)( V—U)i/iD(23)i/ipSdrpp (7).
Similarly~

L
—(k'/2p)i1, + U(r ') —W]0'.

The problem is now: (i) to find U, (ii) to solve (6),
(7), (8). It will be found later that

1 —De P"', r&rp
(e'/r), r )rp

is a good approximation for U, where the con-
stant D must be chosen differently for the two
different spin states, quartet and doublet.

For r) rp, where U(r) is Coulombian, the
Eq. (6) (if expanded into spherical harmonics)
has two linearly independent solutions Fi(p) and

Gi(p), which behave asymptotically like'

Fi(p) -sin (p —(lir/2) —
rl log 2p+«),

Gi(p) cos (p —(lir/2) —
g log 2p+ p i).

Hence

Pp ——gi'(23+1)P (cois 0)e'"+
L=O

X I A iFi(p)+B(Gi(p) I /p, r) rp (10)

p =kr, k = (2p W) l/k = pv/k, v = e'/(kv),

p. i = arg I'(l+ 1+i'),

(13) ( V U)f (23)f Sdr (8)
v = initial relative velocity, tan Ei=Bi/2 i

This becomes asymptotically

2

p~
2ikr sin' 0/2

e
'i I r—i q log 2 4 r—i p7 log sin2 (8 /2)+2 io 0

eiI'r cos 8+i pi log 2kr+i ri log sin (|i/2)

7/ cx)

X + Q (2t+. 1) (epixi 1)p (cos g)ei p iog sin (il/p)+pi (rri —op)

2k sin' 0/2 2k i=p

The important quantity Xi (or the ratio Bi/Ai)
for the calculation of the cross sectiori can be de-
etrmined by requiring that the solution of (6) for
r&rp, should join smoothly with (10) at r=rp
Namely, if we put for r &rp, instead of (10),

i/ip Pi'(2l+1)P (c si——0)oe'("+ '&R (ip) p/
L,=O

(r & rp), (11)

then the conditions

Ri(p) =A iFi(p)+BiGi(p)

dRi(p) dFi(p) dGi(p) 'at r=rp
=A

I, +Bt,— (or p = krp ——pp)
dp dpdp

4 Breit, Condon and Present, Phys. Rev. 50, 825 (1936);
Yost, Wheeler and Breit, Phys. Rev. 49, 174 (1936}.

determine tan Xi =Bi/A i. Assuming that only
the partial wave 1=0 is appreciably affected by
the internuclear forces, while all other partial
waves 1~1 remain practically the same as in the
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case of purely Coulombian Geld (&.e. , E&=0 for
1~1),we need only to calculate Xo by

dR0(~) @0*( )

Rol~) dl 4'0(~)

1 2y, p Rg(kr)
g= ———

„I~ ~ 4D*(23)(&—U)
4~ b» Ir

Rg(kr)
)&Pg)(23)— Sdrggdr, (13)

kr

@0(~)006)+Co'v@0'(P) «t &0

Co, 40~, Q~o and Co being defined in the papers
mentioned above. Following the procedure of
Morse, ' we set

Ro ——A t sin (kr+8) —e "sin 8 cos kr], (12)

where A takes care of' the possible change of'

amplitude due to the Coulombian held, and e is
obviously of the order of magnitude of the con-
stant (P)l in the potential function (9). We put
simply e/(P)l=2, since this choice of the ratio
seems to provide a good correspondence of the
potential e &" to that of Morse type —2t.""+e—'-'".

The parameter 8 will be determined later for each

specified value of k.
AVe will now proceed to solve the equations of

second approximation (7) and (8). These equa-
tions differ from the equation of first approxima-
tion (6) only by the existence of their right-hand
side integrals, and these integrals vanish as r or r'
becomes greater than ro, the Coulombian parts in
U and V canceling each other out. So that, for r
or r'& ro, the solutions P~ and P' are again expres-
sible by the Coulombian held v, ave functions Pg

and Gg. Further we want such a solution which
asymptotically represents only a divergent
spherical wave. Such a solution is obtainable,
when the solution of the homogeneous equation is
already known. The method is given by Mott and
Massey, 6 which applies also to our case with a
slight modi6cation due to the existence of Cou-
lornbian potential.

Retaining only the partial wave 1=0, we get

&i (kr-rt 10g 2kr+2o0+oKp)

R~

' Morse, Phys. Rev, 51, 1003 (I937); Morse, Fisk and
Schiff, Phys. Rev. 51, 706 I'1937).' Mott and Massey, The Theory of Afore Commis~'ops,

p. 107.

