The radiation observed without the grids contains also a doubly scattered ingredient which may be calculated from Eq. (7) by putting $r=L$, $P=1$, and $h / L=3.17$. Correction factors for absorption and recoil losses are obtained by squaring those applied in the single scattering case. This is equivalent to assuming that the effective path in the scatterer is $2 L$ and that 90° is a proper effective scattering angle to represent both primary and secondary scattering for the purposes of this correction.

The radiation observed with the grids is calculated as explained in Section III for the case of double scattering by co-axial disks. For each primarily irradiated section as many as six emergence slots pass appreciable doubly scattered radiation. All such calculated contributions, corrected as in the preceding paragraph, are combined to give the total measurable radiation. Traces of higher order scattering will be
present in the observed radiation both with and without the grids but no calculation of such intensities has been made.

Results

The calculated ratio of observable intensities without and with the grids, carried through as outlined above, is 47 . The ratio as observed was 44 at an x-ray tube potential of $40 \mathrm{kv}, 46$ to 50 kv , and 44 at 60 kv , the agreement being somewhat closer than might reasonably have been expected.

The methods of calculation outlined in this paper will subsequently be utilized for the correction of conclusions now in print concerning the polarization of primary x -rays, and for the interpretation of experiments in progress. The author is greatly indebted to Mr. Keith Harworth for assistance in the experimental part of this investigation.

Preliminary Analysis of the First Spark Spectrum of Cerium-Ce II

Walter E. Albertson and George R. Harrison
George Eastman Laboratory of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received November 5, 1937)

Abstract

By applying the spectral interval sorter and a newly designed interval recorder to new data obtained with the automatic recording spectrum comparator on the M.I.T.-W.P.A. wavelength program, a preliminary term array for Ce II has been set up in which 584 lines have been accounted for as transitions between 31 lower and 51 upper states. The term diagram is found to be the most complex yet observed for a three-electron spectrum. Both configurations $4 f 5 d 6 s$ and $4 f 5 d^{2}$ appear to be low in Ce II, contrary to the analysis of Haspas. Most of the differences between observed wave numbers and those computed from the term array are less than $0.02 \mathrm{~cm}^{-1}$, and 60 percent of the lines are found to be consistent to within 0.002 A . Several of the term assignments have been checked with partially resolved Zeeman patterns recorded by King and Albertson, and the absolute J values have been determined by this means. An inclusive description of the spectra of the cerium atom is being undertaken in the range 10,000 to 1000A.

THAT the spectra emitted by rare earth atoms would be unusually difficult to analyze has been expected by spectroscopists for some time, but fortunately a number of these atoms whose spectra are so complex emit outstanding groups of lines. By attacking such lines the beginnings of term arrays have been constructed in a number of cases. ${ }^{1}$ Cerium (58), the

[^0]first element of the rare earth group, which is of unusual interest spectroscopically because of its position in the periodic table, presents no such suggestive features for attack. When we made

[^1]preliminary attempts to analyze Ce I and Ce II several years ago ${ }^{2}$ we came to the conclusion that more precise wave-length values, or more highly resolved Zeeman patterns, or both, would be required before the term arrays of these spectra could successfully be unravelled.

A comprehensive resurvey of the cerium spectrum was then undertaken, and with the improved wave-length values so obtained we have developed a quadratic array for Ce II which in its present status accounts for 584 lines, including a majority of the stronger lines, as transitions between 31 lower and 51 upper states. This array is of special interest because it shows a new order of complexity in three-electron spectra. For example, about 700 lines due to Ti II are known, whereas more than 3000 lines have already been ascribed to Ce II on the basis of studies not yet complete. The difficulty of starting a term array is now explained, since we find more than two dozen low energy levels within $6000 \mathrm{~cm}^{-1}$ of the lowest, while Fe I, for example, shows only five levels in the same range.

Haspas ${ }^{3}$ has published a term array for Ce II with which we can find no point of agreement. He assigns 430 lines to 137 states, and the deviation between his observed and calculated wave numbers $(\mathrm{O}-\mathrm{C})$ is sometimes as great as 0.70 cm^{-1}, which he justifies on the basis that the wave-lengths used, as measured by different observers, disagreed among themselves by as much as 0.3 A . Haspas' average value of $(\mathrm{O}-\mathrm{C})$ for his lines is over $0.2 \mathrm{~cm}^{-1}$, while our average is something under one-tenth this, as discussed below.

We calculate the probability of finding by accident a solid array of even four columns and 10 rows with the tolerance which we have used as being less than one in a million, starting with any random interval and the actual density of Ce II lines. If the tolerance were doubled the probability would increase to 1 in 10 . With the use of Haspas' tolerance, ten times ours, such chance arrays become very numerous in a spectrum so complex.

The present note illustrates the application of

[^2]the spectral interval sorter ${ }^{4}$ and the spectral interval recorder ${ }^{5}$ to the analysis of a complex term array, where the combination principle has little power for analysis unless precise wavelengths are available. Our results also show the internal consistency to be expected of wavelength values obtained by means of the automatic recording comparator ${ }^{6}$ in the program undertaken in this laboratory, with the assistance of the Works Progress Administration, on a systematic resurvey of atomic spectra.

