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The two independent solutions of the radial wave equation required in the treatment of
collision problems may be expressed in terms of a common amplitude and phases differing by
/2, following a method due to Milne. The determination of phase shifts is simplified by this
procedure. Analytical expressions for the amplitude and phase and their derivatives are given
in the case of zero field for L=0, 1, 2, 3, 4. In other cases these quantities may rapidly be de-
termined for large arguments by numerical integration of Egs. (7) and (Sb). Values of the
amplitude and phase of the coulomb functions needed in the treatment of the scattering of
alpha-particles in helium for L=0 and L=2 were obtained in this way and are tabulated.

N the treatment of questions of nuclear scatter-
ing and disintegration and similar problems in
atomic physics,! the radial wave function de-
scribing the relative motion of the two particles
under consideration may be divided into two
parts. The first part, F*(r), defined over the
region from the origin out to a certain separation
7*, depends upon the special nature of the inter-
action between the two particles or systems,
whilst the second, extending from #* to infinite
distance, requires for its determination the solu-
tion of the Schroedinger equation for some rela-
tively simple analytic law of force.

Characteristic of the problems mentioned is
the requirement that both independent solutions
of the wave equation be known for »>r*—the
so-called “‘regular’” and ‘‘irregular’” functions.
Difficulty in obtaining numerical values of the
irregular function and its derivative often occurs
as a serious obstacle in applying collision theory
to actual problems. Adequate tables must give
both functions and their derivatives at intervals
relatively small in comparison with the wave-
length, since these quantities change rapidly even
in regions where they do not oscillate. However,
the calculation of the two wave functions and
their derivatives for a single value of 7 for a given
impact energy is often a time-taking process,
especially if 7 is large and the customary power
series calculation is employed.

The introduction of slowly varying functions,
representing essentially the amplitude and phase
of the two functions, makes it possible to increase
the size of the interval of tabulation by a large

1 Cf. Mott and Massey, The Theory of Atomic Collisions
(Oxford, 1933).

factor, gives a method of computing the wave
function for large arguments which is often much
more rapid than expansion in power series about
the origin, and in addition makes a certain sim-
plification in the calculation of phase shifts in
scattering problems.

The functions under consideration may be de-
fined as follows:

F (regular function) satisfies the wave equa-
tion ; vanishes at =0 when prolonged inward to
the origin ; has unit amplitude at » = co . Example:
F(r) = (kr)~' sin kr —cos kr (scattering of a neu-
tron with one unit of angular momentum).

G (irregular function) satisfies same equation;
has unit amplitude and is 90° in advance of F at
infinity. (In example, G(7) = (k7)™ cos kr+sin kr).
From the definitions of F and G and the proper-
ties of the Schroedinger equation it follows that

GdF/dr—FdG/dr=k(=[2uE/R2]}). (1)

In applications, the equations of fit are applied
at r=r*:
aF+bG = F*,

adF/dr+bdG/dr=dF*/dr

(2a)
(r=r%), (2b)

and the values found for ¢ and b are used to
evaluate the collision cross section (determined
by the phase shift K=arccotga/b) and the
probability of interpenetration (propottional to
[a2+02T™) of the two particles of given angular
momentum.
Milne? has shown that a simple differential
2W. E. Milne, Phys. Rev. 35, 864 (1930). Cf. also
L. A. Young, Phys. Rev. 38, 1612 (1931), who has given
the name ‘‘local momentum’’ to the quantity P(r) =A7%(r)

and shown its natural connection with the Bohr-Sommer-
feld quantum conditions.
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equation (essentially (5a) below) is satisfied by
the amplitude function A4(r)=[F(r)+G*(r)]},
and has used this equation to obtain solutions of
the wave equation for certain problems in the
discrete spectrum. We introduce in addition a
phase function ®(r) defined as follows:

F(r)=A(r)sin®(r); G(r)=A(r) cos ®(r);

8(0)=0. (3)

If a satisfactory method is already available for
obtaining F and G, Eq. (3) is needed only for
purposes of interpolation ; otherwise, the following
differential equations may readily be deduced?
for the direct determination of 4 and ®:

d?A Jdrr+-2u /R [E—V(r)]4
—(d®/dr)24=0, (4a)

1/kd®/dr=1/42 (4b)

On combining and introducing p=*kr for inde-
pendent variable, we have equations by which
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first A and then ® may be determined :

@24 [dpt+(1— V/E—1/4%4 =0,
A(w)=1, d4/dp(»)=0,

d®/dp=1/42, (0)=0.

