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These results indicate essentially no divergence
along the periphery of a characteristic ring. The
presence of asterism, however, shows that there
is distortion present in the crystals. The only
distortions that could produce peripheral widen-
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ing of spots would be those arising from the bend-
ing of crystals about axes parallel to the incident
x-ray beam. Since no divergence appeared, the
results indicate that the axes of bending were
fairly well confined to the plane of the sheet.
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It is shown that the dependence of the intensity of
magnetization on direction in cubic single crystals probably
results from the interplay between orbital valence and
spin-orbit interaction. Because of the spin-orbit coupling,
the spin vectors responsible for the ferromagnetism feel
slightly the anisotropic electrostatic forces which connect
the orbital angular momenta of different atoms and whose
bonding effect is called orbital valence. In consequence
there is apparent dipole-dipole coupling between the spins
of different atoms with a constant of proportionality about
fifty times larger than results from pure magnetic forces
between spins. The same mechanism also gives rise to
apparent quadrupole-quadrupole coupling, but it is shown
very generally that the latter is possible only if the spin
quantum numbers of the atoms are greater than 3. Al-
though dipole-dipole coupling is well known not to con-
tribute to cubic anisotropy when the elementary magnets
are all parallel, there is an appreciable contribution in the
second approximation of perturbation theory in which
complete parallelism is not assumed. The perturbation
calculations can be carried through for both the dipole or
quadrupole models, provided a Weiss molecular field is

Part 1. DESCRIPTIVE SURVEY AND CRITIQUE

1. Introduction

T is well known that even in cubic crystals
there is some ferromagnetic anisotropy, i.e.,
the ease of magnetization is dependent on the
choice of axes. The magnetization curves for the
100, 010, and 001 axes are of course completely
equivalent because of the cubic symmetry, but
the latter does not require a similar behavior for
the 100, 110, and 111 directions, and it is indeed
found that nickel is more readily magnetized
along the 111 than the 100 axis, while the reverse
is true of iron. The empirical results are best
expressed in terms of a free energy function F. It

used to portray exchange interaction. Both lead to a
constant K; of about the observed order of magnitude in
the expression Fo+ Ki(a2az?+agtas? +agton?) + Kaonlaag?
for the free energy. The temperature variation of K; is
given correctly in so far as K, vanishes much more ra pidly
than the intensity of magnetization near the Curie point,
but the calculations are not sufficiently refined to give
quantitative details of the temperature dependence, such
as, for example, the different behavior of iron and nickel.
The empirical values of K, seem somewhat larger than one
would expect provisionally from dimensional considera-
tions, but higher order calculations are needed before this
point can be definitely settled. Our model is admittedly
somewhat phenomenological, but in our opinion comes
closer to physical reality than others in the literature, which
are criticized. An explanation is given of why the so-called
lattice sums in magnetostriction have larger magnitude,
and sometimes different sign, than computed for pure
magnetic coupling between the spins. In the final section
a brief discussion is included on the anisotropy of hexagonal
crystals.

is shown in the literature! that the observed
anisotropy is explicable in terms of a free energy
of the form

F=Fy+Fi1+Fs, 1

where Fy is purely isotropic, but where F; and
F. involve the direction cosines «y, asz, as of the
field relative to the principal cubic axes in the
fashion
F1=Kl(a12a22+a22a32+a32a12), (2)
Fg = Kza12a22a32. (3)
We suppose the field powerful enough so that

1For an excellent resumé of this part of the subject,
and references, see. R. M. Bozorth, J. App. Phys. 8, 575
(1937), Phys. Rev. 50, 1076 (1936), also Stoner, Magnetism
and Matter, pp. 385-401.
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it is unnecessary to distinguish between the
direction of the applied field and that of local
magnetization.

The selection of the best values of K;, K; to
represent the experimental magnetization curves
is not an easy task, and constitutes the so-called
subject of technical magnetization.! However, it
is not the part of the problem with which we shall
be concerned. Rather, we shall confine our at-
tention to the theoretical explanation of the
existence of nonvanishing constants K, K of the
proper order of magnitude, in other words, the
origin of the anisotropy on the basis of atomic
theory.

The forces between atoms which are primarily
responsible for ferromagnetism are the exchange
interactions. However, they are well known not
to lead to any anisotropy,? provided the atoms
are considered to be effectively in s states. To
explain the fact that the susceptibilities do
depend somewhat on direction, it is necessary to
superpose some other coupling on the large ex-
change forces. The most obvious type of such
other interaction is that represented by the
mutual energy of two dipoles.

2. Dipole-dipole coupling

The conventional treatment of this coupling is
one in which all the elementary dipoles are re-
garded as mutually parallel. It has often been
pointed out that under these circumstances,
dipole-dipole forces® are unable to give any
anisotropy in cubic crystals. The reason is quite
simple. The mutual potential energy of a col-
lection of parallel dipoles transforms like a
quadratic form under a rotation of axes. The
distinction between complete isotropy and cubic
symmetry can be represented by a form of no
lower order than the fourth, i.e., the expression
(2). A quadratic form, on the other hand, yields
either perfect isotropy (equal coefficients of a2,

2 The so-called Dirac vector model shows that the
exchange forces between equivalent electrons are formally
equivalent to a coupling energy of the form —3iJnn;
—2J8S;-S; between the spins, where J is the exchange
integral and #;, n; are the number of electrons outside
closed shells in atoms ¢, j. (See P. A. M. Dirac, Proc. Roy.
Soc. Al123, 714 (1929), or J. H. Van Vleck, Phys. Rev.
45, 405 (1934).) The additive constant — 3Jn;n; is unim-
portant for present purposes and hence omitted in our
Egs. (9) and (45). The dot product S;-S; is clearly invariant
under rotation, and so cannot lead to anisotropy.

3 Cf., for instance, R. Becker, Zeits. f. Physik 62, 253
(1930), or Mahajani, reference 4.
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ag?, and as?), or no more than rhombic or perhaps
axial symmetry.

However, when the dipoles are not all perfectly
parallel, it is no longer true that dipole-dipole
coupling is incapable of yielding any anisotropy.
Instead, it will be shown in Section 10, that when
a perturbation calculation is carried to the second
order, there is a dependence on direction except
in the case of complete parallelism. The latter
case is, of course, an ideal one not achieved prac-
tically except at 7'=0. It is obviously necessary
to carry the perturbation calculation to the
second rather than first approximation, since a
quadratic form can simulate a biquadratic one
only when raised to the second power.

3. Quadrupole-quadrupole coupling—the neces-
sity of S>1 for this

The most frequently employed model of cubic
anisotropy is that wherein each magnet is some-
how supposed to carry with it a quadrupole
moment.* A dependence on direction of the form
(2) is then achieved even when the quadrupoles
are all perfectly parallel. Irrespective of the
question of the mechanism responsible for the
quadrupole-quadrupole coupling, there is a
fundamental difficulty with all quadrupole
models as applied to nickel. Quite possibly, here
the spin of each elementary magnet is 1,—at least
this is the value which gives the best interpreta-
tion of the variation of the magnetization of
nickel with temperature.® However, the most
general potential coupling together two spins of
quantum number % and symmetrical in them is

V="Vo—2J(S2:Se;+SviSvj+S2:Sz;)

4+ C(252:S2;— S2:S2— SviSu;) +D(S2iSz;— Sv:Sv;)

FE(S2:Svi4SziSvi) + F(S2:Sz4+ S;S2:)
+G(SviSzi4S2:Sv:), (4)

inasmuch as any polynomial in Se;, Sv;, Sy; can
be expressed as identically equal to a linear form
@o+a1Sz;4+a2Svi+a3Sz; because with S=1% the
matrices Sz, Svi, +++, Sz are all of the second

rank, and so satisfy simple algebraic equations

4 G. S. Mahajani, Phil. Trans. Roy. Soc. 228, 63 (1929);
N. S. Akulov, Zeits. f. Physik 57 249; 59 254 (1929);
R. Gans and E. Czerlinsky, Ann. d. Physik 16, 625 (1933).

5 Cf. F. Tyler, Phil. Mag. 9, 1026 (1930); E. Stoner,
Phil. Mag. 10, 27 (1930).
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which permit the degree to be depressed, e.g.
Sz.‘,2=%, S:t.;3=%Sxi, S:c,;Sz/i—[-SyiSa:i:O,
Sz,fSyi—SmSz,'=1:Sz,;, (S=%) (5)

We throughout suppose our angular momentum
vectors to be expressed as multiples of the Bohr
unit h/27. If we take the z axis as that of the
radius vector 7;; joining magnets ¢ and j, the
coefficients D, E, F, G will vanish if the inter-
action is invariant with respect to rotation about
7:. We will henceforth therefore neglect the
corresponding part of (4). (Even if these terms
did not vanish, (4) would be essentially a second
order rather than quadrupole-quadrupole propo-
sition.) The first term of (4) is a trivial constant,
while the J term is merely the Heisenberg iso-
tropic coupling. The factor —2 is included in its
definition in order to make the coefficient J
identical with the conventional exchange in-
tegral.2 The C term is of the dipole-dipole type as
far as the dependence on spin-alignment is con-
cerned. We thus see that with spins of } (one
uncompensated electron per atom), dipole-dipole
coupling is the most general type of nonisotropic
interaction. The constant of proportionality C
need not, however, have the value

C=g*%ri®, (B=he/4rmc) (6)

characteristic of the mutual energy of two mag-
nets separated by a distance 7;;. Here § is the
Bohr magneton, and g is the Landé factor,® equal
to two for spins. We throughout use the term
‘“dipole-dipole’ as allowing an arbitrary propor-
tionality factor. When C is to be restricted to (6),
we shall speak of ‘‘true magnetic coupling.”

As a specific example of this theorem that spins
of 1 cannot generate quadrupole coupling, let us
consider the simplest type of quadrupole-
quadrupole potential, viz.

V= V0+’YSzi2Szj2. (7)

8 As we are dealing with media where practically all
the magnetism comes from spin, the g factor can immedi-
ately be equated to 2. However, we prefer to carry an
undetermined g factor because the calculations in Part II
may have some future application to other problems in
which the angular momentum vectors of the different
atoms coupled together do not arise solely from spin.
The analysis in Part II is immediately adapted to such
problems merely by replacing the spin vector S by the
total angular momentum J, and the spin quantum number
S by the inner quantum number J.
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When we utilize the first relation of (5), the right
side of (7) reduces to a trivial constant Vo+ 7.
Eq. (7) is, of course, not the most general expres-
sion quadratic in each of the spin components,
but for our purposes is sufficiently typical of the
workings of quadrupole-quadrupole interaction
provided we take the z axis to be the line joining
the two atoms. Then (7) is a quite general form
which is invariant under rotations about this line
and whose mean value is nonvanishing in the first
approximation.