Procedure

A revised master-list of all known Ce II lines in the range $5500-2850 \mathrm{~A}$ was prepared, using the M.I.T.-W.P.A. wave-length values. The wave numbers of all lines on this list were then punched on a tape for the interval recorder, using a scale of 7.5 mm per cm^{-1}. A similar tape was then prepared for the interval sorter, containing only the 337 strongest lines, to cut down the probability of accidental coincidences. ${ }^{4}$ No quadratic arrays grew from the intervals which were shown by the machine to occur most frequently, so the 700 strongest lines were punched on the tape. From this tape were recorded all intervals in the range 57 to $1000 \mathrm{~cm}^{-1}$, in four settings covering $300 \mathrm{~cm}^{-1}$ each. The most probable number of chance occurrences of any specified interval within a tolerance of ± 0.10 cm^{-1} was calculated to be about 10 , but many intervals were found occurring on the developed chart from 14 to 20 times. The interval recorder was then set for each of these highly recurrent intervals in turn, and with it all pairs of lines in the master list which gave these intervals to within $\pm 0.10 \mathrm{~cm}^{-1}$ were automatically recorded. With the intervals thus determined a quadratic array was set up which was soon demonstrated to be valid by the ease and precision with which other intervals found from the record fitted into it.

Once a quadratic array has been started, both its validity and the mutual consistency of the wave-length values used can be tested by calculation of the differences ($\mathrm{O}-\mathrm{C}$) mentioned

[^3]Table I. Difference between observed and computed wave numbers for lines measured on M.I.T.-W.P.A. program.

$(\mathrm{O}-\mathrm{C}) \pm \mathrm{Cm}^{-1}$	Percent in Range	Total Percent
0.00	20.7	20.7
.01	28.8	49.5
.02	23.3	73.0
.03	11.9	84.9
.04	6.6	91.5
.05	4.1	95.6
.06	2.5	98.1
.07	.9	99.0
.08	.6	99.6

above. From Table I it will be seen that our average value of $(\mathrm{O}-\mathrm{C})$ is somewhat under 0.02 cm^{-1}, and the agreement is such as to indicate that over 60 percent of the wave-length values used are mutually consistent to within 0.002 A .

Our wave-length data were supplemented by King's temperature classification of the 337 strongest lines. ${ }^{7}$ Partially resolved Zeeman patterns for both the n and p components in the range $3750-2900 \mathrm{~A}$ were also made available to us through the kindness of Drs. A. S. and R. B. King. In addition, n components for the range 4700-3850A were photographed by A. S. King
${ }^{7}$ A. S. King, Astrophys. J. 68, 194 (1928).
and one of us (W. A.), who desires to record here his thanks to the National Research Council for the award of a fellowship which made this work possible. These cerium Zeeman effect plates were taken in the physical laboratory of the Mt. Wilson Observatory in Pasadena, using a 15 ft . concave grating and a large Weiss electromagnet.

While the Zeeman patterns were not sufficiently resolved to enable this powerful means of starting a term analysis to be used, our application of the combination principle, together with the selection principle for inner quantum numbers, served to determine the relative J values of the terms. Several of the patterns were sufficiently resolved to rule out certain J values, and by this means the absolute scale for J was determined. The partially resolved pattern types served also to check our assignments in a number of cases, with very satisfactory agreement.

Term Analysis of Ce II

Various considerations indicate that the electron configurations $4 f 5 d 6 s$ and $4 f 5 d^{2}$ both give rise to low lying terms in Ce II, with the former probably the lower. If $4 f 5 d 6 s$ is lower the ground

Table II. Energy levels of $C e I I$.