R0(kr)
&(Pn(23) Sdrgadr'. (14)

kr

After antisyGlmetrizing the final wave function
with respect to the two protons 1 and 2, the cross
section will be given by the square of the absolute
value of the coefficient of s'"/r in the asymptotic
expression of P~(r, 8)+P&(r, 8) P'(r,—8): namely
by

e 0Sin Xo
+ ~irf log sin2 (8j2)

2k sin' (8/2) k

+ (g g~)c2~I&0+8 q log sin (tf/2) (15)

RESULTS

As a 6rst step to appmximation, we have cal-
culated U(r) by

U(r) =) kD'(23)~(v&&+ I;3)WD(23)~dr23

with

V; = s ""PC~P(r—,r;-)+C P(r~r;)P(e;e;) j
WD(i) =(&n)'*& '" "'""'

~

The values of the constants are~

Cm+Cs=60, C~—- 12.7, n=11.5, vg)/n=0. 89

in nuclear units (length k/c(n3II)'*, energy mc').
The integration is to be performed under fixed

t, and the space exchange operator was omitted
for the moment, keeping only the spin exchange
operator. It was found that U(t') 1s of the form

(9), with the constants: D =D~ =82.6 for quartet,
D =Dq= 56.4 for doublet, and P =9.0 (always in
nuclear units unless otherwise stated). Thus the

"These values are roughly in agreement with those of
Morse and Schifl', if appropriate correspondence is estab-
lished between both types of potential.
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T.:u)LE I. Values of 6.

t I'0 (mc".) QUARTI'. r

vr (6,= —0.462)
~ —24'.3
7l 33 07

DOulII. I-.T

vr (6d ———0.500)
m —26'.2
~ —36'.1

r'=const. [(r—Ii)'j'

and Ro(kr)/kr is of the form const [1+(a/r)
&&(1—e '")] for k—+0. The expansion'

&
—&.[(r +p —2r p cos y)] 2-

= 2 (2ii+I)
Dr'+p' —2rp cos p)]*'

Z„+;(l,p) I„+,, (Zr)
P (cos q) (p)r)

(p)
*'

and similar ones for e" "' & and

1/P(r'+ p' —2rp cos ip) j''

were used. Howeve, these are already very com-
plicated. We have, therefore, averaged the inte-
grand with respect to cos (ry) before integration,
i.e. , we have taken only the first terms of the
expansions into account. Then the integration
over g produces terms expressed in error func-
tions. The last step was done numerically.

The corrected values are

D, =53, A~= —0.462, Dd ——44, Ad ———0.500,
8 Watson, Theory of Bessel Fu1sctions (1922), p. 366.

constant e in the function Ro was fixed: a = 2(P) l

=6.0. Another constant 6 for the case k=O, or
the constant 6 defined by 6= —lim (sin 5/k) is

k~o
found to be A~ = —0.412 for quartet and
D~ ———0.451 for doublet.

These values must be corrected so as to include
to some extent the exchange operator P(r;r;) in

V,;. For this we will require that the function Ro
should represent the true wave function as
nearly as possible apart from the exchange inte-
gral g', or in other words, g should be zero. This
was done only for vanishing energy k—&0. Namely
we have adjusted D and 6 in such a way that
g~O as k—+0. In carrying out the integration g,
we must deal with the integral of the form

f Ro(kr) Rp(kr')
~ ——exp [ ar' —bp2 —c—(r p)]— drdp,

kr kr'

T.&BLE II. Values of Ã0.

t Vrj(mc2) QI-AR rF.T

m —14'.2
~—24'

~ 1

DOUBI.ET

vr —15'.6
~ —26'. 1

' Professor Morse has kindly provided me with the table

of integrals of the form g e &" " Prdr necessary for„ s&n

0 cos
this calculation.

for which g =0 for both cases. We adopted these
values for U(r), and calculated 8 for each assigned
value' of k (Table I).

The exchange integral g' can be carried out in
the same manner as g. This was calculated only
for vanishing k, and the values obtained are:
g, '=+0.1512' gd' ———0.0472' for quartet and
doublet, respectively.

