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Wave Functions for Large Arguments by the Amplitude-Phase Method

JOHN A. WHEELER
University of ¹rth Carolina, Chape/ Hill, ¹rth Carolina

(Received August 17, 1937)

The two independent solutions of the radial wave equation required in the treatment of
collision problems may be expressed in terms of a common amplitude and phases differing by
~/2, following a method due to Milne. The determination of phase shifts is simplified by this
procedure. Analytical expressions for the amplitude and phase and their derivatives are given
in the case of zero field for L=O, 1, 2, 3, 4. In other cases these quantities may rapidly be de-
termined for large arguments by numerical integration of Eqs. (7) and (Sb). Values of the
amplitude and phase of the coulomb functions needed in the treatment of' the scattering of
alpha-particles in helium for L =0 and L= 2 were obtained in this way and are tabulated.

' "
N the treatment of questions of nuclear scatter-

- - ing and disintegration and similar problems in
atomic physics, ' the radial wave function de-
scribing the relative motion of the two particles
under consideration may be divided into two
parts. The first part, F*(r), defined over the
region from the origin out to a certain separation
r*, depends upon the special nature of the inter-
action between the two particles or systems,
whilst the second, extending from r* to infinite
distance, requires for its determination the solu-
tion of the Schroedinger equation for some rela-
tively simple analytic law. of force.

Characteristic of the problems mentioned is
the requirement that both independent solutions
of the wave equation be known for r &r*—the
so-called "regular" and "irregular" functions.
Difficulty in obtaining numerical values of the
irregular function and its derivative often occurs
as a serious obstacle in applying collision theory
to actual problems. Adequate tables must give
both functions and their derivatives at intervals
relatively small in comparison with the wave-
length, since these quantities change rapidly even
in regions where they do not oscillate. However,
the calculation of the two wave functions and
their derivatives for a single value of r for a given
impact energy is often a time-taking process,
especially if r is large and the customary power
series calculation is employed.

The introduction of slowly varying functions,
representing essentially the amplitude and phase
of the two functions, makes it possible to increase
the size of the interval of tabulation by a large

' Cf. Mott and Massey, The Theory of Atomic Collisions
(Oxford, 1933).

1

factor, gives a method of computing the wave
function for large arguments which is often much
more rapid than expansion in power series about
the origin, and in addition makes a certain sim-
plification in the calculation of phase shifts in
scattering problems.

The functions under consideration may be de-
fined as follows:

F (regular function) satisfies the wave equa-
tion; vanishes at r =0 when prolonged inward to
the origin; has unit amplitude at r = ~ . Example:
F(r) = (kr) ' sin kr —cos kr (scattering of a neu-
tron with one unit of angular momentum).

G (irregular function) satisfies same equation;
has unit amplitude and is 90' in advance of Ii at
infinity. (In example, G(r) = (kr) "cos kr+sin kr).
From the definitions of F and G and the proper-
ties of the Schroedinger equation it follows that

GdF/dr —FdG/dr=k(=[2@X/k')2). (1)

In applications, the equations of fit are applied
at r=r*:

(2a)aI'+bG= I'*,

adF/dr+ bdG/dr =dF*/dr (r =r*), (2b)

and the values found for a and b are used to
evaluate the collision cross section (determined
by the phase shift %=are cotga/b) and the
probability of interpenetration (proportional to
[a'+b') ') of the two particles of given angular
momentum.

Milne' has shown that a simple differential

'W. E. Milne, Phys. Rev. 35, 864 (1930). Cf. also
L. A. Young, Phys. Rev. 38, 1612 (1931), who has given
the name "local momentum" to the quantity I'(r) =A '(r)
and shown its natural connection with the Bohr-Sommer-
feld quantum conditions.

123



1124 JOH N A. WH EELER

equation (essentially (Sa) below) is satisfied by
the amplitude function A (r) = [F'(r)+ G'(r)]&,
and has used this equation to obtain solutions of
the wave equation for certain problems in the
discrete spectrum. We introduce in addition a
phase function C (r) defined as follows:

F(r) =A(r) sin C(r); G(r) =A(r) cos C(r);
C'(o) =o (3)

If a satisfactory method is already available for
obtaining F and G, Eq. (3) is needed only for
purposes of interpolation; otherwise, the following
differential equations may readily be deduced'
for the direct determination of A and C:

d'A /dr2+ 21'/h' [E—V(r) $A
—(dC/dr)'A =0, (4a)

1/kdC /dr = 1/A'. (4b)

On combining and introducing p =kr for inde-
pendent variable, we have equations by which

6rst A and then C may be determined:

O'A/d p'+(1 —V/E 1/A—4)A =0,
A(~) =1, dA/dp(~) =0, (Sa)

dC/dp=1/A' C(0) =0. (Sb)

These equations clearly reduce to the Jeffreys-
W.K.B. approximation on neglecting

1/Ad'A /d p'.

