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The wave function for the composite nucleus is written as a properly antisymmetrized
combination of partial wave functions, corresponding to various possible ways of distributing
the neutrons and protons into various groups, such as alpha-particles, di-neutrons, etc. The
dependence of the total wave function on the intergroup separations is determined by the
variation principle. The analysis is carried out in detail for the case that the configurations
considered contain only two groups. Integral equations are derived for the functions of separa-
tion. The associated Fredholm determinant completely determines the stable energy values of
the system (Eq. (33)), Eq. (48) connects the asymptotic behavior of an arbitrary particular
solution with that of solutions possessing a standard asymptotic form. With its help, the
Fredholm determinant also determines all scattering and disintegration cross sections (Eqs.
(50) ~ ~ ~ (54) and (57)), without the necessity of actually obtaining the intergroup wave func-
tions. The expressions (43) and (60) obtained for the cross sections, taking account of spin
efI'ects, have general validity. Details of the application of the method of resonating group
structure to actual problems arg discussed.

INTRQDUcTIoN

Resonating group structure

DESCRIPTION' of the nucleus which
regards the neutrons and protons as spend-

ing part of their time in configurations corre-
sponding, for example, to interacting alpha-
particles, part of their time in other groupings,
already takes into account to a large extent that
intimate interaction between nuclear particles
which is so entirely different from the situation
in atomic structure, where the concept of average
field is a reasonable approximation. In contrast
to the Hartree-Fock procedure, the method of
"resonating group structure" builds up a wave
function for the whole nucleus out of partial
wave functions which describe the close inter-
action within the individual groups. It is clear
that in this way we take advantage from the
beginning of the saturation character of nuclear
binding, by which much the largest part of the
energy of the compound nucleus is accounted for
by the internal binding of the separate groups.
On the other hand, the fact that the total wave
function is built of a properly antisymmetrized
combination of partial wave functions, corre-
sponding to the various possible types of

' Cf. preceding paper, where Appendix I gives an
example which illustrates the following considerations.
For a preliminary account of the present work, cf. Phys.
Rev. '5l, 683 (1937).
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groupings, shows that we are far from the
picture which regards alpha-particles, for ex-
ample, as having any real existence within the
nucleus.

It is the purpose of this paper-to derive the
wave equation for resonating group structures
and to show how the interaction integrals can be
evaluated and how solutions can be obtained
which give the positions of nuclear energy levels
and the cross sections for scattering and disin-
tegration. We start out by considering a system
of nz protons and n neutrons described by the
m+n=X COOrdinateS'a Xi, o.i', X2, cr2, ~ ~ X, 0

y» r» y~, r~, (o's are proton spins, r's are
neutron spins) which we may abbreviate as
simply 1, 2, ~, N. In the approximation given

by the method mentioned, the wave function +
of the whole system is written as the sum of
parts, of which a given term represents the N
particles sorted into groups in a particular way
(configuration). Such a term is the product
of wave functions C describing the motion of the
particles within each group, multiplied by a
function P which depends on the positions, X,
and spin variables, m8, of the different groups
(the word spin referring here to the total internal

"In this paper, neutrons and protons are treated as
different particles. Nothing essential is changed, however,
if one uses the formalism of the isotopic spin variable and
treats neutrons and protons as different states of one type
of particle.
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angular momentum of a group). The various
unknown functions I"" belong to different con-
figurations —thus, for Li', Il' might represent the
relative motion of a normal alpha-particle and a
normal deuteron; Ii' might similarly represent
excited Li' plus neutron, etc. The properly anti-
symmetrized wave function for the whole system
has the form 'b

0'(12. N) = (kzz! ' Iz" ' m!n t)
—1

X P (+1)PF'(Xz', mz', Xzz', mzz', ).
perm

Cz'. mz(1, 2, kz', m+1, m+2, m+lz')

)&czz', zz(kz'+1, .
; m+11'+1, )

+ (42!.. . Iz
2 l . . ~ m ls2 I)

—1 p (+1)
perm

PF (Xz mz ' ' ' ~ )CSz, ~z(1, 2, ~ ~ kz' ~ ) ~ ~ ~

+terms in F', F', F'. (1)

The symbol P (&1) indicates a summation
perm

running over all mt permutations of the protons
and n! permutations of the neutrons, with a
change in sign for odd permutations; the function
0' as written is not normalized but the numerical
factors simplify the normalization. ' The X's are
of the form

Xz = (Xz+XS+ ' ' +X2z
+yz+y2+ +y~z)/(4+Iz).

The subscript miz on Cii' singles out that par-
ticular wave function for group II' (possessing
spin Sn') which represents the z component of
its angular momentum as having the value miz,
the sum over the m's is to give a partial wave
function 0' corresponding to definite values of
the angular momentum of the whole system and
its projection along the s axis (the same, of
course, for all 4"'s). Group I of configuration 1

is not in general the same as group I of con-
figuration 2, etc. The C's, among which there
are, for example, alpha-particle wave functions,

2b The following is simplified on first reading by sup-
posing that the groups have no spin, as is the case for
n-particles.

'The terms of the first sum are identical in sets ofI'= ki' t ~ ~ /z' t ~ ~ at a time because of the antisymmetry
of the C's; there are v'=m!n t/ki". li'I ~ different
distributions of the neutrons and protons into the groupings
I', II', etc. ; if the different distributions were orthogonal,
the normalizing factor for the first sum .would be exactly
(~') '(+') '

are antisymmetric in neutrons and in protons. 4

Each C is normalized, and the C's representing
different states of the same group are orthogonal;
thus,

t 4& *(1,2, 8, 9)
zrl9 zr2 9 ~8 ~ &9Q

)(C'8(1 2, 8, 9)diaz, 2, 8, 9=8 IS (2)

where by J' d~ we mean here the integral
with respect to any three independent variables,
keeping the center of gravity fixed:

d(X1 X2 y8 y 9)jdX1289

The 4 's may depend explicitly on the X's
("polarization" ).
Outline of procedure

The problem centers on the calculation of the
functions E', which we determine uniquely by
the condition that they shall give the best
possible wave function of the form (1) in the
sense of the variation principle:

)+=0
~

g= I +*H@d~ I @*@d~ l. (3)

Our program is as follows: We express (Eq. (13))
J'+*H+dr and J'4*4'dr in terms of the F" and
certain quantities representing the Hamiltonians
of the individual configurations and the inter-
actions responsible for the resonance of the
nucleus between different configurations; then
(specializing to the case of only two groups in
each configuration) we vary F. in (2) separately
with respect to each of the c functions F', and
obtain from the variation principle c simul-
taneous integro-differential equations ((17) and
(25)) on the F'; through the use of a generalized
Green's function we transform these equations
to integral equations (Eq. (30)) of a well-known

type; the condition that the Fredholm deter-
minant of this set of equations shall vanish is
found to determine energy levels, and also, phase
shifts and transmutation probabilities, without
calculation of the Ii' themselves; finally, we go
into some details of the numerical calculation of
the Fredholm determinants encountered.