Level	$\begin{gathered} \text { Term Value } \\ \text { WAve } \\ \text { Numbers } \end{gathered}$	$\underset{\text { VALUE }}{J}$	$\begin{aligned} & \text { No. of } \\ & \text { COMbINA- } \\ & \text { TIONS } \end{aligned}$	Level	$\begin{gathered} \text { Term Value } \\ \text { Wave } \\ \text { Numbers } \end{gathered}$	$\underset{\text { VALUE }}{J}$	$\begin{aligned} & \text { No. of } \\ & \text { COMBINA- } \\ & \text { TIONS } \end{aligned}$	Level	$\begin{gathered} \text { Term Value } \\ \text { Wave } \\ \text { Numbers } \end{gathered}$	$\underset{\text { Value }}{J}$	No. of CombinaTION
1	0.00	$3 \frac{1}{2}$	19	29	6,638,25	$4 \frac{1}{2}$	12	125	29,984.08	$1 \frac{1}{2}$	7
2	1,410.30	$4 \frac{1}{2}$	20	30	7,259.08	$3 \frac{1}{2}$	16	126	30,065.19	$3 \frac{1}{2}$	15
3	1,873.95	$3 \frac{1}{2}$	23	31	8,280.96	$3 \frac{1}{2}$	13	127	30,166.08	$1 \frac{1}{2}$	5
4	2,382.26	$4 \frac{1}{2}$	22	101	24,663.05	$4 \frac{1}{2}$	9	128	30,245.89	$4 \frac{1}{2}$	14
5	2,563.26	$5 \frac{1}{2}$	11	102	25,359.69	$2 \frac{1}{2}$	7	129	30,425.37	$2 \frac{1}{2}$	10
6	2,581.27	$4 \frac{1}{2}$	27	103	25,681.50	$1 \frac{1}{2}$	4	130?	30,576.84	$4 \frac{1}{2}$	7
7	2,595.65	13	12	104	25,945.40	$3 \frac{1}{2}$	13	131	30,637.17	$4 \frac{1}{2}$	12
8	2,634.68	$2 \frac{1}{2}$	21	105	26,841.40	$4 \frac{1}{2}$	13	132	30,702.64	$4 \frac{1}{2}$	16
9	2,641.57	$3 \frac{1}{2}$	29	106	26,900.37	$3 \frac{1}{2}$	13	133	30,829.13	$3 \frac{1}{2}$	15
10	2,879.71	$5 \frac{1}{2}$	14	107	27,187.06	$3 \frac{1}{2}$	15	134	31,075.60	$5 \frac{1}{2}$	8
11	3,363.44	$2 \frac{1}{2}$	21	108	27,249.69	$2 \frac{1}{2}$	13	135	31,207.96	$4 \frac{1}{2}$	14
12	3,593.89	$4 \frac{1}{2}$	25	109	27,379.95	$5 \frac{1}{2}$	9	136	31,558.64	$3 \frac{1}{2}$	13
13	3,703.61	$3 \frac{1}{2}$	23	110	27,514.68	$3 \frac{1}{2}$	11	137	31,738.50	$5 \frac{1}{2}$	8
14	3,995.48	$3 \frac{1}{2}$	30	111	27,811.52	$4 \frac{1}{2}$	13	138	31,851.42	$2 \frac{1}{2}$	9
15	4,266.41	$3 \frac{1}{2}$	29	112	27,812.41	$2 \frac{1}{2}$	12	139	32,138.73	$2 \frac{1}{2}$	12
16	4,322.70	$3 \frac{1}{2}$	21	113	27,835.23	$1 \frac{1}{2}$	4	140	32,318.21	$3 \frac{1}{2}$	14
17	4,459.89	$3 \frac{1}{2}$	24	114	27,934.66	$4 \frac{1}{2}$	19	141	32,862.80	$3 \frac{1}{2}$	16
18	4,511.26	$2 \frac{1}{2}$	20	115	28,297.49	$3 \frac{1}{2}$	14	142	33,552.59	$2 \frac{1}{2}$	11
19	4,523.01	$4 \frac{1}{2}$	25	116	28,334.77	$4 \frac{1}{2}$	11	143	33,808.31	$2 \frac{1}{2}$	12
20	4,844.63	$1 \frac{1}{2}$	8	117	28,337.82	$2 \frac{1}{2}$	16	144	33,977.16	$3 \frac{1}{2}$	16
21	4,910.98	$5 \frac{1}{2}$	10	118	28,634.51	$5 \frac{1}{2}$	11	145	34,155.33	$3 \frac{1}{2}$	19
22	5,010.88	$2 \frac{1}{2}$	15	119	28,725.16	$4 \frac{1}{2}$	14	146	34,333.12	$2 \frac{1}{2}$	11
23	5,118.81	$2 \frac{1}{2}$	18	120	29,166.61	$4 \frac{1}{2}$	16	147	34,426.07	$2 \frac{1}{2}$	11
24	5,437.46	$3 \frac{1}{2}$	25	121	29,281.37	$2 \frac{1}{2}$	10	148	34,920.78	$3 \frac{1}{2}$	11
25	5,716.22	$3 \frac{1}{2}$	20	122	29,438.83	$5 \frac{1}{2}$	9	149	34,934.46	$2 \frac{1}{2}$	10
26	5,819.12	$4 \frac{1}{2}$	25	123	29,807.09	$4 \frac{1}{2}$	11	150	35,346.30	$3 \frac{1}{2}$	14
27	5,942.79	$3 \frac{1}{2}$	19	124	29,908.92	$4 \frac{1}{2}$	18	151	35,558.70	$3 \frac{1}{2}$	12
28	6,389.93	41	10								

Table III. List of classified Ce II lines.