If the anisotropy of nickel is to be explained
otherwise than with essentially dipole-dipole
coupling, it is necessary that the carriers of the
magnetic moment in nickel have spins of 1 or
greater. A model of this type has indeed been
proposed by Wolff and by Mott and Jones from
other evidence” but we find it rather difficult to
believe that the atomic spin have such a large
value in nickel. At the absolute zero, the value of
the saturation magnetization of nickel is 0.6 Bohr
magnetons per atom. Presumably this behavior
means that 60 percent of the nickel ions are in the
magnetic configuration d° and 40 percent in the
nonmagnetic configuration d@'°, with 0.6 conduc-
tion electrons per atom in 4s bands which are
wide enough so that the magnetism of their spins
is annihilated because of the Pauli principle. With
Mott’s model, there would be 30 percent of the
ions in d8, 70 percent in d*°, with still 0.6 conduc-
tion electrons per atom. Since very much greater
energy is required to ionize an atom twice rather
than once, it is hard to see why the ions should
prefer to be in d® rather than d°. At the same time,
we are not unmindful of the fact that Mott and
Jones have listed certain arguments favoring a
spin S=1 for nickel. Possibly the difficulty re-
garding the high ionization energy of d® is over-
come by some of the 4s conduction electrons be-
ing sucked in towards the d® ions, so that the
mean charge cloud around these ions corresponds
to considerably less than twofold ionization.

In the case of iron, there appears to be no

7 A. Wolf, Zeits. f. Physik 70, 519 (1931); also especially
N. F. Mott and H. Jones, The Theory of the Properties of
Metals and Alloys, pp. 224-227. Attempts to deduce the
configuration of the nickel ions from the formula
x = Ng232(S?+S)/3k(T—T,) for the susceptibility above
the Curie point are in our opinion inconclusive, since this
formula is valid theoretically only if T>>T. whereas in
phracti]c‘e it is used in regions where T is not much greater
than 7.
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objection to granting a spin of unity, or perhaps
even 2, as the Fe atom has two electrons less
than Ni, and so is further from a completed &
shell. The most general potential coupling to-
gether two spins of unit quantum number is a
polynomial of the second degree in Sz, Sui, Sz,
and also of this degree in Sz;, Syj, Sz;. The proof is
based on the fact that Sz, S, Sz are three-
rowed matrices when S=1, and is similar to that
used in establishing that (4) is the most general
potential with dipole-dipole coupling. Conse-
quently, the most general interaction between
two spins of unit quantum number consists of
quadrupole-quadrupole and lower order (dipole-
dipole, dipole-quadrupole) terms, inasmuch as
dipoles and quadrupoles are respectively linear
and quadratic in vectorial properties. If the spins
or quadrupole axes are all parallel, the most
general dependence on direction is of the form (2).
This is true even when the spins are not all
parallel, provided only a first-order perturbation
calculation is made, as will be shown in sections
11-12. The additional term (3) would require
apparent hexapole-hexapole coupling. This can
mean that either (e¢) the spin is greater than
unity, or else that (b) the elementary magnets
are not perfectly parallel. In case (b) the angular
dependence (3) is yielded if the perturbation
calculation is carried to a sufficiently high ap-
proximation, viz. the second order with dipole-
quadrupole coupling, or the third order with
dipole-dipole interaction. That these are the
proper orders can be seen from the powers to
which the direction cosines are raised, on re-
membering that each spin transforms like a
vector.

4. Origin of the coupling terms

So far we have introduced the interaction be-
tween atoms more or less ad hoc, and we must
now inquire into its physical causes. One possi-
bility is that we have to do with bona fide mag-
netic coupling, so that the constant C in (4) has
the form (6). The resulting value of K; is, how-
ever, too small by a factor 10® (see fine print,
Section 6).

In our opinion, the most likely explanation of
the origin of the anisotropic terms is to be found
in the concept of orbital valence. By the latter
term, we mean the fact that the mutual electro-
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static energy of two atoms depends on the way
their orbital angular momenta as well as on the
way their spins are aligned. The orbital coupling
involves in general not merely the orientation of
the orbital angular momentum vectors relative to
each other, but also their orientation relative to
the axis joining the two atoms. The latter in-
gredient, on the other hand, does not appear in
the Heisenberg exchange interaction, which is
formally equivalent to isotropic spin-spin coup-
ling. Expressed in formulas, the energy of orbital
valence is of the form f(L;-L;, Lz;, Lz;) whereas
the exchange energy is F(S;-S;). Here L; is the
angular momentum vector of atom ¢, and the 2
axis is supposed that joining the two atoms. In
other words, orbital valence is anisotropic, but
exchange energy is isotropic because S;-S; is
unaffected if similar rotations are given to S; and
S;. Since practically all the ferromagnetism arises
from the spin, anisotropy in the orbital moment
may at first sight seem to be of little consequence.
However, the effect of spin-orbit coupling is not
entirely negligible even when the orbital moment
is largely quenched, and so the energy will not be
entirely independent of how the spins are
oriented relative to the figure axis. The situation
may be likened to that in the spectra of diatomic
molecules, where the energies of 2, Z¢, Z_1, the
three components of a “p type triplet,” are not
quite the same even though a = state has zero
mean orbital angular momentum.® If only one
orbital state need be considered for each atom,
the most general potential representing the de-
pendence of energy on spin alignment is given by
a function of the form (4) in case the spin of each
atom is 3. If the spin of each atom is 1, we must
add to (4) some quadrupole-quadrupole terms,
analogous to (7), and also perhaps some quadru-
pole-dipole coupling, linear in one spin and
quadratic in the other. Similarly with S=%
hexapole terms must be included. These results
are consequences of the limited rank of the spin
matrices, which make polynomials of low degree
the most general function, as explained in Section
3. Thus the superposition of spin-orbit coupling
and orbital valence leads directly to potentials
which simulate true magnetic dipole-dipole or
quadrupole-quadrupole coupling, except for the

8 M. H. Hebb, Phys. Rev. 49, 617 (1936).
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proportionality factor, but have in reality an
entirely different origin.

The one weak point in the argument is that
actually more than one orbital state surely does
come into play for each atom. In reality, the
orbital as well as spin vectors probably readjust
themselves considerably when the temperature is
varied. We do not wish to enter into any detail
as to what the orbital states look like, since this
would require us to delve into the intricate ques-
tion of just how the orbital angular momentum is
destroyed or ‘“quenched,” a subject imperfectly
understood at present. The mechanism of
quenching is probably not the same as the crys-
talline potential operative in paramagnetic salts.®
If it were, the g factor should be different for
different cubic ferromagnetic materials, due to
inversion of the Stark pattern. Namely, in a cubic
field, sometimes a degenerate and sometimes a
nondegenerate orbital state is deepest, depending
upon the number of electrons. The g factor should
be much nearer 2 in the latter than in the former
event. The inversion of the Stark pattern®® ex-
plains, for instance, why the paramagnetic salt
cobalt chloride has a g factor 1.54 as compared
with 1.95 for chromic chloride. The g factors for
ferromagnetic metals, on the other hand, are
always remarkably near 1.9 (except for the freak
case of pyrrhotite), showing that the quenching
mechanism cannot be the same as the crystalline
fields acting in paramagnetic salts. It is, of course,
not surprising that the quenching machinery
should be completely different in conducting
metals than in nonconducting ionic salts. In the
case of the ferromagnetic metals the quenching
mechanism is probably the coupling between the
orbital angular momentum vectors of different
atoms, of antiferromagnetic sign as suggested by
Sommerfeld and Bethe.* The coupling is not so
strong but that a large number of orbital states
are inhabited at room temperatures. The be-
havior is then exceedingly complicated, as rigor-
ously the whole crystal rather than one atom
ought to be treated as a single quantum me-
chanical unit. Another way of stating the diffi-

9 For a survey of work on the influence of the crystalline
field on paramagnetic susceptibilities, see Chapter X of
Stoner’s Magnetism and Matter, especially p. 292 ff.

10 J, H. Van Vleck; Phys. Rev. 41, 208 (1932).

11 A, Sommerfeld and H. A. Bethe, Handbuch der Physik,
second edition, Vol. 24/2, p. 613.
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culty is that the factors C and v in (4) or (7) are
matrices in the orbital quantum numbers rather
than ordinary numbers. Since we treat them as
ordinary numbers (which would be rigorous were
there only one orbital state), our use of a poten-
tial such as (4) or (7) to represent the interplay
between orbital valence and spin-orbit inter-
action must be regarded as somewhat phenom-
enological. In consequence it is possible that the
constants Cand v should be regarded as functions
of the temperature. They represent, so to speak,
the mean effect of the interplay, which can vary
with temperature because the Boltzmann distri-
bution among the orbital states varies with T.

5. Representation of exchange coupling by
means of a molecular field

A further approximation is necessary before
the calculation can be started. Even when the
orbital problem has been simplified by use of (4)
or (7), there is still the ordinary Heisenberg
exchange coupling, which must be included in the
unperturbed part of the energy, as the isotropic
ferromagnetic action is much larger than the
small perturbations causing anisotropy. How-
ever, the determination of the characteristic

. values of the exchange energy — 22,5 ;J;;S;+ S; for

the entire crystal is well known to be a hopeless
task. We therefore resort to the usual artifice of
regarding the exchange energy as equivalent to a
molecular or inner field proportional to the in-
tensity of magnetization. The constant of pro-
portionality k may, if desired, be a function of T.
This use of a Weiss field is, again, somewhat
phenomenological, but has been shown to have a
quantal basis in Heisenberg’s theory of ferro-
magnetism. Namely, he shows that an inner field
with the constant of proportionality independent
of temperature results if identity of energy is
assumed for all states with the same resultant
crystalline field.? Empirically, this approxima-
tion is quite a good one. In fact, Weiss®® used his
inner field model with great success long before
the advent of quantum mechanics to explain the
variation of the saturation intensity with tem-

12\, Heisenberg, Zeits. f. Physik 49, 619 (1928);
presentation in terms of the vector model in Chapter XII
of J. H. Van Vleck, Theory of Electric and Magnetic
Suscepiibilities.

13 For a resumé of the original Weiss theory and its rela-

tion to the more modern Heisenberg quantum-mechanical
model, see Stoner, Magnetism and Maiter, pp. 350-361.
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perature. This simple model with « independent
of T works better than the more refined model in
which a Gaussian distribution is assumed. Partial
theoretical explanations of why this is so have
been given along different lines by Fay and by
Opechowski.!

We thus base our calculations in Part IT on a
Hamiltonian function of the form

= —gﬁKI' E;S;
+22i5iCii[Si+ S;—37:72(Si- 1) (S 145) ]
+ 2 saviiri(Sit 1) 2(S; 1352, (8)

where I is the intensity of magnetization. We
shall see that a nonvanishing anisotropy constant
K, is obtained when the C and v terms are re-
garded as perturbations, and the development is
carried to the second approximation in C or first
approximation in v. It is to be emphasized that
(8) is to be regarded as a substitute for the more
exact secular problem, which would involve a
Hamiltonian of the form

= —22,>,-J,~,-S.--S,-+A2iLs'Si
+Zsifiij(Li- Ly, Ly 1y, Li-xig)  (9)

where fi; is some polynomial function.!® The first
or molecular field term of (8) replaces the ex-
change or first member of (9). The remainder of
(8) is regarded as representing the constraints on
the spin which would be obtained if the interplay
between the second and third, i.e., spin-orbit and
orbital valence terms of (9) could be treated
exactly.