4 When a group consists only of a single particle, C is
simply a 8 function.
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INTEGRATIQN ovER INTERNAL DEGREEs
OF FREEDOM

(kz'!kn" ' 'Iz'! ' 'kz'!kn" ' 'Iz'! )

X QF'(Xz', mz', Xzz', )

C"zmz'(1, 2, kz', m+ 1, ~ m+lz")

XC' zzmzz*(kz'+1, . kz'+kzz', m+lz'+1, ~ )

p (+1)QF~(Xzz )C'zzmzz(1 kz4; ) (4)
perm tnt

owing to the complete antisymmetry of the
individual configuration wave functions
Imagine azz protons to be withdrawn from the
kz' in group I of configuration i and placed in
the group I of configuration j, az zz to be removed
from the same source to II&, and so on; similarly
we transfer bz z neutrons from I' to I&, etc. Then
the set of numbers a„„b~ describes a certain
shifting of particles which may call the linkage
{abI from configuration i to j. Clearly

ga„=k, '; Pa„=k.&;

Normalization integral

We have to express the integral J'4'*+de and
similar energy integrals in terms of the J"s. The
contribution coming from 0"*0'~' reduces to the
integral of

mutations, which do not actually have any effect
on the distribution of particles into groups, then
we introduce 1/X' and 1/X' as additional nor-
malizing factors for the parts +' and +&' of +
Eq. (1).Then the procedure goes through exactly
as below, where we explicitly assume that all
groups are different, so as to avoid unessential
complicationsf. By defining numerical factors

gz z igz zz l e ~ o bz I i o ~ ~

g(ab} =
kz't' ' 'Iz't' 'kz'I' ' ]'*

we conveniently combine all terms belonging to
the same linkage:

XJl F'*(Xz', mz', )4'zmz'(1, 2, )

X F&(Xz& )C»zmzz( ) d~. (5)

When in (5) {ab I,; is the identical linkage
(az z=kz, azzz=0, etc.), then the normalization
and orthogonality of the C 's reduces the cor-
responding terms in the sum to

84 P "F'*(Xz" mz* )F'(X,*' mz', .)

Pb,.=l,'; gb,„=I„
Xd(Xz4, )/dA, (6)

(In tQe example following Eq. (26), for i=1,
j= 2, we have az I =&II I bI I bI II —0,
az zz =an zz = bzz z = bzz zz = 1).

All azz'. azzz! . bzz! bzzz'. . terms in
perm

which belong to the same linkage are identical;
terms belonging to a different set of values of
the a's and b's are different from these Cunless
there are two or more group wave functions
among either the C'zmz', O'II, mzz', ~ ~ ~ or the
C'~ Imz', 4'~ IImzz~, , which are actually the
same. When this situation occurs, the same
linkage will be said to include those sets of
values of the a„„b&„which arise by permuting
the subscripts of identical states of individual
groups in configuration i and by changing about
the labels I, II, ~ ~ of those states 4 'Imz&,

4'~IImzz~, ' which are really the same. If X' and X&

are, respectively, the numbers of such per-

dXI' dXzz'

d(Xz', Xzz', ) d(1, , N)
X

dA dA

d {fz(ms), f~(hays), f4(~ys) I .
(In general, is defined

~(fh f» fs)
to be dyds. )

8(x, y, s)

For all other linkages in the sum (5), the X"s,
regarded as functions of the neutron and proton
coordinates, will not all be the same as the X&'s.

As it is complicated to carry out the treatment

where A represents the (vector) coordinate of
the center of gravity and we have used the
identity

d(1 ~ kz' m ~ ~ ) d(kz'+1 )
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from this stage on in detail in the general case,
we specialize now to the case that there are only
two groups in each of the c configurations. Then
when IabI is not the identical linkage, clearly
the vectors Xzz Xz X}ab} alld Xzz Xz

are independent of each other. We can therefore
express the coordinates x&, x, y&, y„ in
terms of A, X}aa}, g}an}, and J}'/ 3 in—dependent
(vector) variables u&, , uz by a linear sub-
stitution. The differential element d~ becomes

B(1 N)
dXdgu4 ' ' ' du~.

B(A, X, g, u4, u&)

Since the u's do not enter in the F's, and more-
over we take the F's to be independent' of A, it
follows that the integral in which we are inter-
ested reduces after integration over the u's to
the form

f'
I J

F'*(X}at};;;mz', mzz')
m', m natl

XI}ab}zz(X}ab}, mz", mzz' , g}ao},mz, mzz )

XF'((}ah};mz~, mzz~)dX}at }dg}ab}. (7)

We regard the functions F'(X, mz, mzz) which

are obtained when the two m's run over their
allowed values (mz'= Sz"', ~ ~ ', Sz' —1, Sz", etc.)
as components of a single spin vector F,(X), and
similarly consider the quantities I in Eq. (7) as
components of a spin matrix I}az};;(X,g). The
X's and ('s in the sum of integrals in Eq. (7) are
dummy variables in the sense that they drop
out of the integrated answer. Consequently, in

spite of their different physical origin, we sum
the spin matrices I{a~];; over all the different
linkages joining the given configurations i and j
(except the identical linkage), and denote the
result as I;;(X, g) ("overlapping integral" ). On

using a dot to indicate the inner product of spin
vectors, we have finally

C

~
4*Cd~=g t F;*(X).F;(X)dX

i=1

+P I t F;*(X) I;;(X, () F;(()dXdg, (8)
Sz j

' lt being most convenient to calculate cross sections in
the frame of reference in which the center of gravity is at
rest: P = 0 in the factor exp (iPA/A) of F.

where the I's are in principle known functions
of X and g, the form of the dependence being
determined by the nature of the group wave
functions C.

a1a1 aav, a
+

Bxz J}7 BA kz+fz z}X Bxz Bvz
+ I ~ ~

and the kinetic energy operator becomes

r= (a'/m') I X-zV~ V

+L(kz+4) '+(kzz+4z) ')Vx Vx

+QC~VSgg ' V II~+ Qd~VSI~ ' V'I'~I p (9)

where the c and d are numbers depending on
the choice of the v'. s and w's and the first and sec-
ond gradients in each pair act on F,*(X)C'z'*C'zz'*

and F&(X)Czz4zz~', resPectively. In terms of the
reduced mass p;=p, ; of the two gr'oups, the
kinetic energy integral for the identical linkage
reduces to an expression of the form

8;;(}}z'/2}z;))tVxF;*(X) VxF;(X)dX

+)t F;*(X) T;;(X)F;(X)dX, (10)

provided either that we do not allow the C's to
depend on X (no explicit polarization eEects) or
that we do not have in 4 any configurations
differing only by the internal state of excitation
of the individual groups. Lin the latter case,
where the C's may involve X as well as the u's
and v's, we arrange that no terms occur in (10)
which arise from derivatives of the type
(VxF*) J'Cz'*(V&C»')dvF, by suitably choosing
the arbitrary multiplicative functions exp (if (X))
left free by the normalization and orthogonality
conditions on the C's. There will however be

Kinetic and potential energy integrals

The calculation of the kinetic energy follows
the preceding division into the cases of identical
and nonidentical linkages, In the first case we
express th'e kz x's and l~ y's of the particles of
the first group in terms of A, X and additional
variables v2, va, , vkz+iz by a linear orthogonal
substitution, and similarly put in the coordinates
of the particles of the second group as functions
of A X, w2, w3, ' ' ' w&II+tII Then
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terms typihed by V~41'* V~41~, which are in-
cluded in T„;(X) along with the contributions of
the proper internal kinetic energy operator
(h /2')+~@~V s~ Ve~ of group I.j It is quite
natural that there should be this exclusive rela-
tion between treatment by excited states and by
explicit polarization of the groups, for the two
are to a large extent equivalent methods of
describing the same phenomenon.