WaveLength	Int.	Wave Number	Сомв.	WaveLENGTH	Int.	Wave Number	Сомв.	Wave- Length	Int.	Wave Number	Сомв.
4984.42	1	20,056.94	31-117	4390.59	1	22,769.61	17-1	4197.511	3	23,816.95	14-112
4914.938	8 V	20,340.47	16-101	4384.44	1	22,801.54	22-112	4196.335	75 V	23,823.63	11-107
4865.12	1	20,548.76	29-107	4381.779	4	22,815.39	26-118	4195.819	3	23,826.56	18-117
4795.22	2	20,848.29	18-102	4380.057	3	22,824.36	22-113	4193.875	5	23,837.60	17-115
4755.51	2	21,022.38	26-105	4375.932	60 V	22,845.88	14-105	4192.757	2	23,843.96	24-121
4744.91	3	21,069.34	12-101	4373.820	50 V	22,856.91	19-109	4189.176	2	23,864.34	27-123
4742.22	1	21,081.29	26-106	4373.220	3	22,860.04	24-115	4187.324		23,874.90	17-116
4739.49	25 V	21,093.44	15-102	4372.401	4	22,864.33	16-107	4185.334	5	23,886.25	11-108
4722.31		21,170.17	18-103	4365.520	2	22,900.36	24-117	4179.291	2	23,920.79	12-110
4705.85	1	21,244.22	27-107	4364.659	125 IV	22,904.88	14-106	4176.081	3	23,939.17	14-114
4692.02	2	21,306.84	27-108	4364.502		22,905.71	26-119	4174.386	2	23,948.89	30-135
4678.61		21,367.91	26-107	4361.661	6	22,920.63	15-107	4172.152		23,961.71	10-105
4670.76	2	21,403.82	24-105	4360.444	3	22,927.02	16-108	4171.384		23,966.13	27-124
4666.70	1	21,422.44	19-104	4360.444	35	22,927.02	31-135	4169.878	30 V	23,974.78	16-115
4664.11	1	21,434.34	18-104	4352.733	75 IV	22,967.64	20-112	4162.89	1	24,015.04	16-117
4657.85	1	21,463.14	24-106	4349.790	100 IV	22,983.18	15-108	4160.107		24,031.09	15-115
4657.22	1	21,466.05	30-119	4348.190		22,991.63	19-110	4159.033	50 IV	24,037.30	31-140
4644.22	2	21,526.13	31-123	4345.963	5	23,003.42	18-110				3-104
4636.72	1	21,560.95	26-109	4344.920	1	23,008.94	25-119	4153.130	4	24,071.46	15-117
4623.47	1	21,622.74	16-104	4342.137	125	23,023.68	21-114		50 V	24,089.99	26-124
4589.37	1	21,783.40	10-101	4337.777	125 IV	23,046.83	8-103	4149.936	60 V	24,089.99	25-123
4571.47	1	21,868.69	27-111	4330.444	30 IV	23,085.85	7-103	4146.235		24,111.49	19-118
4567.12	1	21,889.52	22-106	4320.723	60 IV	23,137.78	13-105	4137.475		24,162.54	23-121
4563.35	1	21,907.60	28-115	4315.404	3	23,166.31	30-129	4132.633		24,190.85	29-133
45		21,949.98	$30-120$ $14-104$	4314.939 4313.100	2	23,168.80	$\xrightarrow{29-128}$	4131.099	100 V	$\begin{aligned} & 24,199.82 \\ & 24.202 .14 \end{aligned}$	-9-105
4545.878	2	21,991.8	27-114	4310.700	5	23,191.59	14-107	4128.067		24,217.60	12-111
4544.961	5	21,996.25	11-102	4309.740	50 IV	23,196.75	13-106	4125.776	2	24,231.05	13-114
4544.961	5	21,	29-118	4305.609	2	23,219.11	23-117	4123.230	5	24,246.01	26-126
4539.755	200 IV	22,021.46	9-101	4304.723	0	23,223.79	27-120	4121.595	1	24,255.63	21-120
4527.354	200 V	22,081.78	6-101	4300.331	60 IV	23,247.51	12-105	4120.829	150 V	24,260.14	6-105
4524.590		22,095.27	25-107	4299.362	60 IV	23,252.75	2-101	4119.886	5	24,265.70	-106
4520.410		22,115.71	26-114	4299.092		23,254.21	14-108	4114.141	2	24,299.58	30-136
4508.084	1	22,176.17	22-107	4296.069	6	23,270.57	29-124	4113.722			14-115
4499.52	1 u	22,218.38	25-114	4294.756	3	23,277.68	31-136	4113.722	4	24,302.05	27-128
4495.389	,	22,238.80	22-108	4292.905	1	23,287.72	24-119	4111.923	2	24,312.69	28-132
4494.226	4	22,244.55	28-118	4292.767		23,288.47	19-111	4110.840		24,319.09	106
4486.909	150 V	22,280.83	4-101	4290.435	2	23,301.13	18-112	4107.426	200 V	24,339.31	14-116
4483.900	100 V	22,295.78	31-130	4289.937	300 IV	23,303.84	9-104	4106.881	5 d	24,342.54	14-117
4479.35	30 V	22,318.39	11-103	4289.453		23,306.46	12-106	4092.715		24,426.79	26-128
4472.716	50	22,351.53	19-105	4288.671	1 2	23,310.71	$8-104$ $27-121$	4090.942 4089.006	4	$24,437.37$ $24,448.94$	29-134
4472.11	1	22,354.56	27-115	4281.914	1	23,347.49	26-120	4087.371	4 d	24,458.72	15-119
4468.023	2 u	22,375.01	24-112	4281.156	3	23,351.63	17-111	4087.297	4	24,459.17	4-105
4467.537	5	22,377.44	19-106	4280.998	3	23,352.49	17-112	4085.232	100 V	24,471.53	24-124
4463.87	1 u	22,395.82	23-110	4278.865	5	23,364.12	6-104	4080.435	5	24,500.30	10-109
4462.03	1	22,405.06	20-108	4270.189	60 IV	23,411.60	19-114	4077.470	75 V	24,518.11	4-106
4454.984	3	22,440.49	17-106	4264.372	I	23,443.54	30-132	4075.853	125 IV	24,527.84	21-122
4449.337	200 V	22,468.97	21-109	4258.699	1	23,474.77	17-114	4074.646	2	24,535.11	2-104
4443.752	,	22,497.21	24-114	4257.120	4	23,483.47	13-107	4066.910	1	24,581.78	31-141
4442.43	1	22,503.90	22-110	4256.156	5	23,488.79	16-111	4065.164	3	24,592.33	30-138
4440.13	1	22,515.56	26-116	4255.992	4	23,489.70	16-112	4064.904	3	24,593.91	13-115
4439.50	1	22,518.76	16-105	4255.359	3	23,493.19	20-117	4062.941	3	24,605.79	6-107
4437.612	4	22,528.34	29-120	4250.651	1	23,519.21	14-110	4061.421	2	24,615.00	8-108
4433.708	2	22,548.18	31-133	4245.976		23,545.10	15-111	4059.314	1	24,627.77	24-126
4428.437	5	22,575.01	15-105	4242.726	7	23,563.14	4-104	4058.76	4	24,631.13	13-116
4427.917	6	22,577.66	16-106	4241.403	2	23,570.49	31-138	4058.245	4	24,634.26	13-117
4427.070	5	22,581.98	11-104	4234.726	2	23,607.65	29-128	4054.944	50 IV	24,654.01	7-108
4419.89		22,618.67	25-116	4233.949		23,611.99	16-114	4053.508	100 IV	24,663.05	1-101
4419.298	3	22,621.70	25-117	4232.569	4	23,619.68	26-122	4049.80	${ }^{1}$	24,685.63	28-134
4416.904	4	22,633.96	15-106	4223.882	4	23,668.26	15-114	4048.367	1	24,694.37	27-131
4413.805	2	22,649.85	30-124	4214.041	50 IV	23,723.53	21-118	4046.341	100 V	24,706.73	17-120
4400.872	3	22,716.41	23-113	4213.035	3 u	23,729.20	24-120	4045.976		24,708.96	25-129
4400.545 4399	60 IV	22,718.09	9-102	4202.944	150 IV	23,786.17	12-109	4042.584 4040.758	200 IV	24,729.69	14-119
4399.204 4398.790	60 IV	22,725.02	-8-102	4198.431	150	23,811.74	18-115	4040.758 4037.664	300 IV	$24,740.87$ $24,759.83$	12-116
4396.585	3	22,738.56	18-108	4197.998	5	23,814:19	21-119	4031.339	150 I	24,798.67	6-109
4391.663	250 IV	22,764.04	7-102	4197.668	4	23,816.06	14-111	4030.343	4	24,804.80	4-107

Table III.-Continued.