FUNCTIONS IN FIELD FREE SPACE

When there is no interaction between the two
particles, we have V(r) =L(L+1)h'/2pr', repre-
senting the effect of centrifugal force alone. The
analytical expressions for Ii and G are in this
case well known, ' and the expressions for A and
4 can be obtained directly from the equations of
definition. The asymptotic value of 4 for large p

is p L~/2; w—e therefore write C'= p L7r/2+ @-;

also s= p '=(kr) '.

L=0.
r dA dq

q=0, — =0, r—=0,
A dr dr

r dA
L=1. A = (1+s')'*, tg y=s,

A dr

s' dyr-
1+s dr 1+s2'

3z r dA
L=2. A = (1+3s'+9s4) & tg q =

1 —3s' A dr

3s'+18s4 r-
1+3s2+9z4 dr

3s+9s'

1+3s'+9s 4

6s —15s' r dA
A = (1+6s'+45s4+225s') l tg q =

1 —15s' A dr

6s'+90z4+675s'

1+6s'+45z4+ 225z'

d(p 6s+45s'+225s'r-
dr 1+6s2+45z4+225s6'

(6)

10s—105s'
L 4 A (1+10s2+ 135s4+1575s6+ 11025ss)g

1 —45s'+ 105s4

r dA

A dr

10s'+270z'+4725s'+44100s' d p 10s+135s'+1575s'+11025s'r-
1+10z +135s4+1575s6+11025z dr 1+10s +135z +1575z +11025z

NUMERICAL INTEGRATION

Ordinarily solutions of (5) for a given V(r)
cannot be obtained in terms of polynomials or

~ We make use of the fact that the real part of G+iP
=A exp (iC) satisfies the wave equation to get (4a) and
derive (4b) from condition (1).

simple analytical expressions. As we are pri-
marily interested in the solution of the wave
equation for large arguments, we solve Eq. (Sa)
by numerical integration from in6nity inward.

4 P=(~kr/2)«JL+«(kr); G=(7f.kr/2)«J L, «(kr), in terms
of Bessel functions.
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Hartree has already pointed5 out that the non-
linear nature of a second-order differential equa-
tion causes no difficulties in the calculations; the
essential point is to see that the equation involves
no first derivatives. Hence, if we introduce
s= 1/p as new independent variable suitable for
integrating (5a) inward, we must also change
the dependent variable to 3'= sA to compensate
the first derivatives which would otherwise creep
into the equation. We then obtain

M"=M ' M(1 —U—/E)s 4, M(0) =0,
M'(0) = 1 (7)

on using dashes to represent differentiation with
respect to s.

In the numerical computation, the range of s
of interest is divided into equal intervals (say
s=0.00, 0.05, 0.10, ~ to 0.50) and a power
series expansion for 3f in the neighborhood of
s =0 is used to start the integration. The first few
steps of the calculation must be made with high
accuracy, since 3f" appears as the small differ-
ence between large quantities. A rapid procedure
for integrating second order differential equations
which are free of first derivatives, together with a
discussion of stability and accuracy, is given in
Hartree. 's paper. '

The most convenient check on the calculation
of M may be made by means of 4, provided one
knows from other considerations the value of the
constant C in the asymptotic expression for the
phase:

pp
C )I (1—U/Z)&dp+C (p—+~).

(For example, it follows' from the asymptotic
expansion of the contour integrals for the Cou-
lomb functions that

C p g ln 2 p —I.Ir—/2+~z,

where oz ——arg 1'(I.+1+iII).) Starting with this
value for C at p = co, and integrating (Sb) inwards
toward the origin, it is easy to determine how
closely C (p) approaches to having the value zero
at the origin; this gives a direct check on the cal-
culation of C and hence (from (5b)) on the ac-
curacy of A.