Kinetic energy terms belonging to nonidentical
linkages are reducible to expressions containing
the J"s alone by use of the variables A, Xle~l,
(lao), u4, u~ introduced above. The trans-
formation is not in general orthogonal and con-
sequently the kinetic energy operator (center of
gravity at rest) becomes the linear combination
of operators of the form

V~ Vg, Vg Vg, Vg. Vu, Vm Vup.

The 6rst gradient in each pair acts on
F;*(X)41*"C11'*,the second on F;(g) C' 411'. From
V~ V~ originate the terms

[Vx F;*(X)j41+11'F;(g)[VxC1&41&'j

F'(x) [&xc'1+» "3F1(5) [&xc'1'c'»'3.

By partial integration of the 6rst term with
respect to X, and use of the boundary condition6
that F,(X) must vanish at in'»ity, we transform
the 6rst term to one where F; and F; appear
undifferentiated. Continuing in this way with all
the operators above, and then introducing new
variables X, (, u to treat the next linkage, etc. ,

we obtain finally the kinetic energy integral for
all nonidentical linkages in the form

t F,*(X) T;;(X, g) F;(g)dxdg. (11)

linkages to nonidentical linkages, and vice versa.
Nevertheless, for each term there will be a suit-
able transformation of variables, either of the
type A, X, v, w or of the type A, X, g, u, which
will Finally reduce the total potential energy to
the form

~ ,

t'F, *(X).U„(X) F, (X)dX

+P t~"F,*(X) U;;(X, g) F,(g)dzdg,
sf

regardless of the type of the forces. ~

For large values of X and (, it follows from the
6nite extension of the individual group wave
functions C that the U;;(X, g) and T;;(X, g) ten'd

to zero. At the same time, owing to the normal-
ization and orthogonality of the 4's, U,;(X)
+T;;(X) approaches 8;; times E;, the energy
attributable to the internal binding of the
separated groups of conFigurationi. We therefore
write U,;(X)+T,;(X)=E;6;,+ V;;(X) and also
combine the interchange integrals:

U'1(» ()+T'1(x, 0) =J'1(x, 0
Summarizing the above considerations, we And

that in the approximation given by the method of
resonating group structure, the energy of the
compound system 1s

E=N/D,

X=+(h'/2p )JtVrF *(X) ~ VxF (X)dX

+QE;)t F,*(X) F;(X)dX

The 1eIllallllng ter1118 1» tile 111tegral J'%*&Cd c

come from the potential energy. If the forces
between the elementary particles were ordinary
interactions, the above analysis of the linkages
would be valid, but the presence of exchange
potentials will change some of the identical

60nly in the derivation do we make this restriction,
which would, for the continuous spectrum, require us to
deal always with a finite if small energy spread in the
wave-function I,'which is of course physically correct), but
in the actual calculations with the integro-differential
equation below it is permissible to deal in the usual way
with sharp energy values and waves which extend to
in 6nlty.

+~,t F,*(X) V„(X).F,(X)dX
~t

+P I F;*(X)~ J;;(X, $) F,:($)dxdg,
s)

D=PJl F.*(X) F (X)dx+Q )~
' F *(X)

'b z 0

I,;(X, g) F,(g)dXd(. (13)

' They may be many-body interactions, for example.
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Application of variation principle

It is known that the Schroedinger wave
equation may be derived from the variation
principle bB=O, and that any improvement in
an approximate wave function lowers the cor-
responding value of the energy.

We therefore determine the unknown func-
tions F by the condition that they shall give the
best possible total wave function + of the form

(1) in the sense of the variation principle

8E= 5(xV/D) =0. (14)

—(i'x'/2zx;) Vx' F,(X)+E;F;(X)+Q V;;(X) F,(X)

+P "J*;(X,() F;(()~( (15)

evat. uated at X=XO. Similarly, the change in D
is 2bF.; times

F'(X)+Z I' (» 5)»(4)d&

E is stationary with respect to all variations of
the F's only if the ratio bX/"0D is the same as
1V/D =E for all values of Xo and all values of i,
whence we have the system of simultaneous
linear integro-differential equations

L(h'/2p, )V&'+2 —E~]F,(X)

=2 v, ,(x) F,(x)y~t IJ,, (x, g) —zI, ,(x, g)I
7

F;(4)4 (»)

If the right member of (17) were zero, the solu-
tion of our equations would give simply the free
relative motion of the different groups of a given
configuration; the terms with j=i on the right

' E. Schroedinger, Ann. d. Physik 79, 362 (1926);
cf. also R. Courant and D. Hilbert, Methoden der 3fatke-
matischen Physik I, second edition (Berlin, 1931), p. 159.

'We carry out the derivation as if the F's, V's, J's,
and I's were all real; the result is however true in general.
Cf. W. Heisenberg, Tke Physica/ Princi p/es of the Quantum
Tkeory {Chicago, 1930), p. 163.

The variation in X caused by a change
BF;8(x—X0) in the value of F„.(X) at the point
Xo is found by partial integration to be' 28F;
times

determine the interaction between these groups,
and the nondiagonal terms take into account the
resonance between different configurations —in
particular, the possibility of transmutations.
From the fact that the energy of the system is
always real we have'

V;;(X) =V;;*(X), J;;(X, g) = J;;*(g,X),
(18)

I;;(X, () = I;, (g, X).

Angular dependence

Owing to the intimate interaction which occurs
in the compound nucleus, neither the internal
angular momenta of the groups nor their mutual
angular momentum L, will be constant, but only
the total angular momentum Jand its projection
mJ along a fixed space axis. We build up an
eigenstate for a given J and mg in two steps:
Sz, Szz—+S; S, I.—+J. To form a wave function
corresponding to a particular value of the total
internal group angular momentum, S, we have
to take a definite" linear combination of the
sets of states belonging to Sz and Szz.

I' s, ~s= P I S', Sz", Szz', ms, mz, zrxzzI
mz(mzz)

)&C 'x, AC 'xx, mxz. (19)

The coefFicients I I are pure numbers; they
vanish unless mzz =mq —mz, for which reason mzz

is put in parenthesis in the sum.
We combine the 4's for a given S with func-

tions belonging to a definite state of relative
angular momentum L (and projection zzx) of the
two groups and express the separation vector X
in polar coordinates r, 0, y. The function

(1/r) fq(i, I., S, r) P I JLS; mqmzzxs}
m(m g)

X Y,&-&(8, y)C'sos (20)

belongs to a given value of the total angular
momentum J and its projection m J, and
F;(X)4z'4zz' will be made up of the sum of such
functions over all values of I. and S which are

' The star of a spin matrix indicates here its conjugate
transposed.