It would, of course, be desirable if the calcula-
tions could be based directly on (9) rather than
(8) but the labor involved appears prohibitive.
Even if (9) is simplified by replacing the first
member by an inner field, the partition function
would have to be developed to at least the fifth
order for any anisotropy to appear. This order is
required because cubic anisotropy is achieved
only if the spin-orbit parameter 4 is raised to at

14 C, H. Fay, Proc. Nat. Acad. Sci. 21, 537 (1935).

15 W. Opechowski, Physica 4, 181 (1937).

16 Part of fi; in (9) may be linear in S;-S; since the
exchange integrals themselves depend on how the orbital
angular momentum vectors are aligned when the atoms
are not in s states. In other words orbital valence affects
the exchange as well as Coulomb energy. This complication
is of no particular interest to us, for the validity of (8)

asa substitute for (9) is not much influenced by whether
fi; involves S;-S;.
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least the fourth power; also the f term must be
utilized at least once in the expansioh, giving an
additional power. The anisotropy exists only in
virtue of f;; because here L; and L; are coupled to
r;; as well as simply to each other whereas the
rest of (9) is isotropic. If f;; is linear in L;- r;; and
L;-r;; it would have to be raised to the fourth
power to make the direction cosines appear in the
fashion (2), and then an eighth-order develop-
ment would be required.'” Such a procedure
obviously is out of the question. Even if the
eighth order computation could be made, the
approximation would not be a particularly good
one, inasmuch as f;; and 4 are of the same order
of magnitude as k7, so that series expansion of
the partion function does not converge ade-
quately. The fact that any development has to be
carried a long way means, of course, many powers
of T in the denominator, and so it is qualitatively
understandable why the temperature dependence
may be more rapid than can be depicted by our
model (8) if C and vy are regarded as constant
with respect to T. We believe, however, that with
C and v functions of temperature, our model (8)
has a fairly general significance as a phenom-
enological approximation. In particular, it need
not be confined to the Heitler-London method,
since the orbital states may not necessarily be

. anchored to each atom, but instead can be of the

itinerant Bloch-Slater variety.

6. Results of calculations based on the Hamil-
tonian (8)

The model embodied in the Hamiltonian func-
tion (8) is not too difficult to handle analytically,
and can be tested by reckoning out the constants
K, and K;. The mathematical detail is presented
in Part I1, and at this stage we shall simply sum-
marize the conclusions. The three possible checks
are on the sign, magnitude, and temperature
variation of K; and K.

Sign of K,;—There is no feasible way of de-
termining the sign of K, if it is due to the
quadrupole-quadrupole or last part of (8). If,
however, K; is due to dipole-dipole or second

17 It is to be emphasized that consideration of transfor-

mation properties show that three distinct quantities
must each be raised to at least the fourth power. The

-necessity of this power of 4 is seen by imagining the S; to

rotate with the L; held fast; that of L;-r;; by rotating
L; relative to the crystal; that of H* by rotating the
external field.
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member of (8), then K is negative for a face or
body-centered lattice, and positive for a simple
cubic one. The reason why the sign can be de-
termined in one case but not in the other is the
following. It does not appear practical to de-
termine the sign of either Cor v in (8), as detailed
specification of atomic wave functions would be
necessary. Now K is linear in v, but involves C
only through its square, since dipole-dipole effects
enter only in the second approximation (cf. Egs.
(30) and (44)). Hence the dipole-dipole contribu-
tion to K; is of determinate sign even though
there is ambiguity in C itself. The dipole-dipole
coupling gives a K; of the proper sign for nickel,
since the latter has a face-centered lattice and
negative K,. This agreement is gratifying, inas-
much as nickel is the material which is most
likely to have S=1%, and we saw in Section 3 that
with S=1%, the quadrupole contribution to K,
vanishes so that only the dipole explanation can
be used. When we come to iron, the observed sign
(positive with a body-centered lattice), does not
check with the dipole-dipole model, but is not
inconsistent with S>% and quadrupole-quadru-
pole coupling. It is probable that iron has a spin
of at least unity. If so, here, both causes of K;
enter simultaneously. The right sign is possible
only if the quadrupole effect is more important
than the dipole one. It is not clear theoret-
ically why this should be the case, as in the
next paragraph we estimate very crudely the two
effects to be of the same rough order of magnitude
when they are both present. It is thus impossible
to tell @ priori which should be the larger, and so
the best that can be done is to appeal to the
empirical evidence.

Order of magnitude of K,—The constant K,
should be of the order A4%/10kT %2, or there-
abouts, per atom if due to dipole-dipole inter-
action, and of the order A*/k** if due to the
quadrupole-quadrupole effect. The basis of these
estimates is set forth in fine print below. Here 4
is the usual spin-orbit constant, T, is the Curie
temperature, and » is a quantity of the order of
magnitude of the separation of energy levels
caused by interaction of the orbit with the crys-
talline field (or alternatively, of the coupling
energy between the angular momentum vectors
of adjacent atoms, something presumably of the
same order of magnitude). A reasonable estimate
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is perhaps!® A?/hy=10 cm™, »=10* cm™,
kT.~10%cm. If so, then when due to either effect,
K, is of the order 102 cm™! per atom or 105
ergs/cm?. It is not surprising that both the dipole
and quadrupole mechanisms should lead to the
same order of magnitude for K1, as there is little
distinction between them from the standpoint of
the more fundamental equation (9) although they
appear differently in (8). This estimate K;~10°
is of the order of the experimental values. Namely
iron has K1=6X10° at room temperatures, while
nickel has K;= —3X10* at this temperature, but
about —3X10°% at liquid hydrogen.!® Thus with
the model which we propose, there is no difficulty
in understanding the existence of anisotropies as
large as are observed.

To derive the above estimates of K;, we first note that
the calculations of Section 10 show that the constant K is
of the order C2/10%kT . per atom if ascribed to dipole-dipole
coupling. The factor 10 does not follow from dimensional
considerations, but is included because the purely numer-
ical factor involved in Table I of Section 10 is rather small.
The quantity C is the constant of proportionality in the
second member of (8). It should be of the same order of
magnitude A2/hv as the spin-orbit splitting in a molecular
state devoid of mean angular momentum (cf. Hebb’s
calculations® on p type tripling in 32 states). The splitting
is of this order rather than simply 4 because it disappears
in the first approximation for such a state. If the dipole-
dipole constant C arose primarily from a pure magnetic
interaction rather than spin-orbit coupling, C would be
of the order of magnitude. 2 cm™ given by (6) with
7i;3~10% rather than C~A42/hv~10 cm™, and K, would
be too small by a factor about 1073,

If K, is due to our quadrupole-quadrupole coupling, it
should be of the same order of magnitude as v (cf. Section

18 The expression C~A2/kv should be of the same order
of magnitude as the constant term in the width of a p
type triplet in band spectra. This term is 1.99 cm™! for
the oxygen molecule (R. Schlapp, Phys. Rev. 51, 342
(1937)), and an extra power of at least ten seems in order
in extrapolating to heavy elements like nickel. The quan-
tity C can also be gauged by 3I*—3IIy~ intervals in
molecular spectra, with similar results. Another quite
different method of estimation is furnished by considering
the multiplet splitting in the configuration d® of say
Cr II, which is again about.10 cm™! (cf. page 162 of Bacher
and Goudsmit's tables). This splitting is of the order
A?/hvi, where » is the coupling energy between ! vectors
of the same atom rather than of different atoms and is
probably somewhat greater than our ». So, if anything,
10 cm™ is an underestimate of C, and hence it is not too
surprising that |K;| should sometimes reach almost 107
ergs/cm3, as appears to be the case for nickel at very
low temperatures.

19 The experimental values of K; quoted here and in
the tables of Part II are taken from Bozorth, reference 1,
and are based ultimately largely on Japanese work on
magnetization curves; Honda, Masumoto, Kaya, and
Shirakawa, Sci. Rep. Tohoku Univ. 17, 111 (1928); 24,
391 (1935).
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11, especially Table III) and v is of the order A4/h3%3.
At first sight it might seem that vy should be of the same
order of magnitude 4%/kv as C, but to obtain a splitting
like (7) which involves the spins all told to the fourth
degree, it is necessary that the perturbing potential be
raised to the fourth power, which involves a fourth rather
than second order perturbation calculation. (In this con-
nection, the third term of (9) is to be regarded as the
unperturbed energy, and the second member Z;A41;-s;,
summed over two atoms, is to be treated as the perturbing
potential.)

Temperature variation of Ki—As regards the
dependence of K; on T, our model proves correct
only in a rough qualitative way in that it does
indeed predict that the anisotropy should fade
out much more rapidly than does the intensity of
magnetization itself when the temperature is
raised towards the Curie point. However, the
predicted variation with temperature is still not
as drastic as is found experimentally. In the case
of iron, the observed anisotropy varies approxi-
mately as I'? near the Curie point,?® whereas the
computed values given in Table III simulate
more nearly I°or I°. Here we use the quadrupole-
quadrupole calculations in order not to be in
conflict on the sign of K. In the case of nickel, K;
is actually over fifty times larger at 17° than at
293°K, whereas according to our calculations K;
should increase but very little in numerical mag-
nitude when T is reduced below room tempera-
tures. This statement is true regardless of
whether the dipole or quadrupole model is used,
since either one gives qualitatively about the
same variation with T (cf. Tables I and III of
Part II). For the latter reason, no explanation is
obtained of why it is that dK/dT is very much
larger in absolute value at low temperatures for
nickel than for iron, so that the absolute zero is
approached in a quite different way for the two
materials. '

We believe that the failure of the models based
on the Hamiltonian function (8) to give the
proper quantitative temperature dependence
should not be regarded as too serious a difficulty,
since (8) presupposes a somewhat phenomeno-
logical treatment of the orbital part of the prob-
lem. In fact, we mentioned at the end of Section 5
that (8)-might not give a rapid enough variation
with T'. As stressed in Section 5, C and v ought
really to be regarded as undetermined functions

20 Cf. N. Akulov, Zeits, f. Physik 100, 197 (1936).
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of the temperature, rather than as constants as
we have taken them to be in obtaining the theo-
retical predictions mentioned in the preceding
paragraph. Another, but probably less important
source of error, is the use of the Weiss inner field
as a method of depicting the workings of exchange
interactions between the spins. Additional leeway
is obviously obtained if the proportionality factor
k in the molecular field is regarded as a function
of temperature, rather than constant, as we take
it to be. To examine how serious are the de-
ficiencies of the Weiss field approximation, we
give in Section 12 an alternative method of calcu-
lation of the quadrupole-quadrupole effect in
which the exchange interactions in the pair under
consideration are taken into account rigorously
and only the effect of outside atoms represented
by means of the molecular field. The difference
between this perhaps improved method of calcu-
lation and the original one given in Section 11 is
unimportant (cf. Table III). Unfortunately, it
does not appear feasible to carry out the compu-
tations with the Bloch ‘“spin-wave” type of ap-
proximation which is particularly suitable for low
temperatures.