(5a)
(Sb)

These equations clearly reduce to the Jeffreys-
W.K.B. approximation on neglecting

1/Ad2A /det.

FuncrioNs IN FiELD FREE SPACE

When there is no interaction between the two
particles, we have V(r) =L(L41)h*/2ur? repre-
senting the effect of centrifugal force alone. The
analytical expressions for F and G are in this
case well known,* and the expressions for 4 and
& can be obtained directly from the equations of
definition. The asymptotic value of ® for large p
is p—Lw/2; we therefore write ®=p—L7n/2+¢;
also z=p~1=(kr)~L.

r dA do
L=0. 4=1, ¢=0, ——=0, r—=0,
A dr dr
r dA 22 de 3z
L=1. A=01+42)} tge=2 ———=-— , r—=— ,
A dr 1422 dr 1422
3z r dA 33241834 do 324928
L=2. A=(143224924)} tgoeo= , ——=—— p—= ——
1—332 A dr 1+ 322+92¢ dr 143224934
’ 62—15z% 7 dA 622+ 9024+ 67535
L=3. A=(1+6224+4524422525 tg o=—v, ——=— : (6)
1—1522 A dr 146224+45244-2252°
de 62+4523+2252°
r—=— ,
dr 1+62%2+44524+422528
10z—10523
L=4. A=(14+1022+13524+1575284+11025s%)}, tg p=——r,
1—4522+4+10524
r d4 1022427024 +472525+441002° de 102+4+135234157525+41102557
—_——— , r—=— .
4 dr 14+10224+135244-1575264+1102528 dr 14+1022+1352*+1575264+1102528

NUMERICAL INTEGRATION

Ordinarily solutions of (5) for a given V(r)
cannot be obtained in terms of polynomials or
3 We make use of the fact that the real part of G4<F

=4 exp (7®) satisfies the wave equation to get (4a) and
derive (4b) from condition (1).

simple analytical expressions. As we are pri-
marily interested in the solution of the wave
equation for large arguments, we solve Eq. (5a)
by numerical integration from infinity inward.

8 F=(wkr/2)3T 1 3(kr); G=(mkr/2)}J_r_3(kr), in terms
of Bessel functions.



WAVE FUNCTIONS FOR LARGE

Hartree has already pointed® out that the non-
linear nature of a second-order differential equa-
tion causes no difficulties in the calculations; the
essential point is to see that the equation involves
no first derivatives. Hence, if we introduce
z=1/p as new independent variable suitable for
integrating (5a) inward, we must also change
the dependent variable to M =24 to compensate
the first derivatives which would otherwise creep
into the equation. We then obtain

M'=M—3-M(1-V/E)z—*, M(0)=0,
M©0)=1 ()

on using dashes to represent differentiation with
respect to z.

In the numerical computation, the range of z
of interest is divided into equal intervals (say
2=0.00, 0.05, 0.10, --- to 0.50) and a power
series expansion for M in the neighborhood of
z=01is used to start the integration. The first few
steps of the calculation must be made with high
accuracy, since M’ appears as the small differ-
ence between large quantities. A rapid procedure
for integrating second order differential equations
which are free of first derivatives, together with a
discussion of stability and accuracy, is given in
Hartree's paper.’

The most convenient check on the calculation
of M may be made by means of ®, provided one
knows from other considerations the value of the
constant C in the asymptotic expression for the
phase:

q>~fp<1~— V/E)dp+C (p— ).

(For example, it follows® from the asymptotic
expansion of the contour integrals for the Cou-
lomb functions that

d~p—nln2p—Lr/2+40y,

where o =arg I'(L+1+419).) Starting with this
value for ® at p= 0, and integrating (56) inwards
toward the origin, it is easy to determine how
closely ®(p) approaches to having the value zero
at the origin ; this gives a direct check on the cal-
culation of ® and hence (from (50)) on the ac-
curacy of 4.

5D. R. Hartree, Memoirs and Proc. Manchester Lit.
and Phil. Soc. 77, 91 (1932-33).
6 Cf., for example, reference 1, p. 39.

1/ak; 3=1/kr. Last digit uncertain.