"Cf. E. Wigner, Grgppentkeorie, Eqs. (18a) and (27).
(Braunschweig, 1931), p. 206. It is supposed that the
normalizing constants in the C's are chosen with the proper
sign. Three choices of sign for the related spherical har-
monics Yl, ( ) are given in the literature; for that consistent
with (19), and for tables of the I I, cf. Condon and
Shortley, Tke Theory of Atomic Spectra (Cambridge, 1935),
p. 52, p. 75.
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consistent with Sz, Szz, and J according to the
vector rule of addition of angular momenta.
Consequently, for the given J and rnz, the mz,

mzz component of the spin vector F; is

F'(X, mi, mii)= g (1/r)fg(iLSr)
Le 8

(m), (m g)

{JLS; m~mms j V~(iLS;j L'S'; r)

=)l sin ed0dq Q Q Yi,&"&*(0,q)
mZ(mZr) mZ'(mZZ')

X {SSi'Sn*, msmimn }V'j(X mimii mi mii )

X {JI'S'; mern'ms } Yi,' '(0, p)

X {JLS; mgmms j Yi, '"&(tt, p) X {S'SI SII i ms mi mii

{JLS; mqmms j Jq(iLSr;j L'S'p)

with suitably chosen fz
Clearly the left member of the ith integro-

differential Eq. (17) will have the same form as
(21) except that the fq(iLSr) will appear oper-
ated on by

+E E;$. (22—)

We now multiply this number by r Yz, ' '*(&, v)
Xsin ed8dp{SSiSn, msmimii}, integrate over 8

and y, sum over mz and mzz, make use of the
orthogonality and normalization of the spherical
harmonics and the relation"

{SS,Sn, msmimn }

=rp, ~~sin Od0dp sin ododrgg

X J;;(Xmimn, (mi'mn'), (24)

we obtain the radial wave equations of the
method of resonating group structure:

$(k'/2p )(d'/d ' I.(L+—)/r')+E E;jfg(iL—Sr)

II+(iLSrj L'S'p)fz(j L'S'p)dp
jL'9' 4

=g g(iLSr), (25)

where gq(iLSr) is an abbreviation for

{Vg(iLS;j L'S', r)fq(jL'S'r)
2 LIB'

mi(mph')

+~ [JJ EIz(iLSr;j—L'S'p)]fz(jL'S'p)dp}. (26)
X i Ii i msmimii =~ss'~

and end up with a single one of the fq(iLSr) on
the left-hand side of the integro-differential
equation. The right-hand member of this equa-
tion will, in general, contain radial functions

fz(j L'S'r) from all configurations and from
values of I' and S' not necessarily the same as
I and S.We can say at once from the invariance
of the nuclear wave equation with respect to
space rotations: firstly, that J and mz have the
same value on both sides of the equation; and
secondly, that the equation for f&(iLSr) must
be independent of rnid —i.e., the right-hand side
of the equation must contain as a factor the same
expression {JLS; mqmms} which appears on the
left. (This could of course be proven with more
difficulty directly from the expressions for V;;,
J,;, I,;). On introducing p, 0, 7 for polar coor-
dinates of g (like the polar coordinates r, 8, p
of X), and defining the Jth components of V, J
(and similarly I) as follows:

12 Wigner, reference 11, Eq. (28), p. 206.

INTEGRAL EQUATIONS

Reduction of integro-di8'erentia1 equations

In the radial integro-differential equations
(25), we write

(2p,/k')(E —E;)= —~' for E(E
(configuration i stable),

(2p;/k')(E —E,) =k' for E)E.
(dissociation possible). (26)

We have the following cases to consider:

(A) All E;)E.Completely stable nucleus. Sharp energy
values.

(8) Only one E;&E. Elastic collisions between groups I~

and II'; lifetime of compound nucleus determined by
probability of a single mode of dissociation.

(C) More than one E;(K Elastic scattering; also trans-
mutation processes I'+ ll'~~I&'+ ll&'.

As illustration, Table I gives the configurations
which may be used to describe the compound
nucleus 2He4:
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H'
e'
H'

TAB?,E I. conjgurati ops of 2IIe4,

H'
He'
H'

8; {mMU)

—9.1
—8.1
—4.8

(28b)

The uniquely determined solution of the in-

homogeneous equation is

In case A (stable 2He') the radial functions f
must fall o6 exponentially for large r for all
configurations; in addition, the f's must satisfy
the usual boundary condition f(0) =0 at the
origin. On considering the right hand members
of (25) to be known functions" of r, we can
immediately obtain expressions for the f; satis-
fying the proper boundary conditions. Ke intro-
duce the "regular" and "irregular" solutions of
the homogeneous equation

[d'/dr' a' L(L+1)—/—r'jf =0 (27)

as follows:
p1 d q

~

p=ar; FJ.(p) =p~+'
I

——
I (p 'sinh p)

4p dp&

.(2L+1) I I 1+p'/2(2L+3)+
)1 dg~

6~(»=(—1)'p"'I ——
I (p 'exp( —p))-o-',

4p dp)

r

fg(iLSr) = —(2p;/l'i'a, ) Fr.(x;o)Gi, (~,r)

+)f Fr.(~;r)GI.(a;o) g(iLSo)do (2.9)

As the g's are however given in terms of the f's,
we have cross relations which will not in general
be consistent with each other —except for those
special values of Z which represent stable levels
of the compound system. We write out (29) as a
system of linear integral equations on the f's:

fg(iLSr)+ Q Sp(~LSr;j L'S'p)

Xfz(jL'S'p)dp =0, (30)

where the kernel SJ is given by

Sg(iLSr;jL'S'p) = (2p;/5'~, )

dI' I, dQL,
GI,—I'I.

dp dp
(28a) Gi(~,r)FI (~,o)+ Fi(~,r)C I (~;o)

and for later use write down also the regular and
irregular solutions of the equation obtained by
replacing —a' in (27) by k':

f1dqr.
F'(p)=( 1)"'+'I ——

I (p '»n p)
Ep dp)

= I."'l1 3 (2L+1) I I1-"/2(2L+3)+" I

sin (p —I.7r/2);

(1 d't~
G~(p) = (—I) 'p'+'I ——

I (p ' cos p)-
Ep dp)

cos (p —Lm/2);

)&IIg(iLSo;j L,'S'p)do, (.31)

and is therefore in principle known as soon as the
V's, J's, and I's have been evaluated. We know

from the theory" of integral equations that (30)
has a characteristic solutjon only when the
Fredholm determinant of the equation vanishes:

D(F) = Ih 8 8lilies(srp)
+S (iLSr;jL'S'p; Z)I =0. (32)

Eq. (32) determines the stable levels of the
system. In diagonal expansion, it runs

~ S(~LSr; iLSr) S(iLSr;j I.'S'p)
D(F) =1++ "S(~LSr; iLSr)dr+(1/2!) Q P ! drdp

'L8 4 'is ~'&'~'& & S(jL'S'p iLSr) S(jL'S'p jL'S'p)
+. . =0, (33)

'3 Cf. Mott and Massey, The Theory of Aforgjc Cogjsjorls '4 Lovitt, LAzegr Injegrel Zgggtioes {New York, 1924),
(Oxford, 1933), p. 151, for an analogous method of con- p. 41.
version to an integral equation.
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where for brevity the su%x J and the argument
8 have been omitted from 5.