Magnitude of K.—We have not carried the
perturbation calculations to a high enough order
to permit saying anything on either the sign or
temperature variation of K, Dimensional con-
siderations, such as those given in fine print
above, suggest that K, would differ from K, by
a factor A2/h*v? or perhaps A%/hvkT, and hence
be about 1072 to 10~2 as great as K. Actually K,
is comparable with K;. For instance, K, almost
equals K in iron above 500°K, while K is about-
30 percent of K, in nickel at 123°K. This diffi-
culty is not merely one characteristic of the par-
ticular model (8) which we use, since with any
type of calculation the spin-orbit parameter must
be raised to the sixth rather than fourth power to
generate an angular dependence of the form (3)
rather than (2). As suggested to me by Dr.
Bozorth, part of the apparent discrepancy may
be associated with the different size of the
angular factors in (2) and (3). The maximum of
aal?as® is only 1/27, as compared with } for
oo+ ata®+atas?, while the difference in
mean value is even greater, v42. a factor 21.
Whether the dimensional considerations on mag-
nitudes relate more exactly to the expressions (2)
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and (3) inclusive or exclusive of the directional
factors cannot be determined without a rather
laborious explicit calculation of K. Of course one
must bear in mind that because of the small
angular factor mentioned above, the constant K,
is not easy to measure with precision, and so the
experimental values may not be very accurate.
However, the observed magnetization curves are
so complicated that it is scarcely conceivable
that they can always be depicted by a dominant
fourth order form F; without the admixture of
comparable Fy terms. In fact in some cases ap-
preciable higher harmonics F3; and F, may be
required.

In nickel, K; apparently changes sign at about
420°K. To be sure, this is in a region where the
anisotropy is so small that the experimental data
may not be reliable. If the change in sign is real,
it would perhaps indicate that excited states of
nickel can have S>% and so manifest quadrupole
coupling even though the normal states, which
determine the sign at low temperatures, have
S=1 and so only the dipole effect. Another more
likely possibility is that the higher order pertur-
bation terms are for some reason abnormally
important, as they would need to be to generate
a K, much larger than Ky, such as is apparently
shown in nickel at high temperature. These
terms will make some contribution to the angular
structure (2) as well as (3).

7. Relation to other models of ferromagnetic
anisotropy in the literature

Bloch and Gentile's theory and the one atom
model.—A large number of papers have already
been written on the same subject as the present
article, viz. the origin of the anisotropy constants
K1, K, in atomic theory, but usually in our
opinion on the basis of models which cannot be
regarded as a close or satisfactory approximation
to physical reality. Considerable resemblance,
however, appears at times between the preceding
discussion and that given by Bloch and Gentile.2*
This statement is particularly true regarding the
way in which the constants enter dimensionally,
and the idea that cubic anisotropy exists pri-
marily in virtue of spin-orbit interaction, but
only after the spin-orbit parameter is raised to

2 F, Bloch and G. Gentile, Zeits. f. Physik 70, 395
(1931).
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the fourth power. In a certain sense, all our calcu-
lations in Part II may be regarded as simply an
attémpt to put their general scheme of things on
a firmer and more tangible basis. Nevertheless,
there is one respect in which our approach seems
to differ from theirs in principle. Their explana-
tion for ferromagnetic anisotropy appears to be
the interplay between spin-orbit interaction and
the quantization of a single atom in a crystalline
field. It is perhaps not entirely fair to make this
statement definitely, as their paper is couched in
such general language that it is impossible to
extract from it exactly the type of orbital quanti-
zation which is implied. However, they do talk of
the ‘s state of an atom,” “excitation of one
atom,” etc. and so would seem to imply that each
orbit can be quantized in a crystalline field. Such
a picture we shall call the ‘‘one-atom model,”
as it would imply that magnetic anisotropy can
be deduced from a secular problem involving
only one atom, provided exchange is represented
by an inner field. In other words, the Bloch-
Gentile Hamiltonian function differs from ours in
that the last, or orbital valence term of (8), is
replaced by the sum Z;V; of the individual
crystalline potentials of the separate atoms. How-
ever, we advance in the next paragraph reasons
for believing that such a model is incapable of
yielding any appreciable anisotropy. We main-
tain that the coupling between orbital angular
momentum vectors of different atoms is a vital
ingredient, rather than the interaction of a single
vector with the crystalline field.

The reason why the one:atom model cannot
give appreciable cubic anisotropy is the de-
generacy whereby many levels coincide in a cubic
field. If we have a nonmagnetic, nondegenerate
orbital level (type I'; or T'y in Bethe's? notation)
in a cubic field, and add the spin, then group
theory shows that the resulting levels are com-
pletely degenerate® so long as the spin quantum
number S is less than 2, as is altogether probable.

22 H. Bethe, Ann. d. Physik 3, 133 (1929).

23 The appropriate relations in the language of group
theory are the following formulas for the reduction of the
‘/direct products” of the spin and orbital representations:

TeXT1=T%, T XTy=T1Y, T'yXT1=Ty,
Ty XTy=T%, TsXT1=TsXT:=T}

inasmuch as S=1%, 1, § have the cubic transformation
properties of T's, I'y, T's respectively. There is no splitting
when the reduced product contains only one irreducible

representation, as in the above cases.
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This result is intimately connected with the fact
that the most general polynomial in the spin
vector is an expression of the first, second, or
third degree according as S equals %, 1, or £,
‘whereas cubic anisotropy requires the fourth
degree. In consequence of this fact, the atom will
be isotropically bound as long as one considers
only matrix elements of the Zeeman energy (i.e.,
energy of the atom in the Weiss molecular field)
connecting the different components of the
ground level. As soon as one includes matrix
Zeeman components joining the ground state and
excited orbital levels based on other representa-
tions than I'; or Ty, cubic anisotropy can appear.
However, as shown in fine print below, a very
high order perturbation development is required,
and the resulting value of K; is too small to be
significant.

In Section 6 we saw that a K, of about the right order

of magnitude is obtained if K; is dimensionally of the
structure [A4/h2210kT Jo or [A4/h%3]p. Here ¢ is a
function only of the dimensionless argument g@xI/kT.
(10f or fi+f: in our later Egs. (32), (38) are examples of
essentially ¢ functions.) Any portion of the free energy
leading to the angular structure (2) must involve the spin-
orbit parameter 4 and the molecular field H=«I each to
at least the fourth power. The requisite fourth power of xI
was previously tacitly contained in ¢ which was not men-
tioned in Section 6 as ¢ is of the order of magnitude unity.
However, the appearance of the argument g8xI/kT is as
a rule possible only in virtue of nonisotropic ‘“low fre-
quency’” matrix elements connecting energy levels split
by intervals small compared with k7. When the Zeeman
components leading to anisotropy join normal and excited
states, the dimensionless factor?* usually becomes instead
«I/hv, and K, is of the order A**I*/h’»" or perhaps
A4k4I4/h%vekT,, and then K, would be about 10? ergs/cms?
rather than the observed 105 to 108,

If there is a spin of unity or greater, and if the ground
orbital state of the atom happens to be I, the orbital
level is degenerate but by exception nonmagnetic. Then

% Powers of kT in the denominator of the free energy
or partition function arise in general from perturbing
matrix elements involving energy changes Ay small com-
pared to kT, because k7T replaces hAv in the perturbation
denominators when terms are paired in appropriate
fashion (cf. K. F. Niessen, Phys. Rev. 34, 253 (1929);
J. H. Van Vleck, The Theory of Electric and Magnetic
Susceptibilities, Section 46). Hence a small splitting of the
ground state by the crystalline field is necessary. (For
formal purposes a zero splitting can be regarded as a small
splitting, but in the cases under consideration zero splitting
gives essentially the same transformation properties as
free rotation and so does not cause anisotropy.) In the
text we have listed one power of 1/k7 in K; as possible
even when the ground level does not split, because suffi-
ciently high perturbation calculations involving the inter-
action with excited states may ultimately lead to aniso-
tropic low frequency matrix elements.

1187

there is no difficulty with g-factors. Also the introduc-
tion of the spin causes a small splitting of the ground
level (as embodied in the group theory relation I'3XTy
= I‘4+I‘5, if S= 1, or P3XF3=P5+I‘7+P3 if S=%), so that
the desired small lifting of the degenerary is available.
Conceivably this situation is part of the explanation of
the anisotropy of iron. It will not work for nickel if the
latter has S=1, as the formula I's}XT's=T's shows that the
degeneracy persists even after insertion of the spin. How-
ever, we doubt if it is an accurate picture of things to use
the crystalline field mechanism in conductors, as explained
in Section 4. So it is rather academic to discuss at length
any specific details of the one atom model.

Powell's model—In an interesting ' paper,
Powell® secures the desired angular structure (2)
by introducing an anisotropic Weiss field. The
dissymmetry in the latter is somehow to be asso-
ciated with the effects of spin-orbit interaction,
and should perhaps be regarded as a phenomeno-
logical substitute for the last two terms of (9).
However, the relation of Powell's model to the
actual workings of spin-orbit coupling is appar-
ently such a remote and heuristic one that it
cannot yet be regarded as a real explanation of
ferromagnetic anisotropy.

Akulov's calculation of the temperature variation
of Ki.—There are numerous papers by Mahajani,
Akulov and others* based on rather arbitrary
quadrupole-quadrupole models, but as far as we
know, in only one of them, by Akulov,? is any
attempt made to compute theoretically the tem-
perature dependence of K;. His results are in
better agreement with experiment than ours, as
he finds the anisotropy varying as the tenth
power of the intensity of magnetization near the
Curie point. However, he regards the spins of
adjacent atoms as all parallel, and all precessing
together about the axis of resultant magnetiza-
tion. According to statistical “mechanics,  the
elementary magnets tend less and less to be
mutually parallel as the temperature is raised,
and it is hard to believe that the assumption of
complete parallelism is a better approximation to
the true workings of exchange coupling than is
the Weiss molecular field. The latter, to be sure,
probably does not take sufficient cognizance of
the tendency of magnets to coagulate locally into
parallel clusters, but the modified calculation

2 F, C. Powell, Proc. Roy. Soc. 130, 167 (1930); with
R. H. Fowler, Proc. Camb. Phil. Soc. 27, 280 (1931).
An anisotropic Weiss field is also suggested by Mahajani,
reference 4.
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given in Section 12 appears to indicate that the
temperature dependence is probably not greatly
modified by this tendency, although the latter
admittedly works in the right direction.