Wave- Length	Int.	Wave Number	Сомв.	Wave- Length	Int.	Wave Number	Сомв.	Wave- Length	Int.	Wave Number	Сомв.
4029.75	1	24,808.45	24-128	3898.949	?	25,640.70	3-110	3769.046	5	26,524.41	2-114
4028.413	150 IV	24,816.68	5-109	3898.674	1	25,642.51	15-124	3766.514	4 u	26,542.23	13-128
4028.198	2	24,818.01	26-131	3896.804	100 IV	25,654.81	18-127	3765.044	4	26,552.60	19-134
4028.198	2	24,818.01	28-135	3896.637	1	25,655.91	9-115	3764.117	150 IV	26,559.14	10-122
4027.633	2	24,821.49	17-121	3895.114	125 IV	25,665.93	21-130	3763.612	3	26,562.70	15-133
4020.542	2	24,865.27	23-125	3890.986		25,693.17	9-116	3760.404	2	26,585.36	6-120
4019.274	2	24,873.11	9-110				9-117	3757.858	4	26,603.37	5-120
4018.213		24,879.68	30-139	3890.519	2	25	31-144	3755.425	75 IV	26,620.61	11-125
4017.596	2	24,883.54	26-132	3889.478	3	25,703.13	8-117	3752.453	2	26,641.69	14-131
4014.899	125 V	24,900.22	15-120	3888.388	4 u	25,710.34	23-133	3751.002	1	26,652.00	12-128
4012.389	300 IV	24,915.79	19-122	3886.495	3	25,722.86	19-128	3746.373	2 d	26,684.93	19-135
4011.559	2	24,920.95	25-131	3883.983		25,739.50	26-136	3746.260	2	26,685.73	7-121
4003.168		24,973.18	22-125	3883.583	4	25,742.15	7-117	3744.05	1		11-126
4002.975	4	24,974.38	11-117	3881874	4	25,753.48	6-116	3744.05	1	26,701.48	24-139
4001.049	4	24,986.41.	25-132	3881.675	5	25,754.80	10-118	3741.721	3	26,718.10	30-144
3999.242	500 IV	24,997.69	4-109	3879.313	3	25,770.48	24-135	3739.691	2	26,732.61	23-138
3996.481	4	25,014.97	15-121	3878.372	150 IV	25,776.73	2-107	3737.540	3	26,747.99	17-135
3995.429	2	25,021.55	13-119	3876.975	6	25,786.02	17-128	3729.918	4	26,802.65	11-127
3992.385	125 IV	25,040.63	12-118	3876.129	4	25,791.65	21-132	3726.462	3	26,827.50	21-137
3991.317	3	25,047.33	23-127	3875.036	6 d	25,798.91	15-126	3724.639	5	26,840.63	22-138
3990.105	5	25,054.94	10-114	3873.117	1	25,811.71	14-123	3722.291	4	26,857.56	6-122
3989.444	30 V	25,059.09	30-140	3872.137	1	25,818.24	22-133	3719.797	3	26,875.57	5-122
3982.901	60 V	25,100.25	29-137	3868.516	2	25,842.41	25-136	3719.091	1	26,880.67	24-140
3980.895	100 V	25,112.90	25-133	3868.138	4	25,844.93	12-122	3718.190	150 IV	26,887.19	2-115
3977.807	4	25,132.40	4-110	3863.741	4	25,874.34	31-145	3716.938	4	26,896.24	30-145
3976.67	1		20-125	3857.928	2 u	25,913.33	14-124	3716.365	600 IV	26,900.39	1-106
3976.6	1		24-130	3857.813	2	25,914.10	18-129	3713.648	2	26,920.07	27-141
3974.201	2	25,155.20	22-127	3857.644	5	25,915.24	4-115	3711.783	3	26,933.59	13-131
3972.071	6	25,168.69	28-136	3857.240	4	25,917.95	11-121	3710.684	2	26,941.57	15-135
3971.873	3	25,169.95	9-111	3857.032	5	25,919.35	26-137	3704.979	4	26,983.06	12-130
3971.684	100 V	25,171.14	14-120	3854.322	100 IV	25,937.57	3-111	3702.785	5	26,999.05	13-132
3970.646	5	25,177.72	8-112	3854.187	100 IV	25,938.48	3-112	3701.730		27,006.74	20-138
3967.185	4	25,199.68	24-131	3853.158	125 IV	25,945.41	1-104	3699.920	50 V	27,019.95	23-139
3967.048	100 IV	25,200.55	8-113	3852.103	2	25,952.51	4-116	3698.650	5	27,029.23	5-124