ELAsvrc ScxTrFRINo

The collision of H' and H' with energy too
small to form n'+He' comes under case B. For
every given Z, Eqs. (25) will now possess a
solution. The wave functions for conFigurations
2 and 3 must still fall off exponentially for large
r, but the f(1LSr), which also satisfy the
boundary condition at the origin„behave
asymptotically for large r as combinations of
sin {kyar) and cos (kyar).

A proton and triton without spin would be
described at large distances by one function
fg(1JOr). If this function is so normalized that
that part of it which corresponds to the incoming
wave s-"""-~~&has amplitude —(1/2i), then the
amplitude of the outgoing wave e'~&" must have
the same absolute value and may be written
(1/2i)e"x Here ICq is the so-called "phase
shift, " which is completely determined (up to
~n~) by the collision energy and form of the
interaction, and which in turn, along with the
other XJ's, determines the differential cross
section 0.~~(0) for elastic scattering through the
well known formula"

angular momentum. The particular solution
fz s associated with the given initial conditions
is a set of functions, gJ in number, having the
asymptotic form:

fg~s(1LSr) —(1/2f) exp [—i{k,r —Lm)]

+(1/2i)c, (LS;LS) exp [.k,rj,
(35)

fg~s(1L'5'r) (1/2f)c (I.'5' LS) exp [ik,r]
(L', 5'gI, 5).

Another particular solution is obtained by letting
the groups approach in a diR'erent initial state
JI8; altogether there are gJ such independent
particular solutions for a given value of J. We
therefore need gq' complex numbers cz(L'5'; LS)
to characterize completely the behavior at in-
anity of the independent solutions associated
with a given component IIJ of the interaction
opel atol . For these «al ge d1stances the waves
associated with the stable conFIgurations 2, 3, ~ ~ ~

have fallen to zero, and the total wave function
for a state described by the quantum numbers
J, 5$g, L, 5 1s obta1ned f1 om

Xzmgzs(1, 2, , N) = Q (1/kr)fg~s(1L'S'r)

og&(8) =(4k'') '

~
I 2 (2L+1)(s" ' —1)I'.(cos ~) I'. (34)

Effect of spin

The speciFIc dynamic'~ action of nuclear spin
splits up an incoming wave

—(1/2i) exp [—i(k~r —L )],s
containing two groups in one state JI.S of
speciFied spin orientation and given mutual
arigular momentum, into a number of outgoing
waves representing these groups separating with
altered spin orientations and changed mutual

"Provided we assume any coulomb fields to be broken
off beyond some suitab1e distance r. The question of the
most convenient procedure in this connection is discussed
in more detail below.

"Mott and Massey, reference 13, p. 24.
"The statistical effect of the spin in a problem where

two groups are identical (Mott, Proc. Roy. Soc. A126, 259
(1930)) is already taken into account in our treatment
before the wave equation is reduced to radial form.

by antisymmetrizing according to the procedure
discussed earlier. However, in deriving the scat-
tering cross section, as in the next paragraph, we
are justi6ed in dealing with the unsymmetrized
x's because: (1), the fq's are solutions of wave
equations in which the IIg's already include all
dynamical effects of symmetrization (exchange
interactions); and (2), those scattered waves in
the total wave function which come from g's
differing by an interchange of particles between
the constituent groups cannot interfere with
each other at distances large in comparison with
the size of the groups.

We consider a state typiFIed by

exp (ik~s) C's. ~a+scattered waves. (37)

The proper linear combination of the x,rmJ~8

required to give this state is found most easily
by comparing the coefficients ot exp [—i(k&r
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L—~)] in the asymptotic expansions of the X's

and the advancing plane wave

exp (ikzs) P(2L+1)P~(cos g)(1/2ikr)
L

X[ e f(kkr —Ix)+—eikkr] (38)

For the comparison we use Eqs. (19) and (36).
We find by application of the orthogonality
relation"

P{JLS; m~mms} {JLS; m~m'ms'}
J

=gmm'gmsms' (39)

and the equations of definition,

p (m)(g p) =Q~g(m)(g)(2~) 2e(mP

Qz, '(g) =(L+1/2)lPi(cos g), (40)

that the desired coefficient of xzmJL is

{JI.S;ms0ms}gmsmg[4m(2L+1)fl. (41)

The difference between the resultant linear
superposition of solutions and the advancing
plane wave is the scattered wave

(e'""/2ikzr)+[4~(2L+1)5

X{ P P c~(L'S';LS){JLS;ms0ms}
JL'$' mg'(m')

X {JL'S'; msm'ms'} Fg'"'(g, (p)c's ms

—F~ (g, p)C&'sms}. (42)

We square the absolute value of the coefficient
of (e'"'"/r)c's ms and thus get the differential
cross section for the process: groups in spin
state C's, ~s collide and go off in the direction
8, p in the spin state C s ms . The observable col-
lision cross section, per unit solid angle, is ob-
tainedbyaveragingthisoverall(2Sz+1)(2Szz+1)
initial modes of orientation and summing over
all possible final values S'ms'.

ezz(g) = [(2Sz+1)(2Szz+1)4»'?' Z
S, mSS', mph'

} g{P cq(L'S'; I.S) {JIS; ms0ms}
JLr

X {JL'S', ms, ms —ms', ms'}(4L+2) l

XQz ~ (" " '(g) gss gmsms'(2L+—1)Pc(cos g}~'.
(43)

~8 W&gner, reference 11, Eq. (28).

Determination of scattering matrix

Our next steps are based on the hope that a11

the desired quantities cz(L'S';LS) (for a fixed J)
can be obtained by consideration of a single
generalized Fredholm determinant, without the
necessity of actually constructing and investigat-
ing explicitly the asymptotic behavior of the
solutions f"s(1L'S'r) We .observe first of all
that the transition from a set of integro-
differential equations to a set of integral equa-
tions goes through as in the case of stable energy
levels (Eq. (25) to Eq. (30)), since the two
independent zero field solutions for positive
energies (28b) have that same relation to their
derivatives which made possible the building up
of a Green's function in the earlier case. Only
now the integral equations (30) are not unique,
for the combination Gc(kzr)+[ctg KjF'(kzr),
as well as Gc itself, satisfies (28b), and both are
equally satisfactory in their asymptotic behavior
for large r. Consequently, the kernel of (30) not
only depends on the energy but in general also
containsg'undetermined "phaseshifts" Kq(LS):

Sz(iLSr;j L'S'p) =(2p;/k'k;)
r CO

G(k;r)F(k;)+JF(k r)G(k;).
0 r

+[ctg K~(iLS)] Fc(k„r)F,(k,o)
0

XII~(iLSo ,jL'S'p)de "(44).
In this expression, the Ii's and 6's represent the
positive energy zero field solutions (28b) when
E E; is positive (i.e.—, for configuration 1); but
when E E;isnegative(confi—gurations2, 3, ),
we understand k; to be replaced by s; (Eq. (26)),
and Ii's and 6's to be the negative energy solu-
tions (28a), and the ctg Kz(iLS) to be put equal
to zero. We next remark that for any given energy
the Fredholm determinant

D(E;Kg(1 ), , Kg(1LS), )

=}g(iLSr;jL'S'p)+S(iLSr;j L'S'p)
~

(45)

can be made to vanish, because we now have the
X's free to adjust, in contrast to the situation in
the case of stable energy values. The equation
D(E, K) =0 determines a g' —1 dimensional
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with that of the solution of the integral equations
(30) belonging to the kernel (44),

fq(iL'S'r) asymptotically proportional to

8;il Gr. (Air)+ Lctg Eg(1L'S')]Fc (k, r) J

or to 8;2 —(1/2i) exp L
—i(kir —Lir)]

i ctgX —i
+(1/2i) exp [ikir], (47)

i ctg X+1
we find

g cq(LS; L'S')aqi's'=exp L2iEz(1LS)]a cs
LI, S' (48)

as the equations of connection between the coef-
ficients aJLs and the points on the gg —i dimen-
sional surface in the space of the X's. It is seen
that the constants c completely define the surface
in question. The c's form a unitary matrix, for
the equality which must exist between the
numbers of incoming and outgoing groups in the
state (46) for arbitrary choice of the a' s,

kiZ la&xsl =big
I P c&(LS' L&S~)a~c s l2 (49)

LS LS L'S'

is just the necessary and sufhcient condition"
for unitary character.