Bozorth and McKeehan's model.—Practically
all the papers using quadrupole-quadrupole coup-
ling are open to the objection that they introduce
this mechanism more or less ad hoc without sup-
plying any basis in atomic theory. An attempt to
circumvent this difficulty has been given in a
recent article by Bozorth and McKeehan.? They
neatly point out that spin dipoles can give rise to
quadrupole and still higher order moments when
it is remembered that the spin is not anchored to
the nucleus but instead travels around with the
electron. Thus on taking the time average, i.e.,
matrix elements diagonal in the electronic orbital
quantum numbers, there is a dipole of finite
extent, which will introduce quadrupole mo-
ments as long as there is a correlation between
the direction of the electronic spin and the direc-
tions of anisotropy in the ‘‘time exposure’’ elec-
tronic charge cloud. Also it is necessary that the
spin quantum number .S be >1, since (4) is the
most general potential when S=3%. With com-
plete correlation and with pure magnetic inter-
action the constant K; would then be of the order
of magnitude R?g?8?/r;;%, where R is the atomic
radius. If we take R?/»2~1/10, 7;#=10"% the
resulting value of the constant K is indeed of the
order of magnitude observed experimentally. For
this reason they suggest that true magnetic coup-
ling (6) is sufficient to explain anisotropy, and
dismiss the possibility of the clectrostatic inter-
action between the charge clouds of different
atoms, represented essentially by the last term
of (9), as of uncertain magnitude and unneces-
sary. However, in our opinion, the correlation
between spin and orbital alignment is slight, i.e.,
the electronic charge cloud does not orient very
much with the spin, since the observed g factors
of nearly 2 indicate that the orbital angular mo-
mentum is largely quenched and decoupled from
the spin. So with pure magnetic interaction, the
anisotropy would be too weak by a factor 1000
or so. The loss in magnitude is recovered when
the Bozorth-McKeehan model is so amended
that the primary coupling between different

25 R. M. Bozorth and L. W. McKeehan, Phys. Rev. 51,
216 (1937); L. W. McKeehan, Phys. Rev. 52, 18 (1937).
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atoms is electrostatic, as seems inevitable since
the orbital valence terms are surely much larger
than the pure magnetic ones. (For the latter
reason, incidentally, the anisotropy would be
much too large were there anything like complete
correlation between spin and orbital orientation.)
With this modification, there is at least a vague
resemblance between the Bozorth-McKeehan
model and our use of the quadrupole potential
(7) for S>1%, though the approaches are entirely
different. The gist of the matter is that enough fo
the orbital anisotropy ‘‘sticks’” to the spins to
create apparent quadrupole forces between them.

8. Magnetostriction

It is not our main purpose to discuss magneto-
striction, but we can note in passing how our
theory has some bearing on this subject. There
is a considerable literature on magnetostriction,?”
the essence of which is that it is possible to under-
stand many of the phenomena, especially those
concerned with spatial variation, if one assumes
that besides the ordinary elastic energy, there is
the energy of a dipole lattice which is strained
due to the magnetic field, and which so loses its
perfect cubic spacing. However, there is the
difficulty usually stated in the form that the
theoretical so-called ‘“lattice sums’ do not have
the proper value, being sometimes too small,
sometimes even of the wrong sign. Another way
of saying the same thing is that empirically the
constant of proportionality C in the dipole-dipole
potential (4) (or rather its derivatives with re-
spect to 7;) does not have the value (6) cor-
responding to pure magnetic coupling. Fortu-
nately in Section 4 it was shown that most of C
probably does not arise from this cause, but
rather from the interplay between orbital valence
and spin-orbit interaction, so that C has an order
of magnitude 42/hv about fifty times larger than
(6). (As a matter of fact, even the pure exchange
coupling gives rise to magnetostriction, but the
resulting contribution 1is isotropic, and we shall
consider only the spatial variation.) Hence it is
clear why the so-called lattice sums should usu-
ally turn out considerably larger than given by

2N, S. Akulov, Zeits. f. Physik 52, 389 (1928); 59, 254

(1930); 69, 78 (1931); Becker, reference 3; R. Gans and
J. v. Harlem, Ann. d. Physik 16, 162 (1933); W. Heisen-
berg, Zeits. f. Physik 69, 287 (1931); F. C. Powell, Proc.
Camb, Phil. Soc. 27, 561 (1931).
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(6), and not necessarily with the sign demanded
by (6). According to Powell 27 28 the anomaly in
iron amounts to a factor 13, in sufficient agree-
ment as regards order of magnitude with our
rough estimate 50. Quantitative comparison of
the values of C obtained from the anisotropy in
the intensity of magnetization and from magneto-
striction immediately suggests itself, but is not
very feasible, since the former involves C itself,
while the latter depends on the derivatives with
respect to 7.

One thing which the magnetostriction data
clearly show is that the first order dipole energy
is larger than the quadrupole. In cubic systems
we have seen that as far as anisotropy is con-
cerned, the dipole energy appears only in the
second order and cannot be resolved from the
quadrupole contribution, as both effects enter
additively when S>%. With magnetostriction,
however, it is different. The dipole-dipole effects
can come into play in the first order because the
strain makes the crystal cease to be cubic. The
magnetostriction data show that in (8) the con-
stant C is certainly larger than vy. Namely, if one
assumed that the magnetic energy of strain were
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of the order v6l/l rather than Cél/l, where [ and 6l
are respectively the lattice spacing and strain
therein, the magnetostriction would not be as
large as the observed by a factor about 100. Also
it is doubtful if its angular dependence would be
correct, because strain of quadrupole lattices
would lead to different spatial behavior than
would that of dipole ones. Since C is thus so much
larger than v, it is once again hard to see why K,
is as large as is observed, for from crude dimen-
sional considerations one would expect the ratio
of K5 to K, to be about the same as that of v to C.

It is possible that the ‘“‘one-atom model’” has
some importance and relevance for magneto-
striction even though it does not for ferromag-
netic anisotropy. When a cubic crystal becomes

-strained, it acquires only tetragonal symmetry,

and the bottom states can split, provided S>1%.

So under strain the one-atom crystalline poten-

tial can materially hamper the free alignment of
the spins, and conceivably it might be possible to
explain magnetostriction with this mechanism
instead of the coupling (8) or (9). No doubt the
two - effects, crystalline potential and orbital
valence, are superposed in reality.

ParT II. MATHEMATICAL ANALYSIS
9. Preliminary details

We now proceed to the mathematical calculation of the partition function Z=Zye~"N*T for our
model. Once this has been computed, the free energy is supplied immediately by the relation
F= —FkT log Z. Our Hamiltonian function is

= —gﬂHE.-Sz.-+E,~>.-w.-,v, (10)

where 4, j refer to the various atoms of the crystal, w;; is in the interaction energy between atoms <, 7,
and H is supposed directed along the z axis. The total effective field H is composed of the external
field Hexy and the Weiss internal field, which is supposed to depict the ordinary exchange interaction
as explained in section 5, and which is presumably proportional to the intensity of magnetization I,
so that

H=H+xl. (11)

For the purposes of the present paper, only the second term of (11) is of importance, but by taking
H to be solely the external field, it is easily possible to adapt the calculation of section 10 to two other
entirely different problems, viz. the adiabatic demagnetization of titanium alum, and the Gaussian
fluctuations in the Heisenberg theory of ferromagnetism, as we shall show in two later papers.

Let us now regard the first member of (10) as the unperturbed system. A system of representation
can then be used in which each atom is space-quantized separately, the corresponding characteristic

%8 Akulov and Becker, reference 27, obtained factors 2 and 5 respectively rather than 13, but Powell showed that this
apparent discrepancy was because they used different boundary conditions or demagnetization corrections, not appro-
priate to the shape of the specimens usually employed experimentally.
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value of Sz; being denoted by m;. The unperturbed energy is then
W0= —gﬁHE;m;. (12)
The second part of (10) is the perturbing potential.

10. Second-order effect of dipole-dipole coupling

Equation (8) shows that the interaction energy w;; contains both dipole and quadrupole terms
(provided S>3%). However, the two terms contribute additively to K; to the approximation under
consideration (second order in C, first in v), and so may be treated separately. The consideration of
the quadrupole part will therefore be reserved until Section 11. In the present case of dipole-dipole
coupling, the interaction is thus

Wii =2 q,0'=2,9,2@ii "V SaSepr (@i =ai;79). (13)

For the sake of increased generality, needed in connection with other problems, a quadratic form
has been used in (13) which is somewhat less specialized than the second member of (8). In fact,
except for a trivial additive constant, (13) has the same generality as all of (4).

The matrix elements of the perturbing potential may readily be computed with the aid of the
well-known formulas

Sei(mi;m)=md(mi;mi), (SzFiSv)(mi; m)=(S*+S—mEFm)o(m;x1;m), (14)

where § is the Kronecker delta, and S is the spin quantum number of the atom, which we suppose
the same for all atoms, but which need not necessarily be %. Because (13) involves the product of
only two spins, Zw;; is never off-diagonal in more than two quantum numbers. A typical element is,
for example

Zisawii(mgmy ; me+1, my—1) = §(ar**+an??) (S24+S —mi? —me) }(S?+-S —m2+-mi) b (15)

Here we have listed only those quantum numbers which are different in the initial and final states.
In the particular case (15), these two states involve the same energy, so that in the notation of a
previous article,? the transition (15) is one of the type indicated by the superscript™. Another example,
not of this type, is

Zjsawii(my; mi— 1) = §Z4(ar*® —iar*)mu(S?+ S —mi2+m)b (16)

In this instance the energy change is g8H.

The partition function can now be calculated to terms in w;;? inclusive by means of formulas (64),
(65), (68-72) given in Section 6 of a previous paper,?® which we shall call /.c. In fact the present cal-
culation resembles in many ways that given in detail in sections 1-2 of l.c. However, there is the dis-
tinction that we there supposed the field strength small, so that we could stop with second powers
thereof. In the present ferromagnetic case, the effective, inner field is not small, and saturation cannot
be neglected. Cubic anisotropy first appears in the approximation H*. So it is necessary to use a more
general theory in which all powers of the field strength are retained. The requisite skeleton mathe-
matical basis is supplied by Eqgs. (64) etc. of Section 6 of I.c., which have the desired generality, and
serve as a starting point for the present calculation. The inclusion of a crystalline field, allowed in
Section 6 of l.c. is, however, not necessary for present purposes. When the formulas of l.c. for the
partition function are utilized, there are still sums over the various quantum numbers to be evaluated.
Fortunately they can all be factored into sums over individual quantum numbers of the type

S
B.= Y, mrem™/Y e with 0=gBH/kT. )

m=—38

2 J, H. Van Vleck, J. Chem. Phys. 5, 320 (1937).
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The function B, defined by (17) may be evaluated explicitly by means of the relation
B.=Q1d"Q/d6* where Q=73 e™=¢"50(1—g25+1)0)/(1—¢f).