=A sin, cos ®. d=p—nin2p+oote¢; n=

0.F G

TasBLE 1. Coulomb functions for L

ARGUMENTS
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CouLoMmB FuNcTIONS’

In the case of the interaction V(r)=ZZ'e?/r
+L(L+1)#2/2ur?, we use the notation
a=m/uZ7'e

(characteristic radius), n=1/ak=\/2ma =%/a (re-
duced wave-length). Expanding the solution of

M'=M—3—M[1—29z—L(L+1)z2]/z* (8)
in a power series about the point z=0,
M=g4+a12+as23+- -,
we have for the first few coefficients
a1=1/2; as=592/8+L(L+1)/4;
a3=1593/164+59L(L+1)/8—17/8;
ay=1959*/128 +4592L(L+1)/32 (10)
—23p2/16+5L2(L+1)2/32—3L(L+1)/8;

as=6630°/256 —91n3/16+19573L(L+1) /64
+45pL2(L4+1)2/64 —23yL(L+1)/8

)

+3n/4.

The choice of interval of integration is governed
by the practical rate of convergence of the series
for the value of 5 under consideration.

7Cf. F. L. Yost, John A. Wheeler, and G. Breit, Phys.
Rev. 49, 174 (1936), for analytic properties of these
functions. For numerical values for p <1, cf. same authors,
J. Terr, Magn. At. El,, 443, Dec. (1935), and E. R. Wicher,
J. Terr. Magn. At. El., 389, Dec. (1936).

TABLE I1. Coulombd functions for L=2. F, G=A sin, cos . d=

WHEELER

In calculating the phase, we use as dependent
variable the quantity ¢ defined by

®(p)=p—nln2p—Lwr/24arg T(L+1+1n)
+o(p), (11)

and take z=1/p for independent variable. The
integration of the first-order differential equation

for ¢,
do/dz=(1—1n32)/2*—1/M?, (12)

is simple (cf. Hartree, for example). Near z=0
we have

de/dz=[L(L+1)+7*]/2+---.

Numerical values are given in Tables I and I1
for L=0 and L=2 for the range of values of in-
terest in the problem of the scattering of alpha-
particles in helium, and applicable also to scatter-
ing and disintegration problems involving other
light nuclei. The last digit is uncertain.

Equarions or FiT

In the amplitude phase notation, the general
solution of the wave equation from #* to o« has

the form
cA(r) sin [®(7)+ K], (13)

where ¢ and K are constants determined by the
equations of fit (2a¢ and 2b) at r=#*. These equa-
tions may be put as follows:

p—nln2p+os—mw+o; n=1/ak; z=1/kr. Last digit uncertain.

Les ak=1.25 ak=1.50 ak=1.75 ak =2.00 ak =2.25
- o2 —m = —2.3906 or—m=—2.5192 oy —m = —2.6098 oy —mw=—2.6770 oy —a = —2.7292
3 A @ A @ A @ A @ A @
0.00 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
.05 1.0252 .1689 1.0215 .1634 1.0189 .1601 1.0169 1579 1.0154 1564
.10 1.0633 .3437 1.0545 3315 1.0485 .3240 1.0440 3191 1.0406 .3156
15 1.1192 .5235 1.1030 5034 1.0920 4912 1.0841 4830 1.0782 4772
.20 1.1991 .7050 1.1717 L6767 1.1534 6594 1.1408 .6478 1.1312 .6396
.25 1.3128 .8836 1.2678 .8480 1.2388 8257 1.2186 .8109 1.2036 .8003
.30 1.4673 1.0542 1.3967 1.0127 1.3524 .9866 1.3217 9690 1.2993 9562
.35 1.6692 1.2103 1.5639 1.1658 1.4987 1.1375 1.4540 1.1182 1.4220 1.1040
40 1.9239 1.3481 1.7734 1.3039 1.6812 1.2754 1.6188 1.2555 1.5743 1.2410
45 2.2342 1.4664 2.0278 1.4252 1.9023 1.3982 1.8179 1.3792 1.7581 1.3653
.50 2.6021 1.5657 2.3286 1.5297 2.1633 1.5058 2.0527 1.4888 1.9745 1.4762
.55 3.0281 1.6480 2.6763 1.6186 2.4677 1.5988 2.3236 1.5846 2.2241 1.5740
.60 3.5125 1.7156 3.0712 1.6935 2.8066 1.6786 2.6308 1.6678 2.5070 1.6595
.70 4.6568 1.8154 4.0019 1.8085 3.6115 1.8046 3.3533 1.8013 3.1722 1.7986
.80 6.0347 1.8807 5.1195 1.8892 4.5765 1.8959 4.2188 1.9003 3.9683 1.9034
.90 7.6460 1.9223 6.4229 1.9452 5.7001 1.9620 5.2254 1.9739 4.8936 1.9827
1.00 9.4910 1.9476 7.9115 1.9844 6.9813 2.0101 6.3271 2.0290 5.9468 2.0431
1.10 | 11.5701 -+ 9.5850 2.0112 8.4194 2.0450 7.6579 7.1269 2.0895