Our problem is: To determine the unitary
scattering matrix llc ll (we abbreviate by using
ps= i, 2, ', g to indicate the possible values of
the pair L, S), being given: (1), the surface

D(Ei, ~, E2) =0 (50)
~' A. Kintner, Spektraltheorie der Unendlicher 3Eatrizen

{Leipzig, 1929), p. 34.

surface in the gJ dimensional space of the E's.
Every point on this surface corresponds to a
particular solution for the radial wave functions
fq(iLSr). This solution must be a linear com-
bination with certain (complex) coefficients aquas

of the gg particular solutions fq~s(iLSr) defined

by Eq. (35). By comparison of the asymptotic
behavior of the superposition of states,

g a~r sf~cs(iL S r) ~ —(1/2i)8ila JL's'
L, S

Xexp p i(kir—L2r)]—+(1/2i)8;i exp Likir]

Qcg(L'S', LS)ages (46)
LS

(from the Fredholm determinant of the integral
equation); and (2), the equations

g c„a =e"K a„(222=1, 2, , g) (51)
a=1

(which we have seen to be an equivalent way of
representing the surface). We first eliminate the
a's by the condition that Eqs. (51) possess a
solution:

cyy
—e

c2z

cgy

cu

c22 ——0. (52)

e2txg
gg

Eq. (52) is a condition on the c's which must be
satisfied at every point E= (Ei, E2, , E2I) on
the surface D(K) =0. In the actual applications
the question of procedure depends upon whether
the I'redholm determinant is available only by
numerical calculations for each particular set of
values of the X's, or whether an analytic ex-
pression is obtainable for D. In the 6rst case it is
desirable for simplicity in the computations to
restrict the It's to real values, which, however,
are not the most convenient in solving (52) for
the c's. In the second case, where we have an
analytic expression for D, it is simplest to con-
sider first those points on the surface which are
defined by ctg E=i for all X's except a par-
ticular E . The (complex) value of E=E ' is'
then fixed by D(E) =0, and from (52) we have
at once c =e"~ '. In this way we find all
diagonal elements of the unitary matrix. Next
we let two X's at a time vary freely, determining
all other E's by ctgE=i. Again we use (52)
and find

cmecnm = —4cmm
BX

B(ctg E„)
BD

=4c„
8(ctg E„)

(m'/222). (54)
~+m- etg K„=i

(53)

or i.n the limiting case ctg X„~,where we can
neglect c„„in comparison with e2'+&,

1 2(i+8 c—tg E„)~ [g2 iK ~' S2i (K pn '+2K') 51+i(i+8 ctg E„)
that is,
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If D(E~, ~, X,) reduces to the product of two
functions D'(E'j, , K,) and D"(I'.,+»,X,),
then the matrix ~~c„„~~ breaks down to two square
blocks along the diagonal, for from (54) and the
unitary nature of c it follows that all elements
c „connecting the one set of E's with the other
roust be zero.

There is more than one" set of values for the
c's satisfying Eq. (52) for all points on the given
surface: for example, the substitution n;I, ——CI,; in
general gives a new unitary matrix which is an
equally good solution. Two matrices c and n both
satisfy (52) only if the chain conditions

ns), = ci~)

n i jn j),—cijc)'i )

n;;.n jA,nI, ;+n;I,ni, jn;; =c;;c;I,CI,;+c I,cI,;c;;,etc. ,

(55a)

are fulfilled for all values of the indices.
V~e suppose now that no off-diagonal elements

vanish (trivial modifications ensue in the fol-

lowirig if some are zero). We write the second
chain condition, for i= 1, in the form

where' the quantity p& is arbitrary and may be

put equal'to unity. Inserting (55b) in the third
chain condition, with i = 1, and using nj~n~j

cp,cA,.j, we find that there exist only two possible
v'alues for nj~.

n&k = p j CjIc(pIc).—1 (55c)

up = (p jc1j'/c~1) ckj(&Welk/cay). (55d)

Similar solutions exist for nA, I, etc. Using the
third chain condition in its general form, and

recalling that the p's are arbitrary, we find that
if u;j, is given by (55c), then all other u's are

given by the . corresponding solution; and
similarly for the second solution. In matrix
language: If d is an arbitrary diagonal matrix
with, the general diagonal element d;;= pj or

d;;=rpjc»/cj» then the most general matrix u

consistent with (52) is given by either

u=d —'cd or u=d 'c'd. (55e)

'0 I am indebted to Professor H. Weyl and Professor
J; H. M. Keddeiburn for .discussions of the arbitrariness
in the c's.

n1 j= p j. C1jp j)
(55b)

u jl= 0 j c jlP1 [=(P1Cll/Cll)Clj(gjcl j/C jl)

We still have the information that n, as well
as c and c', is unitary, whence

P ~c;;~'I ~y;~' —lq, ~'I =0 (j=1, 2, , g).

With c„;&0 for all i&j (cf. remark above), it
follows by simple algebra that all

~ p; ~

' must be
equal; and since y&=1, we conclude that our
diagonal matrix must be a phase matrix:
d;; = y; = e'~&. Therefore, given the Fredholm
determinant (51), we can determine the scat-
tering matrix ~~c n~~ uniquely up to a transforma-
tion by an arbitrary phase matrix and a possible
interchange of rows and columns. In the trivial
special cases mentioned above, where the off-

diagonal elements of c vanish in such a way as to
allow the scattering matrix to be broken up into
submatrices, each block can have rows and
columns interchanged independently of the other
blocks.