3964.503	6	25,216.73	7-112	3849.562	2	25,969.65	2-109	3696.673	2	27,043.68	26-141
3960.914	125 IV	25,239.58	7-113	3848.105	3	25,979.48	15-128	3694.911	60 V	27,056.58	4-122
3958.266	6	25,256.47	26-134	3837.210	3	26,053.24	6-118	3693.720	3	27,065.30	31-150
3956.901	4.		24-132	3836.110	6	26,060.69	3-114	3689.165	3	27,098.72.	17-136
3956.901	4.		27-135	3834.785	3	26,069.71	14-126	3687.802	30 V	27,108.73	12-132
3953.957	4 u	25,283.99	19-123	3834.556	100 IV	26,071.27	5-118	3685.516	2 u	27,125.55	13-133
3953.660	5	25,285.89	14-121	3832.745	4	26,083.59	9-119	3682.660	2	27,146.59	25-141
3952.573	$125 \mathrm{~V}$		9-114	3829.946	2	26,102.65	16-129	3680.084	4	27,165.59	9-123
3952.573	$125 \mathrm{IV}$	25,292.84	9-114	3829.694	4	26,104.37	2-110	3679.92	1	27,166.80	30-147
3950.436	5	25,306.52	23-129	3827.227	3	26,121.19	24-136	3677.176	2	27,187.07	1-107
3949.412	5	25,313.11	3-107	3823.903	50 IV	26,143.90	6-119	3673.739	2	27,212.50	14-135
3944.101	3 u	25,347.11	17-123	3821.702	6	26,158.96	15-129	3672.166	5 d	27,224.16	2-118
3943.888	100 IV	25,348.54	28-137	3821.270	5	26,161.91	5-119	3671.941	4	27,225.83	6-123
3943.141	5	25,353.34	6-114	3820.871	5	26,164.64	21-134	3670.669	2	27,235.26	12-133
3942.151	125 IV	25,359.71	1-102	3819.024	5	26,177.30	17-131	3668.727	4	27,249.68	1-108
3940.338	100 IV	25,371.38	5-114	3818.688	5	26,179.60	19-132	3666.346	2	27,267.38	9-124
3939.662	3	25,375.73	3-108	3814-942	2	26,205.31	13-124	3664.944	1	27,277.81	31-151
3938.086	7	25,385.89	19-124	3808.384	3	26,250.43	14-128	3663.005	2	27,292.25	15-136
3937.643	2	25,388.74	26-135	3808.124	300 IV	26,252.22	4-118	3659.972	6	27,314.86	2-119
3931.369	100 IV	25,429.26	4-111	3803.097	200 IV	26,286.88	10-120	3658.258	3	27,327.66	6-124
3931.088	125 IV	25,431.08	2-105	3800.324	1	26,306.11	19-133	3656.756	3	27,338.88	29-144
3928.312	4	25,449.05	17-124	3799.097	3	26,314.56	16-131	3655.851	500 IV	27,345.65	5-124
3927.383	4	25,455.07	10-116	3799.035	2	26,315.03	12-124	3655.349	2	27,349.40	8-125
3926.163	2	25,462.98	13-120	3792.326	50 IV	26,361.58	13-126	3653.108	125 V	27,366.18	10-128
3924.644	60 IV	25,472.83	18-125	3790.342	3	26,375.38	27-140	3650.134	3	27,388.48	7-125
3921.731	100 V	25,491.75	25-135	3786.632	150 IV	26,401.22	2-111	3649.730	1	27,391.51	17-138
3913.995	2	25,542.14	19-126	3783.569	5	26,422.59	25-139	3645.455	4	27,423.63	9-126
3912.424	300 IV	25,552.39	4-114	3782.524	75 IV	26,429.89	14-129	3645.226	5 u	27,425.36	24-131
3912.191	5	25,553.91	18-126	3781.620	150 IV	26,436.21	15-132	3644.539	1	27,430.53	8-126
3909.313	6	25,572.73	12-120	3781.102	3	26,439.83	23-136	3639.868	1	27,465.73	11-133
3908.543	100 IV	25,577.76	13-121	3777.668	5	26,463.87	3-117	3637.459	2	27,483.98	6-126
3908.094	3	25,580.70	20-129	3776.611	5	26,471.28	12-126	3633.391	3	27,514.68	1-110
3904.582	2	25,603.71	30-141	3772.650	4	26,499.07	26-140	3631.194	125 V	27,531.33	8-127
3904.340	5	25,605.30	17-126	3771.602	6	26,506.43	16-133	3627.001	2	27,563.16	14-136