NUCLEAR MOMENT OF BARIUM

rd®/dr ctg (+K)=r/F*dF*/dr
—r/AdA/dr; (14a)

¢4 sin (®+K)=F* (r=r*). (14b)

Eq. (14a) determines the phase shift, K, of the
wave function in the actual field of force with
respect to the wave function which would de-
scribe the motion if the “outer” potential (r >7*)
extended in to the origin. In scattering problems
only K is needed; in the treatment of nuclear

1127

interpenetration, K from (14a) is substituted
into (14b) to find ¢, giving the ratio between the
amplitudes of the wave function in the inner and
outer regions. The derivatives appearing in (14a)
are independent of scale:

rd®/dr = pd®/dp= —2d®/d3,

etc. Egs. (6) and Tables I and II give the in-
formation needed for applying the corresponding
functions to collision problems.
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The Nuclear Moment of Barium

A. N. BEnsoN aAND R. A. SAWYER
University of Michigan, Ann Arbor, Michigan
(Received October 20, 1937)

New data have been obtained on the hyperfine structure of several lines of barium. These have
been studied in the attempt to determine more definitely the nuclear moment of the odd
isotopes of barium, reported as 2 by Kruger, Gibbs and Williams, and as 14 by Schiiler and by
Murakawa. Studies of the separation of the 6253 and 72S; components from the center of gravity,
and of the spacing and patterns of the 52D; and 63P; terms all lead to the conclusion that 7=13}

is the correct value of nuclear moment.

N spite of several researches on the subject,
the value of the nuclear moment of the odd

isotopes of barium remains in doubt. The various

investigators differ both in experimental findings
and in interpretation of the data. McLennan
and Allen! first found hyperfine structure in a
number of the arc and spark lines of barium,
but their results have never been confirmed by
other workers. Frisch? found all lines sharp. The
first accurate observations were those of Ritschl
and Sawyer® who observed structure in several
lines and published measurements on the reso-
nance lines of Ba II, 625;—62P;, 13, from which
Schiiler and Jones* deduced 1% as the nuclear
moment of the odd isotopes. However, from
their own measurements on the same lines,
Kruger, Gibbs, and Williams?® concluded that the
moment is probably 2%, while Murakawa,® from

1 McLennan and Allen, Phil. Mag. 8, 515 (1929).

2 Frisch, Zeits. f. Physik 68, 758 (1931).

3 Ritschl and Sawyer, Zeits. f. Physik 72, 36 (1931).

4 Kallman and Schiiler, Ergebn. d. Exakt. Naturwiss.
11, 134 (1932).

5 Kruger, Gibbs, and Williams, Phys. Rev. 41, 322 (1932).

6 Murakawa, Sci. Papers Tokyo I. P. C. R. 18, 304
(1932).

observations on these and other lines, considered
11 to be correct. Recent compilations of nuclear
moments™® have given 2% as the moment of
barium but have indicated that uncertainty
exists.

The difficulty in the determination of the
moment from hyperfine structure observations
arises from the fact that barium is a mixture of
several isotopes. The recent measurements of
Sampson and Bleakney!® give for the isotopes
and their percentage abundance:

130 132 134 135 136
0.16 0.015 1.72 5.7 8.5

137 138
10.8 73.1

mass number
percentage

The even isotopes thus make up 83.5 percent of
the atoms and all observers are agreed that
these even isotopes, in common with all observed
even isotopes save N4, have no hyperfine struc-
ture. In all barium h.f.s. patterns, the five even
isotopes fall together in a very heavy central

7 White, Introduction to Atomic Spectra (McGraw Hill,
1934), p. 372.

8 Darrow, Bell Tech. J. 14, 319 (1935).

® Bacher and Bethe, Rev. Mod. Phys. 8, 82 (1936).

10 Sampson and Bleakney, Phys. Rev. 50, 456 (1936).