When the conditions are satisfied for the time
reversal of nuclear processes (absence of external
magnetic field, etc.), the matrix c shows a
certain symmetry property equivalent to the
principle of microscopic reversibility. The opera-
tion of time reversal, " in fact, converts a given
wave function + into a new one, X+:
Z+(Xl, lrl) ' ' '

y Xmq 0 my yl~ rip y yn& rn)

Sg ' ' '. Smn tin' ' ' tnn+ (Xl &ly ' ' '
1 yny rn)

=( z) + 0'y'''O' Ty'''r 4 (xj, jr&, ''', y r ),

which, under the conditions stated, will be a
linear combination of the old wave functions.
We go back to (46), put a~ s=cq(L'S'; LS),
and obtain then solutions whose radial parts
have the asymptotic behavior

fr(jLSr) cg(L'S'; LS) (1/2i)

Xexp [—i(k~r —Lm.)]
+(1/2i) exp [jk&r]5c L5s s (56a)

The corresponding total wave function, after
being operated on by the time reversal operator
X, will also be a solution of the wave equation
in the absence of external magnetic fields, etc. ,

under which conditions we may suppose that the

"Cf. E. Wigner, Gonttingen Nachrichten 31, 546 (f932),
Eq. (iO).
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group functions satisfy

(56b)

(cf. Wigner's Eq. (21)).Then, using the relation "e

{JLS; mqmr, ms} = (—1)

X {JLS; —m~, —mr„—ms}, (56c)

and referring to Eqs. (19) and (20), we have for
the radial components of the new wave function

f&(new) (2I S&)~ ( ] ) Z—Si—SZZ( 2) 2m'

X {—(1/2i)fir. r.5s's exP [—2(kir —L~)]

+(1/22)cq(L'S', I.S) exp [2kirj}. (56d)

Comparison with the corresponding old radial
wave function (35) gives

expression (44), where now, however, several of
the quantities E—E; are positive, corresponding
to the several possible unstable configurations or
modes of disintegration of the compound
nucleus. Associated with each unstable configura-
tion 2 there are the phase shifts KJ (2LS), related
by the condition

D(E; Kg(1 ), , Kg(iLS), ~ ) =0. (58)

From the shape of the corresponding surface in
X space and possibly by making explicit solu-
tions of the integral equations in certain cases
(see preceding discussion) we find the elements
of a unitary gnatrix ~~cq(jL'S', iLS)

~~
whose

elements describe the asymptotic behavior of the
particular solutions fz'~s(j L'S'r) of the wave
equation:

cq(L'S', LS) =cq(LS; L'S'). (57) f~'~s(j L'S'r) —(1/2i) fi;;fir, r:floss

This relation shows that ~~c„„~~ is a symmetric
matrix, and with the help of (54) demonstrates
that each element of the matrix is determined up
to a factor ~i.

From the results of the last two paragraphs,
we conclude that a knowledge of the Fredholm
determinant (51) of our integral equations is
sufhcient, in the absence of external magnetic
fields, to determine all elements of the scattering
matrix up to a transformation by a diagonal
matrix whose elements d;; are ~i. Once this
2g '-fold arbitrariness in choice of signs has been
resolved for one energy, perhaps by explicit
solution of the integral equations, "the principle
of continuity with respect to variation of the
energy is sufhcient to determine the c's com-
pletely for all energies from the Fredholm
determinant, D(E; K„,Ko) of the integral
equation.

Xexp [ 2(k;r —L~))+—(1/2i) (k~/k;) '*

Xc;(jL'S', 2LS) exp [2k;r$. (59)

o;;(0) = [(252'+1)(2Szi'+1)4k,k;$
8, mg S', mS'

X~ Z cs(jL'S', 2LS) {JLS; ms 0 ms}

X {JL'S', msms ms'ms }(4L+—2)*'

X Ow, imo —mS') (g) ~2 (&gj)

ir;;(tl) =o;; (Eq. (43)). (60)

The cross section per unit solid angle for the
process in which groups I' and II' (for example,
2He' and 222') collide with random spin orienta-
tion and groups I' and II&' (iH' and iH') separate
along a line oriented at an angle 0 with respect
to the original direction is

TRANsMUTATIoN

Cross sections giving the number and angular
distribution of disintegration products may be
calculated on the same line as the scattering
probabilities considered above. The kernel of the
integral equation is in fact given by the previous

DISCUSSION

Validity of treatment

The connection which we have obtained be-
tween the scattering and disintegration cross
sections and a certain surface

D(Z; Ki, , K,) =0" This relation was suggested by Professor Wigner,
who has also been kind enough to clear up several points defined by the Fredholm determinant of an
in connection with Eqs. (55e) and (57)."Cf. remarks in discussion. integral equation, does not depend for its
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f(r)+~ S(r, P)f(P)dP=O (30')

may then, by Simpson's rule, be replaced approx-
imately by the set of linear equations

where

fi=f(~) f~=f(2&)

validity on the accuracy of what we have called
the method of resonating group structure. The
derivation, in fact, made use only of certain quite
general asymptotic properties of the solution of
the wave equation. Consequently, the same
method of treatment goes through also in the
case where that kernel is employed in the
integral equation (30) which will give the
rigorous solution of the problem in question-
i.e. , a kernel S, built up somewhat as (44), but
from the accurate wave functions of the in-
dividual groups and the accurate solutions of
the problem of X free neutrons and protons,
followed by the energy operator FI representing
individual particle rather than group interactions.
It appears feasible to carry out such a treatment
of the nuclear three-body problem in detail.

Numerical calculations

However the fundamental integral equation
is derived, the central problem from the com-
putational point of view is to evaluate the asso-
ciated Fredholm determinant, A diagonal ex-
pansion on analytic lines, following Eq. (33), is
not in general possible, although the possibility
is not excluded of finding a suitable analytic
approximation to S, such that the powers, S",
can be evaluated explicitly.

A straightforward numerical calculation offers
another procedure, which can always be carried
through to a finish. For a simple illustration, we
suppose that the system in question is to be
described by a single configuration, in which the
two groups have po spin. The range of values of
the intergroup separation, r =0 to r = r*, over
which the interaction departs appreciably from
its asymptotic value, is replaced by the set of
points r, =a, r2 2a, , r„=pa, the s——pacing, a,
being taken sufficiently small. The integral
equation

and

Sl

S///// P G/NaIIa// ~ (44//)

Here the matrix ~~G ~~
bears the same type of

relation to the function

G(r, P) = (2P/k'k) {Gl.(kr) FI,(kP)

+ctg KFr(kr) FI (kp) I (p & r)
(44///)

= (2/ /k'k) I G&(kP) F,(kr)

+ctg KFr(kr) FI.(kp) I (p) r)

that ~~S„„~~ bears to S(r, p), except for one detail.
Since G(r, P) has a kink (discontinuous first
derivative) at the point P =r, the Simpson coef-
ficients 2/3, 4/3, etc. , must be slightly modified
to make the summation (44") give the best
agreement with the integration of (44). Written
following the order of (30"'), the proper coef-
ficients for the calculation of the matrix G are

2/i/3, 4a/3, 2a/3, 4a/3, 2a/3, 4a/3, 2a/3,
9a/8 6a/8 9a/8 9a/8 17a/24 4u/3 2a/3
2u/3, 4a/3, 2a/3, 4a/3, 2a/3, 4a/3, 2a/3,

17a/24, 9a/8, 9a/8, 6u/8, 9a/8, 9a/8, 17@/8, etc.

In order for (30") to possess a solution, the
Fredholm determinant

1+Sii Si~

D(Z, K) — $2i 1+S22

~ . 1+S„„

must vanish. For stable states (8 &0, ctg K=0)
the Fredholm determinant is evaluated for one
energy value, then another, and so on; the curve
D(F) as a function of energy crosses the hori-
zontal axis at the eigenwerte. The case of
scattering (and in general, disintegration) is
treated in the same way.