~ D. R. Hartree, Memoirs and Proc. Manchester Lit.
and Phil. Soc. 77, 91 (1932—33).' Cf., for example, reference 1, p. 39.
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COULOMB FUNCTIONS

In the case of the interaction V(r) =ZZ'e'/r
+L(L+1)k'/2pr', we use the notation

a =PP/yZZ'e'

(characteristic radius), g = 1/ak =X/2~a =X/u (re-
duced wave-length). Expanding the solution of

In calculating the phase, we use as dependent
variable the quantity p defined by

4(p) = p —g ln 2p L7r/—2+arg I'(I.+1+is)
+~(u) (11)

and take s= 1/p for independent variable. The
integration of the first-order differential equation
for

M"= 3II "'—&[1—2gs —L(L+1)s'j/s' (8) d p/ds = (1—qs)/s4 —1/3f', (12)

in a power series about the point a =0,
M= s+ag s'+a 2s'+ ~

we have for the fi.rst few coefficients

(9)

~ Cf. F. L. Yost, John A. Wheeler, and G. Breit, Phys.
Rev. 49, 1.74 (1936), for analytic properties of these
functions. For numerical values for p (1, cf. same authors,
J.Terr. Magn. At. El., 443, Dec. (1935),and E. R. Wicher,
J. Terr. Magn. At. El., 389, Dec. (1936).

ai=g/2; a2 ——Sq'/8+L(L+1)/4;
a3 ——15''/16+5qL(L+1)/8 —q/8;
a4 ——195g4/128+45''L(L+ 1)/32 (10)

23rI'/16+—5L'(L+ 1)'/32 3L(L+—1)/8;
ag ——663vP/256 —91''/16+ 195')'L (I.+1)/64

+45rlL'(L+1) '/64 23gL(L+—1)/8
+3g/4.

The choice of interval of integration is governed
by the practical rate of convergence of the series
for the value of q under consideration.

is simple (cf. Hartree, for example). Near s=0
we have

d y/ds = [I.(L+1)+rl' j//2+

Numerical values are given in Tables I and II
for L =0 and L = 2 for the range of values of in-
terest in the problem of the scattering of alpha-
particles in helium, and applicable also to scatter-
ing and disintegration problems involving other
light nuclei. The last digit is uncertain.

EQUATIONS OF FIT

In the amplitude phase notation, the general
solution of the wave equation from r* to ~ has
the form

cA(r) sin [C(r)+Xj, (13)

where c and X are constants determined by the
equations of fit (2a and 2b) at r = r*. These equa-
tions may be put as follows:

TABLE I I. Coulomb functi ons for L =2. I', G =2 sin, cos C. 4 = p —q ln Zp+a' —sr+ y, q =1/ak; s =1jar. Last Ckgit unct. rtain.

ak =1.25

o2 —m = —2.3906

ak =1.50

o2 —m = —2.5192

ak =1.75

o.g —
~i

= —2.6098

ak =2.00

o2 —~ = —2.6770

ak =2.25

o'2 —~ = —2.7292

0.00
.05
.10
.15
.20

1.0000
1.0252
1.0633
1.1192
1.1991

0.0000
.1689
.3437
.5235
.7050

1.0000
1.0215
1.0545
1,1030
1.1717

0.0000
.1634
.3315
.5034
.6767

1.0000
1.0189
1.0485
1.0920
1.1534

0.0000
.1601
,3240
.4912
.6594

1.0000
1.0169
1.0440
1.0841
1.1408

0.0000
.1579
.3191
.4830
.6478

1.0000
1.0154
1.0406

,1.0782
1.1312

0.0000
.1564
.3156
.4772
.6396

.25 1.3128 .8836
,.30 1.4673 1.0542
.35 1.6692 1.2103
.40 1.9239 1.3481
.45 2.2342 1.4664