Table III.-Continued.

Wave- Length	Int.	Wave Number	Сомв.	Wave- Length	Int.	Wave Number	Сомв.	Wave- Length	Int.	Wave Number	Сомв.
3623.837	200 V	27,587.22	28-144	3471.546	1	28,797.39	22-143	3286.020	5 d	30,423.22	18-149
3618.576	2	27,627.33	18-139	3467.776		28,828.70	3-132	3285.224	125 V	30,430.59	14-147
3613.701	150 V	27,664.60	6-128	3466.952	4	28,835.55	2-128	3284.221	4	30,439.88	23-151
3611.331			4-126	3464.160	6	28,858.79	10-137	3283.680	4	30,444.90	11-143
3611.331	2		5-128	3463.138	1	28,867.31	14-141	3280.485	4	30,474.55	17-149
3603.355	3	27,744.03	23-141	3457.177	4	28,917.08	9-136	3279.842	125 V	30,480.52	4-141
3600.583	60 V	27,765.39	28-145	3456.772	3	28,920.47	29-151	3271.151	4	30,561.50	12-145
3598.196	50 V	27,783.81	9-129	3456.340	1 u	28,924.08	8-136	3267.245	2	30,598.08	16-148
3596.725	2	27,795.17	19-140	3452.623	3	28,955.22	3-133	3263.884	5	30,629.54	13-146
3594.61	3	27,811.52	1-111	3451.617	3	28,963.66	20-143	3263.071	2	30,637.17	1-131
3594.496	1	27,812.41	1-112	3449.910	1	28,977.99	27-148	3261.242	1	30,654.36	15-148
3593.134	2	27,822.95	10-132	3448.290	3	28,991.60	27-149	3259.784	3	30,668.07	15-149
3589.390	1	27,851.96	22-141	3442.955	3	29,036.53	23-145	3254.013	5	30,722.45	13-147
3587.639	4	27,865.56	27-143	3442.380	75 V	29,041.38	18-142	3246.678	60 V	30,791.86	11-145
3586.753	2	27,872.45	15-139	3436.304	4	29,092.73	17-142	3243.370	200 V	30,823.27	19-150
3578.738	1	27,934.87	1-114	3428.697	3	29,157.27	6-137	3242.135	2	30,835.01	18-150
3574.906	1	27,964.81	12-136	3427.605		29,166.56	1-120	3236.735	150 V	30,886.45	17-150
			(6-130	3427.605		29,166.56	2-130	3234.165	300 V	30,910.98	9-142
3570.983	3	27,995.5	9-131	3426.583	4	29,175.26	5-137	3233.441	3	30,917.91	8-142
			16-140	3421.556	2	29,218.12	25-149	3231.236	200 V	30,939.01	14-149
3566.77	1	28,028.60	2-122	3420.534	2	29,226.85	2-131	3229.363	4	30,956.95	7-142
3563.823	3	28,051.77	15-140	3420.176	5	29,229.91	16-142	3228.024	1	30,969.79	11-146
3559.328	2	28,087.20	30-150	3414.168	2	29,281.34	1-121	3226.036	2	30,988.88	3-141
3558.706	3	28,092.11	25-143	3412.334	4	29,297.08	18-143	3221.171	250 V	31,135.68	19-151
3555.788	2	28,115.16	24-142	3409.405	2	29,322.25	22-146	3218.380	5	31,062.59	11-147
3554.993	150 V	28,121.45	6-132	3406.364	2	29,348.43	17-143	3207.624	3	31,166.75	9-143
3552.727	5	28,139.39	5-132	3394.138	2	29,454.14	19-144	3206.921	2	31,173.58	8-143
3552.067	2	28,144.60	12-137	3392.784		29,465.89	18-144	3202.906	2	31,212.66	7-143
3551.664	4	28,147.80	13-138	3390.515	5	29,485.61	16-143	3190.341	3	31,335.58	9-144
3546.651	2	28,187.59	9-133			29,496.95	9-139	3189.638	4	31,342.49	8-144
3546.190	150 V	28,191.25	3-126			29,496.95	24-149	3188.787	6	31,350.85	14-150
3545.781	2		4-130	3388.407	2	29,503.95	8-139	3184.212	4	31,395.84	6-144
3545.781	2		8-133	3383.925	1	29,543.03	7-139	3178.485	3	31,452.46	2-141
3545.603	3	28,195.92	10-134	3373.729	125 V	29,632.31	19-145	3172.299	4	31,513.79	9-145
3543.520	4	28,212.49	27-145	3368.690	5	29,676.64	9-140	3171.615	200 V	31,520.60	8-145
3539.086	300 V	28,247.84	6-133	3366.554	150 V	29,695.46	17-145	3167.918	3	31,557.37	11-148
3537.43	?	28,261.06	25-144	3364.821	4	29,710.76	15-144	3167.324	3	31,563.29	14-151
3532.878	3	28,297.48	1-115	3361.853	3	29,736.99	6-140	3166.243	5	31,574.06	6-145
3532.609	3	28,299.63	30-151	3361.555	3	29,739.63	26-151	3164.154	200 V	31,594.91	4-144
3530.022	5	28,320.37	4-132	3355.011	7	29,797.63	2-135	3155.793	5	31,678.61	3-142
3529.043	2	28,328.23	10-135	3354.520	2	29,802.09	23-148	3154.506	5	31,691.54	9-146
3528.052	2	28,336.18	26-145	3352.986	3	29,815.62	23-149	3149.937	2	31,737.50	7-146
3527.850	4	28,337.80	1-117	3352.283	4 d	29,821.88	18-146	3148.458	4	31,752.42	12-150
3527.607	2	28,339.76	19-141	3351.077	2	29,832.61	16-145	3146.407	200 V	31,773.11	4-145
3520.522	150 V	28,396.79	2-123	3349.967	5	29,842.49	25-151	3145.282	150 V	31,784.48	9-147
3515.776	5	28,435.12	13-139	3346.517	4	29,873.26	17-146	3144.596	5	31,791.41	8-147
3509.254	3	28,487.97	11-138	3344.761	300 V	29,888.94	15-145	3138.296	3 u	31,855.23	13-151
3508.470	4	28,494.33	6-134	3342.531	2	29,908.88	1-124	3127.529	80 V	31,964.89	12-151
3507.945	125 V	28,498.60	2-124	3342.531	2	29,908.88	24-150	3125.762	1	31,982.96	11-150
3506.256	5	28,512.32	5-134	3341.868	100 V	29,914.82	18-147	3114.055	1 u	32,103.19	3-144
3503.978	3	28,530.86	28-148	3340.886	4	29,923.61	22-149	3097.079	2	32,279.15	9-148
3502.888	3	28,539.74	24-144	3339.505	4	29,935.98	4-140	3096.876	3 d	32,281.27	3-145
3502.650	3	28,541.68	22-142	3334.896	1	29,977.35	3-138	3095.098	2	32,299.77	8-149
3501.453	60 V	28,551.44	3-129	3331.224	3	30,010.40	16-146	3093.348	3	32,318.09	1-140
3495.941	4	28,596.45	15-141	3324.985	3	30,066.70	15-146	3091.292	3 d	32,339.57	6-148
3493.728	5	28,614.56	13-140	3320.940	2	30,103.32	16-147	3079.906	,	32,459.12	3-146
3492.249	3	28,626.68	6-135	3320.781	2	30,104.77	13-143	3072.391	1	32,538.52	4-148
3482.355	6	28,708.01	20-142	3318.964	5	30,121.25	24-151	3071.109 3056.775	4	32,552.10	3-147
3482.139	5	28,709.79	29-150	3314.731	100 V	30,159.71	14-141	3056.775 3051.163	200 V	$32,704.74$ $32,764.89$	$9-150$ $6-150$
3481.155	3	28,717.91	24-145	3311.497	5 d	30,189.16	11-142	3037.049	2	32,917.15	9-151
3480.382	4	28,724.29	12-140	3307.233	5	30,228.09	8-141	3032.727	3	32,964.06	4-150
3480.279	3	28,725.14	1-119	3303.225	3	30,264.76	3-139	3025.124	1	33,046.90	3-148
3475.670	5	28,763.22	3-131	3295.289	80 V	30,337.65	14-146	2986.669	2	33,472.39	3-150
3474.216	6	28,775.26	11-139	3290.341	4	30,383.27	12-144	2862.787	3	34,920.77	1-148