Before entering into the calculation of Ep, we
will briefly discuss neutron-deuteron collisions.
If we omit all the terms arising from the Coulom-
bian interaction and extend the function Ro to
infinity, therefore, if we put q = o o =0, A = 1,
Xo= ft in (15), it becomes the cross section formula
for neutron-deuteron scattering. For the values
given above, the mean cross section is 3.23)&10—"
cm2 at vanishing neutron energy. If the exchange
integral g' is omitted it is only 2.28)&10 '4 cm'.
This is about one-half of Schiff's result, and the
agreement with experiments is satisfactory. The
cross section decreases to 1.82&10 "-' cm2 at the
neutron energy of 1 Mev (without exchange; ex-
change effect would probably be small). KVe

believe that this improvement of agreement (al-
though the calculation is still a qualitative one)
is due to the different use of the coordinate sys-
tem from that used by Schiff, rather than the
different forms of the potential functions. The
exchange integral makes the quartet-scattering
larger than the doublet-scattering by a factor
about 2 (omitting different statistical weights).
This effect is much more remarkable in Schiff's
result (factor 6 instead of 2). We have now to
join the function Rp with the Coulombian field

wave function at some suitable distance r=ro.
For this ro, we have taken (i) the distance at
which the combined potential Coulombian plus

De ~" attains its m—aximum, (ii) the distance
at which these potentials just cancel each other.
The results are only slightly different in both
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cases. M,'e give here only the result based on the
latter choice. The values of Eo are given in
Table II. The amplitude A in (12) was found to
be increasing slightly with increasing energy. It is
about 0.90 at Wp ——1 mc', and is about 0.94 at
+'o ——2 nzc'-.

The cross sections for quartet and doublet
states were calculated by (1&) and, by adding
them in the ratio 2: 1, the mean cross section
was obtained.

The ratio of actual cross section to that of
Rutherford is given in Table III. Here 0 is the
scattering angle in the laboratory coordinate
system. In the fourth column, we have attempted
to estimate the effect of exchange. It was as-
sumed that the exchange integral is decreasing
with increasing energy, and at Wp ——1 mc' it is
about one-half of its value at vanishing energy.

Sp = 2 mc'-, the exchange effect would prob-
ably be unimportant.

According to the experiment of Tuve, Heyden-
burg and Hafstad" at the energy of 0.83 Mev,
this ratio of cross sections does not show a smooth
increase v ith increasing scattering angle. In the
range 60' & 0 &75', the expe:imental points are
found between about 10 to 20. It increases sud-
denly at about 0=80', reaching a value more
than 120 at 90', and increasing still more rapidly
with increasing O. It is impossible to get such a
high value by taking only Eo into account. We
also tried to see whether it is possible to check
the experimental curve by choosing Eo and EI
suitably. But no appreciable improvement in the
agreement was obtained. The assumption" that
many more E& values are playing an important

"Tuve, Heydenburg and Hafstad, Phys. Rev. 50, 806
(1936).

» )Vote added in proof: It is possible that a resonance
effect, such as is discussed by Primakoff, Phys. Rev. 52,
1000 (1937), will account for part of the discrepancy with
experiment, though not with all of it.

TABLE III, Ratio of cross sections actual/Rutherford.

g . O~

20' 13'.4
40' 26'.9
60' 40'.9
80' 55'.6

100' 71'.7
120' 90'
140' 112'.5
160' 142'.1
180' 180'

Wp=i mc2
WITHOU I

EXCHANGE

1.076
1,47
2.30
3,6
5.3
7.2
9.0

10.3
10.7

IVp =1 mc2
WITH

EXCHANGE

1.082
1.53
2.49
4,0
6.1
8.4

10.5
12.1
12.6

Hrp =2 mc2
WITHOUT

EXCHANGE

1.21
2.30
5.0
9.7

16.4
24
32
38
40

&0(23)[1+f(r) cos p],
[I+f'(r) I3j*'

where r has the same meaning as before, &0 is
the unpolarized deuteron wave function, and p is
the angle between the vectors r and r23.

f(r) was determined by the method of varia-
tion, so as to minimize the energy of the polarized
deuteron, for each assigned value of r. It was
found that lf(r)

~

(0.04, and the effect seems to
be quite small.

Therefore, it does not seem likely that such a
large backward scattering as is found in the ex-
periments of Tuve, Heydenburg and Hafstad
can be explained satisfactorily by calculations of
the sort discussed here.

In conclusion, the writer wishes to express his
cordial thanks to Professor Philip M. Morse and
Dr. L. I. SchiR for much helpful advice,

role in the scattering formula, does not seem to
be probable in the case of short range interaction.

Finally, the effect of polarization of the deu-
teron due to the Coulombian interaction with the
incoming proton was estimated as follows. We
have assumed, as the wave function of the polar-
ized deuteron,