.50 2.6021 1.5657

.55 3.0281 1.6480

.60 3.5125 1.7156

.70 4.6568 1.8154

1.2678
1.3967
1.5639
1 ~ 7734
2.0278

2.3286
2.6763
3.0712
4.0019

.8480
1.0127
1.1658.
1.3039
1.4252

1.5297
1.6186
1.6935
1.8085

1.2388
1.3524
1.4987
1.6812
1.9023

2.1633
2.4677
2.8066
3.6115

.8257

.9866
1.1375
1.2754
1.3982

1.5058
1.5988
1.6786
1.8046

1.2186
1.3217
1.4540
1.6188
1.8179

2.0527
2.3236
2.6308
3.3533

.8109

.9690
1.1182
1.2555
1.3792

1.4888
1.5846
1.6678
1.8013

1.2036
1.2993
1.4220
1.5743
1.7581

1.9745
2.2241
2.5070
3.1722

.8003

.9562
1.1040
1.2410
1.3653

1.4762
1.5740
1.6595
1.7986

.80

.90
1.00
1.10

6.0347
7.6460
9.4910

11.5701

1.8807
1.9223
1.9476

5.1195
6.4229
7.9115
9.5850

1.8892
1.9452
1.9844
2.0112

4.5765
5.7001
6.9813
8.4194

1.8959
1.9620
2.0101
2.0450

4.2188
5.2254
6.3271
7.6579

1.9003
1.9739
2.0290

3.9683
4.8936
5.9468
7.1269

1.9034
1.9827
2.0431
2.0895
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rdC/dr ctg (4+%) =r/F*dF*/dr
r/A—dA/dr; (14a)

cA sin (I+X)= F* (r=r*). (14b)

Eq. (14a) determines the phase shift, X, of the
wave function in the actual field of force with
respect to the wave function which would de-
scribe the motion if the "outer" potential (r)r*)
extended in to the origin. In scattering problems
only X is needed; in the treatment of nuclear

interpenetration, E from (14a) is substituted
into (14b) to find c, giving the ratio between the
amplitudes of the wave function in the inner and
outer regions. The derivatives appearing in (14a)
are independent of scale:

rd4/dr = pdC/d p = —sdC/ds,

etc. Eqs. (6) and Tables I and II give the in-
formation needed for applying the corresponding
functions to collision problems.
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The Nuclear Moment of Barium

A. N. BENsoN AND R. A. SAwYER

University of 3IIichigan, Ann Arbor, 3fichiffan

(Received October 20, 1937)

New data have been obtained on the hyperfine structure of several lines of barium. These have
been studied in the attempt to determine more definitely the nuclear moment of the odd
isotopes of barium, reported as 2~ by Kr uger, Gibbs and Williams, and as 1-', by Schiiler and by
Murakawa. Studies of the separation of the 6'S» and 72$» components from the center of gravity,
and of the spacing and patterns of the 5 D3 and 6 P2 terms all lead to the conclusion that I= 12
is the correct value of nuclear moment.

' 'N spite of several researches on the subject,
~ - the value of the nuclear moment of the odd
isotopes of barium remains in doubt. The various
investigators dier both in experimental findings

and in interpretation of the data. McLennan
and Allen' first found hyperfine structure in a
number of the arc and spark lines of barium,
but their results have never been confirmed by
other workers. Frisch' found all lines sharp. The
first accurate observations were those of Ritschl
and Sawyer' who observed structure in several
lines and published measurements on the reso-
nance lines of Ba II, 6'S» —6'P» ~», from which

Schuler and Jones4 deduced 1—', as the nuclear
moment of the odd isotopes. However, from

their own measurements on the same lines,

Kruger, Gibbs, and Williams' concluded that the
moment is probably 2-'„while Murakawa, ' from

' McLennan and Allen, Phil. Mag. 8, 515 (1929).
' Frisch, Zeits. f. Physik 68, 758 (1931).' Ritschl and Sawyer, Zeits. f. Physik 7'2, 36 (1931).
4 Kallman and Schiiler, Ergebn. d. Exakt. Naturwiss.

ll, 134 (1932).
5 Kruger, Gibbs, and Williams, Phys. Rev. 41, 322 (1932).
' Murakawa, Sci. Papers Tokyo I. P. C. R. 18, 304

(1932).

observations on these and other lines, considered
1-', to be correct. Recent compilations of nuclear
moments' ' have given 2-', as the moment of
barium but have indicated that uncertainty
exists.

The difhculty in the determination of the
moment from hyperfine structure observations
arises from the fact that barium is a mixture of
several isotopes. The recent measuremqnts of
Sampson and Bleakney'0 give for the isotopes
and their percentage abundance:

mass number 130 132 134 135 136 137 138
percentage 0.16 0.015 1.72 5.7 8.5 10.8 73.1

The even isotopes thus make up 83.5 percent of
the atoms and all observers are agreed that
these even isotopes, in common with all observed
even isotopes save N", have no hyperfine struc-
ture. In all barium h.f.s. patterns, the five even
isotopes fall together in a very heavy central

' White, Introduction to Atomic Spectra (McGraw Hill,
1934), p. 372.' Darrow, Bell Tech. J. 14, 319 (1935).' Bacher and Bethe, Rev. Mod. Phys. 8, 82 (1936).

"Sampson and Bleakney, Phys. Rev. 50, 456 (1936).