With the aid of I.c., one thus finally finds that
Z/Zy=1—3NEk'T12;a:**B:2+ 3 NB 2Bk 2T (2041792 — Zi(a:i*%) *]

+ENE2T2B [(N —4) (Z;a:i°%)2+22;i(a:;#) 2]+ (VB 2k TgBH) [ (2ja:*%) 4 (Z;a4;¥7)*

—2(@i**)* = 2(ai;*") "]+ 1 NBo’k* T2 (04**)*+ 3 (NBy B,/ R TgBH) [ 21(a:%)* + 2i(a:**)* ]

FNE2T-2(S2+.S — Bo+B1) (S2+S— B — B1) Zi(as;"+a:;#Y)?
+3(VB1/2kTgBH)(S*+ S — B2)Zi[ (a4 —as*¥)*+4(as*¥)* ] (18)

Here Z, is the partition function in the absence of the perturbing potential Z;5;w;;. The contribution
of the factor Z, to the free energy F= —kT log Z is simply the free energy corresponding to an ideal
gas in a magnetic field, and consequently isotropic as far as the latter’s orientation is concerned. This
part of F is obviously of no interest for us. In writing (18), we have replaced Z;»; by 3/NZ;. This is
legitimate because the atoms are all alike in behavior in the cubic gratings we are considering.
Equation (18) involves the a;; relative to a system of coordinate axes such that the applied field is
always in the z direction. To study anisotropy, it is necessary to express the interaction energy w;;
in terms of similar constants 4;; for a system of axes fixed relative to the crystal, which are denoted

by capital letters, i.e.,
Wii=2q, ¢=x,¥,2 4i;99S 0:S j. (19)

The reason that the results must be expressed in terms of the 4’s rather than the a's is, of course.
that the 4’s are constants independent of the direction of the applied field, whereas the a@’s are not,
Since w;; must be invariant of the coordinate system, and since the S; transform like vectors, com-
parison of (14) and (19) shows that the transformation relations connecting the a’s and A4’s are

aii“I:Ep.p’mYYZ >\qp)\q’p'A iippl’ (20)

where the \,, are direction cosines. We now substitute (19) in (18). A large number of terms coalesce
or drop out if we assume, as we do, that there is cubic symmetry. In virtue of the latter, sums like
ZAXYAYZ in which a letter (here X or Z) appears only once, must vanish for there is nothing to
distinguish between the positive and negative X (or Y or Z) directions. If such sums did not vanish
they would not be invariant under the substitution X= —X, inasmuch as 4—X¥= —A4XY, Also
because of the parity of all coordinate axes in a cubic system, we must have

Bt =212, Zid A =3474 57,  etc.

Similar relations also apply in the «, y, 2 system. They would not be true were the summation over j
removed, as the interaction between any given pair of atoms certainly does not have cubic symmetry.
With the summation, however, the full cubic symmetry of an atom’s environment is manifested.
Thus it is finally found that (18) becomes

Z)Zo=1—}NE-T-1Q,B 2+ 1 Nk T~ B,A(N — 4) +yB 2By |2?
+ 3Nk T2 [1B1* = 3B1*Ba+ 1 Ba?+ 16 (S*+S— Bo)* — 75B12+5(S*+.S — B2) (Buk T/ gBH) I
+3NE2T*(RT/gBH) [:B1(S*+ S — Be) — Bi*+ BB ]2
+3NE T2 5(S?+S— B2)* — 2612~ 4 (S*+S— By) (B:k T/ ¢8H) 10
— Nk=2T*[3B1*— B:*B2+3B2*+ 75(S*+5— Bs)? — 76B1
+3(kT/gBH)(S*+S— B2)B1+ (kT /gBH) (B1* — B2 B1) JQu(ar’as’ + an’ s+ an’as® — ),

(21)
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where Qo= 3Z;(4:;;XX+A4;;¥Y¥+A4;;%2%) and

Q1=3b+2c+4d, Q=b—c+3d, Qs=b+4c—2d, Qu=b—c—2d

b=3bi;=35Z;i (A )2+ (A5 ¥)+ (A7)}, c=32)(A"TAGY Y+ 45TV A7 7+ 44774 %%), (22)
d=32;{(A:*7)*+ (A7 2)2+(4:7%)?}.

In (21), the notation ai, az, a; has been used in place of N.x, N\.¥, N\.z, respectively. The additive con-
stant —% is included in the angular factor in the last term of (21) in order to make this term average
to zero, inasmuch as the mean or power value of (21) will be needed in a later paper.

Formula (21) is valid for any value of the spin. In the important special case S=3% one has

B;=1 tanh (gBH/2kT), B,=1%, (23)
and the analytical form of (21) is really rather simple, merely a polynomial in B;.

Demagnetization corrections.—In case the test body is not molded in the shape of a sphere, the boundary conditions do
not in general exhibit cubic symmetry even though the crystal belongs to the cubic classification. Then it is not allow-
able to suppose that the part of the 4's due to the pure magnetic coupling (6) satisfy the relation

ZinjXX=EjA,;jYY=2,'Ai,‘ZZ. (24)

Instead, because (5) varies only as the inverse cube of the distance, the way the specimen is molded makes itself felt in
a complicated way, giving rise to the so-called demagnetization corrections. It is well known that a rigorous theory of
the latter is feasible only if the body is cut in an ellipsoidal form. Otherwise the various atoms cannot be regarded as
equivalent in their grating sums and it would not be allowable to replace Z;s; by $ NZ,, as presupposed in (18) and (21).
For this reason (18) and (21) are not rigorous when the body is molded in a cube or some other nonspherical shape com-
patible with cubic symmetry even though the full validity of (24)is then restored. The expression (21) can be used not
merely for a spherical specimen, but also for a body cut in an ellipsoid of revolution with axis parallel to the field, pro-
vided €, is defined not as before (22) but as

Q=3,a:;""= — Ng2820+3Z;(4ij0 XX+ 4ij ¥ Y + 4sj (2 2%). (25)

Here ® is the demagnetization plus Lorentz factor fully explained in Section 4 of l.c. The value of ® for a sphere is 0,
while ® equals 47 /3 and —8x/3 respectively for very prolate and very oblate ellipsoids. The subscript (o) attached to
A;; in (25) means that the part of 4.; due to the pure magnetic coupling is to be omitted. On the other hand this part
of A;; should still be included in computing @i, @z, 23, Q. These expressions all involve the 4;’s quadratically, so that
in the sums (22) the pure magnetic coupling (6) gives rise only to inverse sixth powers and there is no trouble with boundary
conditions regardless of shape. The orbital valence portion 4;¢) which we saw in Section 4 doubtless constitutes the
bulk of 4;; does not introduce shape complications even in the linear relation (25) since 4ij () varies much more rapidly
with distance than the inverse cube and so satisfies (24). The demagnetization factor & makes no contribution to the
anisotropy if the body is always cut in the same direction relative to the field. This is what appears to be done experi-
mentally; e.g., three specimens are cut in the form of long rods along the 100, 110, and 111 axes respectively, and their
magnetization curves measured separately. The demagnetization correction for a long rod is presumably about the
same as for a very prolate ellipsoid. Anyway, these corrections are not very important for our present purposes, since the
extreme range —8w/3 to 47/3 in the ® factor is very small compared with the constant of proportionality k~10% of the
Weiss molecular field.

Numerical checks.—There are three simple checks on the arithmetical correctness of (21) which should be mentioned,
and which we have verified. One is-that if the functions Bi, B; be expanded as Taylor’s series in 0 =HgB/kT, viz.

By =130x—63(2x2+x) /90, By=3x+46%(4x2—3x)/90, (x=S52+425) (26)

then the coefficient of Q in (21) vanishes unless one goes to the fourth power of H. This must be the case, for since H
transforms like a vector, only terms in H* or higher can exhibit a dependence on the direction cosines of the form
aa?+alag+ales?. A term in H?, for instance, could only give quadratic dependence and because of cubic symmetry,
can only contribute to the constant part of Z. The second check is that the coefficient of €4 also vanishes in the limit
H = », which corresponds to complete parallelism of the dipoles; here By=4/B;=S.

The third check is that the direction-independent part of (21) should reduce to (53) and the unnumbered equation
after (55) of J.c. when the development is terminated with H?, and when the potential w;; is specialized to exchange
plus true magnetic-dipole coupling so that w;; has the form given in (13) of l.c. (The notation J rather than S was used
in J.c. for the angular momentum vector and the exchange integral was denoted by K rather than J, while v;; is the same
as our —2Jy;7:;2/g2%6%) Then

Qo= N (—®+32), ©=NgB4200+50Q:), L=3N%46*-30, Qu=Ng!84(—Qo+5Q)), @n
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where Qo=2N"22r,7% Qi=Q—Qo=4N"2g78742,;J:2, 2'v=—2Ng28723;J;;. The first relation of (27) follows from (25).
The easiest way to establish the rest of (27) is to note that @, Q,, Q; are independent of the choice of coordinate axes.
So it is allowable to place the z axis along 7;; for each term in the lattice sums involved in the definitions (22), even though
a different choice of axes is then required for each term. With (27), Eq. (21) reduces properly to (53) of l.c. Incidentally,
(53) and other relations of /.c. apply when the dipole-dipole coupling is due to orbital valence, rather than of true magnetic
origin, provided g262/7:;% be replaced by C;; in definatory relations such as (8) or (18) of /..

The structure factor Q4 in the anisotropic part of the partition function (21-22) is conveniently
expressed in terms of a set of axes §;, 9;, {; which are so selected that ¢; always is along 7;;, and whose
choice hence varies with each term j in the sum. Then

94 = Zj[bij, - C,;,'/ - 2di,”][1 -5 (>\2X{j)\2Y§’j+‘)\2Yg‘j)\ Zg','2+ A2 Z{j)\2x g'j) ], (2 8)

where the \’s are direction cosines and where b;/, ¢/, dif are similar to bsj, ¢;;, di; except for being
computed relative to the &;, 9, ¢; rather than X, ¥, Z axes. Thus b/, ¢/, di;/ are defined by (22)
except that £;, n;, {; throughout replace X, ¥, Z. The advantage of (28) is that it employs the simplest
choice of axes for each individual pair of atoms in the sum.