Though laborious, it is quite feasible to deal
with determinants of the 30th order. The proce-

Sii = (2a/3) S(a, a), Sil ——(4a/3) S(a, 2a),

Si3——(2a/3) S(a, 3a), ~ ~ ~ (30"')

S» ——(2u/3) S(2a, a), ~, etc.

The kernel S may itself be calculated by a
similar procedure of approximation to Eq. (44):
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dure of evaluation is straightforward on a calcu-
lating machine:" The lowest row (d„i, d„q,
d„„) (we abbreviate 8;&+S;I,by d;&) is multiplied

by (d~ i, „/d») and subtracted from the

(p —1)th; by (d„&, „/d») and subtracted from
the (p —2)nd row, etc. When all elements in the
pth column are reduced to zero, (except d»), the
(new) second row is used in the same way to
eliminate all elements in the (p —1) the column

except d„, „~and d„~, „~,and so on. The value
of the determinant is given by the product of the
diagonal elements of the final matrix: D =d~~'d22'

~ . d»'. If this vanishes, the wave function
(vector) f may easily be found, if desired, by
recursive solution: fi ——1; f2 d—m—i'f—i/d22',

f3= —(d~i'fi+d32'f2)/d~a', etc. The smoothness
of the curve f(r) drawn through the values so
obtained furnishes a good check on the cal-
culations.

Modifications in procedure

So far we have assumed that the interaction
falls off rapidly. If it follows the Coulomb law
for large distances, then in the calculations we

may take it to be broken off at r = r*.The asymp-
totic form of the wave functions we obtain in
this way corresponds to zero field from r* to
we then fit the Coulomb functions on at r~, in
such a way'4 as to have the same logarithmic
derivative as those combinations of zero field
solutions described by the phase shifts E. This
procedure determines the phase shifts E' of the
solution for the actual field, measured with
respect to the solutions for a pure Coulomb field.
The scattering cross section is known" in terms
of X', for the case of elastic collisions with zero
spin, and may be derived for scattering and disin-
tegration processes involving groups with spin
along the lines described above. An alternative
procedure, using for FI. and Gl, the Coulomb
wave functions, would require more detailed
tables of these functions than are now available.

In the actual problems treated so far by the
method we have described, it appears to be a
general rule that the larger the number of par-

"Cf. James and Coolidge, J. Chem; Phys. 1, 834 (1933),
~4See John A. 1Atheeler, "Wave Functions for Large

Arguments by the Amplitude Phase Method, " Phys. Rev.
52, 1123 (1937)."Cf. Mott and Massey, reference 13, p. 275.

ticles involved, the more closely

Q IJ(iLSr;j L'S'p)fp(j L'S'p)d p
g'I, IS'

approaches to being the negative of fq(iLSr),
although of course the operator 8 &be, r;ass 8(r p)—
+Iq( ) is always positive definite. This be-
havior is connected with the large number of
nodes present in the total wave function
owing to its antisymmetry properties. In fact,
J'4*4'dr is very much smaller than the integralfx*xdr of any one of the (not antisymmetrized)
parts x (Eq. (36)) from which @ is built up, and
this comes to expression in the feature we have
mentioned. The appearance of the operator 8+I
in the denominator of the expectation value of
the energy has the consequence that calculations
are sensitive to the accuracy with whichfff*(r)[8(r p)+I(r, p—) jf(p)drdp is determined.
This would suggest that q =[b+Ijlf be intro-
duced as dependent variable, instead of f itself;
for p has the same asymptotic behavior as f
and gives fcp*(r) p(r) dr for the integral in
question. The method is known by which the
positive square root of a positive dehnite Her-
mitian matrix may be obtained, "but we do not
carry out here the consequences of this possible
improvement on the procedure we have already
described.

The' development above was given in detail
only for configurations consisting of two group-
ings. When three groupings interact, one approx-
imate mode of description is to regard the con-
figuration as composed of two groupings, the
internal wave function of one of which is in turn
determined by the method of resonating group
structure. More accurate, also more symmetric,
is the direct extension to three bodies of the type
of kernel we have used for two. Instead of the
functions FJ., Gl. of one variable, r, we must then
have a combination of functions of three vari-
ables r~2, r~3, r23 built up into a Green's function„.
for the "radial" motion of three free bodies, the
angular part of the motion having been separated
out by known" methods.

2' Cf. M. Born and P. Jordan, Elementare QNanters-
mechanik (Berlin, 1930), p. 69.» Cf. G. Breit, Phys. Rev. 35, 569 (1930),and especially
J. O. Hirschfelder and E. Wigner, Proc. Nat. Acad. 21,
113 (1935), where the corresponding separation of angles
is treated in the case of X bodies.
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By introducing a dependence of the individual
group wave functions on the intergroup dis-
tances, we get an approximation to the total
wave function which corresponds to better
values for the absolute energy than is otherwise
obtained. In some ways this modification is
analogous to a polarization effect, but it must be
remembered that the interaction between the
various groups is far too intimate for such a
simple change to make the total wave function
really approach in full detail to the accurate
solution of the given quantum mechanical
problem. Rather such a refinement is to be taken
in the spirit of the method of resonating group
structure, in which we try to build up a suitable
description of the whole system from what we
know of its parts, being guided throughout by
the variation principle. Use of a "polarized"
group wave function appears to be especially
suitable in treating such a problem as that of
proton-deuteron collisions. On the other hand
there are situations (as when the available energy
is large) where it is more convenient, and indeed
absolutely necessary, to take into account
excited group states in making the proper allow-
ance for the interaction between the various
groups (we use the word "group" here in the
extended sense employed throughout the present
discussion, in which there is no one to one cor-
respondence between a given group and definite
neutrons and protons picked out of the total
system). Analogy with the polarization problem
in atomic physics make it clear that explicit
dependence of wave functions on separation,
and excitation of higher states are to a con-
siderable extent even in the nuclear problem
equivalent ways of allowing for the same thing,
and indeed the mathematical treatment given

above indicated that it was practically impos-
sible to introduce both methods of description at
the same time in a consistent manner. The ques-
tion as to which excited states of the individual
groups are most important in the description of
the compound system is of course an important
one in the actual applications, and has received
so far only a very general kind of answer. "

A thoroughgoing treatment of collision proc-
esses for nuclei of medium and high atomic
weight in the detail we have mentioned in this
paper appears to be out of the question. The
considerations of Bohr" point rather to a statis-
tical approach, based on the analogy between
nuclear structure and the liquid state, as more
fruitful. For this reason a study of the detailed
correspondence between the two viewpoints
would be very valuable. In this connection the
importance of symmetry arguments has already
been pointed out. "

For sufficiently light nuclei, on the other hand,
the connection between nuclear forces and ob-
servations on collisions and transmutations can
be traced out with sufficient accuracy to make
possible definite conclusions about the inter-
actions involved. The method of resonating
group structure described above has been used
to treat the interaction between two normal
alpha-particles, " and is being applied to other
problems, "where further details will be given.

"Preceding paper."Niels Bohr, Nature 13'7, 344 (1936); also unpublished
lectures summarized in Science 86, j.61 (1937).

"To be published.
3'Four-particle problem: preliminary report, Hermon

Parker, Paper No. 3, Chapel Hill-Durham meeting of the
American Physical Society, Feb. 19—20, 1937.Five-particle
problem: Miss K. Way, University of North Carolina,
in progress.