state should be ${ }^{4} H_{3 \frac{1}{3}}$, whereas if $4 f 5 d^{2}$ is lower it should be ${ }^{4} I_{4 \frac{1}{2}}$. The J value of the lowest state which we have thus far found is $3 \frac{1}{2}$, this possibly being ${ }^{4} H_{3\}}$. In any case the spectrum is not like that of La I, which Haspas' analysis purported to show.

Experimental g values have been determined for several of the levels. While these are not very precise they do show large departures from the theoretical g values, evidence of large interactions between the various levels. This perturbation is to be expected, since our term diagram, though far from complete, shows the greatest density of low levels yet observed. The fact that 13 low levels having J values of $3 \frac{1}{2}$ have already been found means that at least 13 multiple terms lie within $8300 \mathrm{~cm}^{-1}$ of the lowest state. The large number of times this value of J is found shows also that some of the low levels belong to $4 f 5 d^{2}$, since $4 f 5 d 6 \mathrm{~s}$ can account for only eight at the most. The two configurations probably interact so strongly that exact electron configuration assignments will have little meaning.

The energy levels found are presented in Table II. The low levels are numbered from 1 up in order of energy, and the middle levels are numbered from 101 up.

Table III contains a list of the lines which have thus far been classified. Those wave-lengths given to hundredths of an angstrom only are taken from Exner and Haschek; ${ }^{8}$ the remainder are M.I.T.-W.P.A. measurements. The second column contains the estimated intensity of the line as given by Klein ${ }^{9}$ or by Exner and Haschek, ${ }^{8}$ and, where known, King's temperature classification.
We record with gratitude assistance from a grant by the Rumford Committee of the American Academy of Arts and Sciences. We are particularly happy to acknowledge our debt to Colonel R. C. Eddy and the staff members of the W.P.A. project for their conscientious work on the wave-length determinations.

[^4]
Pressure Effects of Homogeneous K Vapor in Absorption

D. S. Hughes* and P. E. Lloyd
California Institute of Technology, Pasadena, California

(Received September 7, 1937)

Abstract

By use of the newly developed corrosion-resistant MgO windows, the K resonance lines in absorption of a homogeneous vapor, were obtained for pressures ranging from 0.001 to 20 mm Hg . The "dispersion" equation was generally adequate to describe the observed contours. The corresponding half-breadths were linear in the density, equal as between components, but of magnitude several times that predicted by the theory of the resonance interaction. The slight asymmetry which appeared at the highest pressure was attributed to van der Waals forces. But it is pointed out that, in contradistinction to the circumstance for Hg , a quantitative verification of the inverse sixth power law is probably not possible. The infrared bands of the K_{2} molecule were also observed.

THE strong asymmetries and shifts, characteristic of spectral lines arising from absorption by a metallic vapor in the presence of a foreign gas, have recently been the subject of extended investigation. The pressure effects in a homogeneous absorbing vapor, ${ }^{1}$ with the typical

[^5]marked symmetrical broadenings, are, however, not only less well understood, but their experimental study has been comparatively neglected. It is the purpose of this paper to describe an experimental investigation of the contours of the K resonance lines $(\lambda \lambda 7664.9,7699.0)$ for the latter case.

In what follows, it will be supposed that foreign gases are present in negligible quantity, so that the interactions among like particles only,

[^0]: ${ }_{1}^{1} \mathrm{Sm}$ I, Sm II, W. E. Albertson, Phys. Rev. 47, 370 (1934); Ástrophys. J. 84, 26 (1936). Eu I, Eu II, H. N.

[^1]: Russell and A. S. King, Phys. Rev, 46, 1023 (1934); W. E. Albertson, Phys. Rev. 45, 499 (1934). Gd I, W. E. Albertson, Phys. Rev. 47, 370 (1934). Yb I, Yb II, W. F. Meggers and H. N. Russell (see C. E. Moore, Term Designations for Excitation Potentials (Princeton, N. J., 1934)). Lu I, Lu II, Lu III, W. F. Meggers and B. G. Scribner, Nat. Bur. Stand. J. Research 5, 73 (1930).

[^2]: ${ }^{2}$ G. R. Harrison and W. E. Albertson, Phys. Rev. 45, 289 (1934).
 ${ }^{3}$ K. Haspas, Zeits. f. Physik 96, 410 (1935).

[^3]: ${ }^{4}$ G. R. Harrison, Rev. Sci. Inst. 3, 753 (1932); Rev. Sci. Inst. 4, 581 (1933).
 ${ }_{5}$ To be described elsewhere shortly.
 ${ }^{6}$ G. R. Harrison, J. Opt. Soc. Am. 25, 169 (1935).

[^4]: ${ }^{8}$ F. Exner and E. Haschek, Die Spektren der Elemente bei normalen Druck (Franz Deuticke, Leipzig, 1911).
 ${ }^{9}$ Ph. Klein, Zeits. f. wiss. Phot. 18, 45 (1918).

[^5]: * National Research Fellow, 1931-1933. Now with Shell Petroleum Corporation, Houston, Texas.
 ${ }^{1}$ For a recent review article dealing with the general subject of pressure effects, see H. Margenau and W. W. Watson, Rev. Mod. Phys. 8, 22 (1936).