If w;; has the dipole-dipole form given by the second member of (8), the expression (28) becomes

Qy=32,;C:;2[1 —5(N2x¢ N2y ri+ N2y N2 205+ N2 25N 2x ;) . (29)

To determine sign behavior, no harm will be done if the summation in (29) is restricted to the im-
mediate neighbors of the given atom <. In the first place C;; varies rapidly with 7;;, as the inverse sixth
power if caused by the true magnetic effect (6), and still more drastically if due to the interplay of
orbital valence and spin-orbit interaction. Also, especially, as one gets very far from a given atom, the
distribution approaches effectively more and more that of a continuum. As soon as the summation
can be replaced by an integral over a sphere, it vanishes, as the bracketed factor in (29) integrates
to zero. By restricting ourselves to the nearest neighbors we probably overestimate slightly the
numerical value of the sum (29), since the sign of the angular factor in (29) for the next-to-nearest
neighbors, which presumably contribute the next-most-important terms, is the opposite to that for
the leading terms. Possibly, but not very likely, this fact explains why K, is as large as it is relative to
K, for the cancellation of the first and second zones is not as complete in K, as in K;. With the re-
striction to nearest neighbors, the values of (29) are as follows for the various lattices.

simple face-centered body-centered

Q=+18 C?, -9 (3, —16 C?, (30)

where C is the value of C;; connecting adjacent atoms. To a sufficient approximation the free en-
ergy is
F=—kTlog Z=—kT log Zo—kT(Z/Zo)+kT(Z1/Z0)*—kT(Zs/Z0)+ - - - (31)

if Z, and Z, denote respectively the parts of (21) of the first and second degree in the A4;; Conse-
quently the anisotropy constant K; in (2) has the value

K= NE-\T-Y(g8H/ET)Qs, (32)

where f(gBH/kT) denotes the long factor inclosed by square brackets in the last or Q4 term of (21).

Before we can compute with (32), it is necessary to agree on how to select the effective field H.
We shall neglect the applied field Hex¢ in comparison with the inner field, an approximation which is
completely warranted for our purposes inasmuch as the factor of proportionality x by which the
intensity of magnetization is multiplied to get the effective Weiss field is so very large. It is, however,
at the same time tacitly supposed that the external field is adequate to make the inner field coincide in
direction with it, or in other words to produce saturation. Our computed values of the free energy
thus relate to — S IdH .y integrated out to a field Hey adequate to produce saturation, but at the
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TABLE 1. Anisotropy for dipole-dipole model with S=}.

gBx1/kT ] 6 4 3.2 2.6 2 1.6 1.2 0.8
1/Io=4%4B1 1 0.996 0.96 0.92 0.86 0.76 0.66 0.54 0.38
0 33 48 .58 .66 76 825 9 95
K;ch/NC2 (cale.) —.140 —.139 —.126 —.102 —-.076| —.046 —.028 —.011 —.003
T (nickel) Q3 210 305 365 420 480 525 570 605°K
K (obs., nickel) —3 X106 —1.6 X108 —3 X104 —5X103 0 +10¢ 4104 +10¢ -+104 ergs/cm3

same time small compared with «/.3' We shall assume that the factor of proportionality « in the
molecular field is independent of temperature. Then the Heisenberg theory?? shows that

H=xI=3kT.I/IgB(S+1),  To=2J2(S:+S)/3k, (33)

where I/1, is the ratio I/gBS of the saturation intensity of magnetization at the given temperature
to the complete saturation at the absolute zero. T, is the Curie temperature, z is the number of neigh-
bors, and J is the exchange integral. In computing the tables we take g=2, as the difference between
2 and the experimental value 1.9 is inconsequential. In order to record dimensionless expressions, we
give the theoretical values of K kT ./NC? rather than of K, itself. To evaluate (21) it is necessary to
determine the values of T to be correlated with each value of I. It proves unimportant whether one
uses the experimental correlation or the theoretical one I=gBB; given by the Weiss-Heisenberg
theory, since the latter reproduces the observed I —1T" curves sufficiently well for our purposes.

In Section 6, it was shown that the values of NC2/kT, by which the calculated K;kT./NC? must
be multiplied through to yield the observed K; at room temperatures and lower are of a reasonable
order of magnitude. If C?is regarded as constant with respect to T, the calculated variation of K,
with T is not sufficiently rapid ; reasons why this should be so are also discussed in Section 6. Com-
parison of Tables I and II show that the behavior of K; for S=% and S=1is very similar except for a
constant proportionality factor. Hence it matters little what atomic spin is assumed in the present
qualitative status of the theory. For possible significance of the small positive experimental values of
K, at high temperatures, see the very end of Section 6.

11. First-order effect of quadrupole-quadrupole interaction

We now consider the case where the coupling between atoms is of the quadrupole rather than dipole
type. Referred to axes fixed relative to the field, the interaction between two atoms is of the type form

=200, 0 a=a,0,2 @i 1TV 1S 0S40 S 0jreS g, (34)

which is, of course, biquadratic in the two spins, considered together, or quadratic in the individual
spins, considered separately. Without loss of generality, we may suppose (34) symmetric not merely

TABLE 11. Anisotropy for dipole-dipole model with S=1.

eBkI/kT © 3 2 1.6 1.3 1 0.8 0.6 0.4
1/Io=B 1 0.95 0.85 0.77 0.69 0.58 .48 .38 26
T/T, 0 .48 .64 72 .79 87 91 95 97
KikT:/NC? (calc.) =75 —.68 —.50 -.35 —.24 —.13 —.05 —.02 —.01

Values of K1T'/NC? given in Tables I and II are calculated for face-centered lattice; for body-centered and simple cubic lattices, they should be
multiplied by 16/9 and —2, respectively.

30 The experimental values of K; given in Tables I and III are for T'=21°K and T'=93°K respectively rather than
T=0. Extrapolation indicates that in nickel | K| is probably much larger than 3X 10¢ at the absolute zero.

3 In very weak fields, the direction of the spontaneous magnetization no longer coincides with the applied field, and
is distributed in accordance with a statistical theory developed by Heisenberg (reference 27, not to be confused with his
better known exchange theory, reference 12, of ferromagnetism). Heisenberg's ideas have been applied by Bozorth to
ferromagnetic anisotropy in weak fields, especially the difference in direction between the vectors B and H. (Phys. Rev.
42, 882 (1932)). Such.investigations, of course, do not aim to explain the atomic origin of the anisotropy.

‘(21 ((:fg)for instance, J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Chap. XII, Eqs (34), (37)
and (2
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as regards permutation of the two atoms, but also as regards permutation of indices relating to the
same atom, whence

ai].qq’Q’,’q"’ =a,i].<1" ¢ e’ @99 'e " =g dad’ d", (35)
(If there were any unsymmetrical terms contrary to the second relation of (35), they could immedi-
ately be reduced to lower degree by the familiar relations .S,S,—S,S.=1S,, etc.)

We suppose, as before, that the exchange interaction can be represented by means of an inner field
(33), and regard (34) as a perturbation. As often previously mentioned, with quadrupoles the per-
turbation calculation need by carried only to the first order to bring out the cubic anisotropy (2).
To this approximation the free energy is then identical with the mean interaction energy; i.e.,

F=—FkT log Zo+ 3 i>i(wij) ae (36)

The average denoted by the subscript Av is, of course, proportional to the diagonal sum in the system
of representation, described in Section 9, in which each spin is separately space-quantized.

We now pass from axes x, ¥, 3 fixed relative to the field to axes X, ¥, Z fixed in the crystal, denoting
by capital letters the coefficients corresponding to (34) in the X, Y, Z system. The transformation
equations connecting the two sets of coefficients are

;100" =Zqqqre=xv,2 NN o @' N1 Nyt e A 949 (37)

In precisely the same way that (21) was obtained from (18), it is found on using the cubic symmetry
of the lattice that (36) becomes

F=Fo+ Q[ fi+ fal[a?ae® +ar’as’ +as?as®], (38)
where Fy is a purely isotropic term and where »
Q= — NZ,[A;2227— 4, XXYY )4 XYXY], (39)

The expressions f1 and f, appearing in (38) are dimensionless functions of the argument g8H/kT,
defined by

f1 = (S2:252%) at (S12SuD) mt (S22Sz2) w— (Sai2Svi2) w— (S1i2S22) w— (S2:2Sz%) (40)
= —3[(S2iSvi+ SviS=:) (SeiSvi+SviSe;) + (SyiSzi+S2:Svi) (Sv;Szi+.S2:Sv5)

+ (S2:Sei+ S2:S2) (S2;Szi+ S2;S2) I (41)

Although Qs is evaluated in the X, ¥, Z system, the averages of the spin vectors involved in (40—41)

relate to the x, v, 2 system. Since each atom is separately spaced quantized in the system of repre-

sentation ‘being used (cf. Section 9), the averages may be taken over atoms ¢ and j separately In
virtue of (14) and (17), Egs. (40-41) may be written

[1=[3(8+9)—-§B.F,  f=0, (42)

with By asin (17). If S=1, then By=1, and f; vanishes, in agreement with our statement in section 3
that a quadrupole model is capable of yielding anisotropy only if S >%. If the quadrupole interaction
energy has the form given by the third member of (8), which is sufficiently general for our purposes,
then in the same way that (29) was obtained, it is found that

95 = NE,-‘y.;;[l it 5()\2X{,')\2 Y{j+ )\2Y§’j)\22 ;‘;+ )\2?{{,')\22;',')], (43)

where the ¢; axis is directed along 7;;. If v;; has a nonvanishing value v only between neighbors, (43)
yields

face-centered body-centered simple cubic

/N +3v +(16/3)y — 6y (44)
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TABLE I11. Anisotropy for quadrupole-quadrupole model with S=1.

gBxkI/kT © 4 3 2.5 2 1.6 1.3 1 0.8 0.6
I1/Iy=B; 1.0 0.98 0.95 091 0.85 0.77 0.69 0.58 48 .38
T/T. 0 .38 48 .55 .64 72 79 87 91 95
Ki/N~ (calc.) 1.333 1.20 98 .81 .56 34 .20 .10 .04 .02
T (iron) 032 400 500 575 670 750 820 910 950 990°K
K obs (iron) 6 X 1G5 3.6 X105 2.7 X105 2 X108 1.3 X108 X108 4 X108 1X108 0 0 ergs/cm3
Ki1/N~ (sec. 12) 1.333 1.13 .89 .76 47 27 .16 07 .03 .01

Values of Ki1/Ny in Table III are calculated for body-centered lattice; for face-centered and simple cubic lattices, they should be multiplied
respectively by 9/16 and —9/8, respectively.

The numerical values of K1/v given by (38,) (42), (44) for various temperatures are shown in Table
III for the case S=1.

Nothing can be said at present from pure theory concerning the sign of v. For discussion of the
relation of the calculated to observed values of K, see Section 6. The general lay of the land is about
the same as in the dipole-dipole case ; viz. the order of magnitude of v required to fit the experimental
data is reasonable, but the calculated temperature variation of K is not rapid enough if v is regarded
as a constant. However, the discrepancy is not as great as in the case of nickel. For instance, the
table shows that experiment gives a reduction in K; by a factor 50 in going from low temperatures to
910°K, and theory also yields a fairly large reduction factor, viz. 13, or 19 with the improved
calculation given in the next section.

12. Alternative, perhaps improved calculation of first order quadrupole-quadrupole interaction

It is obviously only an approximation to represent the exchange‘coupling by a molecular field. It is therefore advisable
to see if substantially the same results are obtained with somewhat different approximations. We therefore now describe
a somewhat modified and slightly more intricate calculation, in which we take into account rigorously the exchange
interaction between the two particular atoms 7, j whose anisotropy we are computing, but we still employ an appro-
priately chosen Weiss field to represent the exchange coupling of atom 7 with all other atoms than j, or of j with all
others but 7. Instead of being separately space quantized the two atoms ¢, j have a quantum number $’=0, 1, .-, 25
which quantizes their total resultant spin, and another quantum number M’=—5’, - - -, S’ which determines the spatial
orientation of S’. The choice of the system of quantization thus is different for each pair of atoms in the sum, but this
procedure is allowable, because we are at liberty to approximate to the mean value of each individual term in (36) in
the best fashion possible. Although we are still using the artifice of an inner field to represent the interplay of an atom
with all but one of its 2 neighbors, the present procedure probably constitutes an improvement over Section 11 as far
as the calculation of the anisotropic interactions is concerned. The reason is that if we are computing the mean value of
a given perturbing term w;j, it seems more important to take into account rigorously the interaction between atoms 7
and j than that between atoms 7 or j and other atoms, since w;; is particularly sensitive to the relative alignment of atoms
¢ and j. With our amended model, Eqs. (38)—(41) are still applicable, but the averages over atoms ¢ and j can no longer
be computed independently, inasmuch as with our new system of quantization there is a correlation between the motions
of atoms 7 and j. Consequently fi and f no longer have the values (42). The matrix elements of S;;, etc. appropriate
to the present system of representation may be found in the literature.®® They are then multiplied out to form the
expressions (40)—(41) with each state weighted with its appropriate Boltzmann factor e~ W (S)-2'66H)IXT The mutual
exchange energy W(S’) of atoms 7, j has the value?

W(S") = —2JS;-8;= — J[S?45' —25—25], #5)

where J is the exchange integral connecting ¢ and j. Henceforth we shall consider only the special case S=1 of one
quantum unit of spin per atom. Then
W2)=-2J, W{)=2J, W(2)=4J,
and it is found that
fi+fe=4%[cosh 20—4 cosh 6+4-3]/D, (46)
where 0=gBH/kT and
D = (2 cosh 2042 cosh 6+1)+4(2 cosh 1) 47/ kT - g—6T /KT, (47)

The result (46) may be easily deduced by the following argument instead of resorting to the rather laborious compound-
ing of the matrix elements to compute the individual terms of (40)—(41) explicitly. All the cubic anisotropy must come
from the different Zeeman components of the state .S’=2, since the angular dependence (2) is impossible for a single
system with resultant spin $’=1 or S’=0. (Cf. remarks under Bloch-Gentile theory in Section 7). In this connection

3 See, for example, Condon and Shortley, The Theory of Atomic Spectra, pp. 63—67.
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atoms ¢ and j are to be regarded together as a one unit, inasmuch as the interaction energy w;; involves a dynamical
system of two atoms. (Hence the spin of an individual atom, which is only a component part of the system, can still be
only unity.) Furthermore, the contributions of the various Zeeman components of S’=2 to the anisotropy is easily
seen to be independent of the sign of M’. Consequently fi+4f; must have the form a cosh 26-+b cosh 6+c, where D
is defined as in (47), and where q, b, ¢ are independent of T', H, and J. The explicit values of a, b, ¢ given in (46) follow
immediately from the requirement that (46) must reduce to (42) when J=0.
The inner field must now be taken as
H=2J(z—1)I/IgB (48)

rather than as 2J2I/I.gB, the usual Weiss-Heisenberg value, since one of the 2 interactions is taken into account
rigorously rather than incorporated in this field. The formula for the ratio I/, of the intensity of magnetization to its
maximum value at T'=0 is

I/Io=3[(4 sinh 2042 sinh 6)+2 sinh ge=+//*7]/D. (49)

The Curie temperature T, is the temperature at which (48) has a double root in I at I=0, or what is the same, the
temperature at which the susceptibility becomes infinite when a small external field is added to the right side of (48).
Hence T is determined by the transcendental equation

ET.=27(z— 1)(5+e—4.//ch)/(5+36—4thTc+e—lech). (50)

The Curie temperature given by (50) is almost identical with that T.=42J/3% (cf. Eq. (33) with S=1) given by the
ordinary Heisenberg model, e.g. 10.4 as compared with 10.7 if 2=8. Henceforth in applying formula (46) no appreciable
harm will be done if we use the correlation of I/I, with T/T. given by the conventional Weiss formula I/I, = B, rather
than by (49).3* The values of K,/ Ny computed from (46) are shown in the last line of Table III, Section 11. The difference
between the new values and those originally computed in Section 11 is unimportant in the present status of the theory.
For this reason it does not seem worth while to apply the present method to the second-order effect of dipole-dipole in-
teraction, which would be more difficult.

13. Hexagonal crystals

We shall now in closing digress briefly on hexagonal instead of cubic lattices. It is found em-
pirically that with a hexagonal structure, the dependence on the free energy on the angle ¢ between
the applied field and the hexagonal axis is of the form

F=Fy+K'sin? o+ K" sint ¢. (51)

With our model, the constant K’ results primarily from dipole-dipole interaction, which, owing to
the loss of cubic symmetry, no longer vanishes in the first approximation. Instead, in exactly the
same way that (38) was obtained, it is found on using (36), (19), (20), (14), (17) and the hexagonal
symmetry that

F=Fo+QB?sin? o, (52)
where Q= —3NZ;5i[A;27— 5455+ 4:;7Y)], (53)

with Z directed along the hexagonal axis. Since Bj; is the same as SI/I, the variation of B,® with tem-
perature can be found simply by squaring the values of I/, given in Table I for S=1% or Table II
for S=1. The theoretical variation with T is thus somewhat less rapid than in the case of fourth
order or cubic anisotropy. (In Table II, the anisotropy was more nearly proportional to I?). Experi-
mentally the dependence on temperature is again greater than given by theory if Q; is regarded as a
constant. In fact in cobalt K’+ K"’ is even found to change sign at 550°K. The discrepancy must once
more be attributed to the fact that Q¢ is a function of. temperature. As regards orders of magnitude
one might at first thought expect Qs/N to be comparable with the constant C in (8). For instance, if
the only important coupling is to six neighbors in the same equatorial plane as the given atom, (53)
becomes Q5= —9NC/2. In section 6 we estimated C to be of the order A%2/hv~10 cm~1. Then K’
would be about 10? ergs/cm?, whereas the experimental values are only of the order 107. As suggested

3 1t is clearly to be understood that in using the formula I/Io= B, the value (33) should be employed for H, as then
this formula gives about the same I— 7" curves as (49) with the field (48). The field (48) is still to be used in (46). The
difference between the arguments (33) and (48), rather than the difference between the functional forms of (42) and (46),

accounts for most of the divergence between the two sets of values of K;/Nvy in Table III. The first line of Table III
gives the field (33) instead of (48).



1198 NISHINA, TAKEUCHI AND ICHIMIYA

by Bloch and Gentile,?! the explanation is probably that the arrangement of atoms in the hexagonal
gratings does not deviate too greatly from cubic form. With strict cubic symmetry, the expression
(53) would vanish, and with hexagonal the various members of (53) may nearly cancel, so that Qg is
considerably smaller than NC in magnitude. There is no corresponding cancellation in the fourth-
order coefficient, which one should thus expect to be of about the same order 10° ergs/cm?® as the
cubic anisotropy coefficient K, in (1). This is indeed what is found experimentally in cobalt,® as at
room temperatures K’/ is 2.2 X108 ergs/cm3, or about one-half as large as K’'=5.1X10%. The two
terms of (51) are thus comparable even though they involve the spin-orbit parameter 4 to different
powers (viz. the second and fourth).

It must be mentioned that the “one-atom model” of Bloch and Gentile described in Section 7 may
have some significance for hexagonal crystals, since with only axial symmetry the crystalline field can
lift the degeneracy if S>3%. In fact the effective magneton number and g-factor can be different in
different directions. Conceivably this fact has some connection with the anomalous behavior of
pyrrhotite, which is ferromagnetic along certain axes but only paramagnetic along others.

The writer wishes to express his thanks to Dr. R. M. Bozorth and Professor F. Bitter for helpful
comments.

3% These values of K’, K’ are calculated in unpublished work of Bozorth, from the data of Honda and Masamuto,
Sci. Rep. Tohoku Univ. 20, 323 (1931). Gans obtained K’=1.1X108, K”'=4.4X10% from previous work by Kaya, Sci.
Rep. Tohoku Univ. 17, 1157 (1928). Dr. Bozorth asks me to record the following errata in the discussion of cobalt in
his recent paper (J. App. Phys. 8, 575 (1937)). The statement on p. 585 that the higher power term K, in his formula
E=Ko+K15:2+ K251 is negligible is incorrect, as vanishing K is not required by the absence of anisotropy in the plane
perpendicular to the hexagonal axis. The ordinate of Fig. 18 is K;+ K, rather than K,. Bozorth’s Ky, K1, K> for cobalt
are the same as our Fo+K’'+4 K", —K'—2K", and K" respectively since his S is 1 —sin? ¢.
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On the Nature of Cosmic-Ray Particles
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ARIOUS authors! have taken the view that
cosmic-ray particles consist of two or more
kinds of corpuscles. According to Compton and
Bethe, and Auger,! the soft component near sea
level is thus composed of electrons and the
penetrating one of protons. Assuming the theory
of showers by Bhabha and Heitler? and by
Oppenheimer and Carlson® to be correct, we
ought to be able to distinguish cosmic-ray elec-
trons from protons, if they exist at all, by
observing whether or not the particles suffer a
1A, H. Compton and H. A. Bethe, Nature 134, 734
(1934); P. Auger, J. de phys. 6, 226 (1935); C. D. Anderson
and S. H. Neddermeyer, Int. Conf. on Phy51cs, London 1,
182 (1934) ; Phys. Rev. 50, 268 (1936); J. Clay, Phy51ca3
338 (1936); L. Leprince- nguet J. de phys. 7, 70 (1936);
J. Crussard and L. Leprince-Ringuet, Comptes rendus 204,
240 (1937).
( 2 I—;)J Bhabha and W. Heitler, Proc. Roy. Soc. A159, 432
193

3],'F. Carlson and J. R. Oppenheimer, Phys. Rev. 51,
220 " (1937).

large loss of energy and often produce showers on
colliding with a lead plate of a suitable thickness.

We carried out such experiments with a lead
bar 1.5 cm thick mounted in the middle of a
Wilson chamber 40 cm in diameter, which is
placed in a magnetic field of about 17,000
oersteds. The operation of the chamber is actu-
ated by the coincidence of two Geiger-Miiller
tube counters mounted above the chamber, the
distance between the counters being about 50 cm.
The results showed that at sea level near Tokyo
(geomag. lat. 25.4°N) about 10 to 20 percent of
cosmic-ray particles of energies, high -enough to
produce coincidence in the strong magnetic field
and pass through the Wilson chamber, consist of
electrons and positrons, the rest being heavy
particles, since they do not produce showers nor
suffer much loss of energy in passing through the
lead bar. Among the latter, however, we were



