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A study of the transition between the H&+ molecule and
the corresponding three-body nucleus shows (1) that it is
useful to regard the system as composed of two parts
(heavy particle; heavy and light particles) between which
acts an effective potential; (2) that this potential depends
more and more on the relative velocity of the two parts as
the masses of the light and heavy particles approach
equality; (3) that the wave equation and the potential for
the relative motion are obtained in a consistent manner by
requiring that a certain form of approximate wave function
give the best possible representation of the motion of the
three particles, in the sense of the variation principle. This
wave function represents a state in which the system
resonates between the groupings atom-ion and ion-atom. It
is adapted to the treatment of the scattering of neutrons in
deuterium and is also used in the text to calculate the
binding energy of H'. Application of the same type of
approximate wave function to the description of nuclear
structure in general, gives rise to the concept of resonating
group structure. This picture regards the constituent neu-
trons and protons as divided into various groups {such as
alpha-particles) which are continually being broken and
reformed in new ways. Group theory gives information as
to which groupings are most important in describing a
particular state of a given nucleus. The interchange of
neutrons and protons between the groups is rapid. It is
largely responsible for the intergroup forces, but also pre-
vents one from attributing any well-defined individuality
to the groups except as follows: If the time required for a

particle to diffuse between two parts of the nucleus vibrat-
ing in opposite phase (in the language of the liquid droplet
model) is large in comparison with the period of the vibra-
tion, then the particles of the nucleus may be divided into
groups which preserve their identity long enough to make
possible a simple description of the nuclear motion in terms
of the relative displacements of these clusters. Arguments
are given to show that the diffusion condition is satisfied for
lo'w excitation energies. When the nuclear energy is higher,
the groups have significance only in providing a suitable
mathematical scheme to treat the nuclear motion (see
following paper). Allowed types of motion and energies for
low states of Be', C', and 0"are calculated in terms of the
relative motion of alpha-particle groups, using the methods
familiar in molecular structure. The modes of vibration are
closely related to those given by the liquid model of Bohr
and Kalckar, but many low levels are excluded on sym-
metry grounds, The general methods outlined here for the
description of nuclear structure are to a large extent inde-
pendent of the nature of the forces between elementary
particles. A discussion of the possible existence of many-
body forces is given (i.e., forces which cannot be described
by a,potential that is a sum of potentials involving two par-
ticles at a time). The observed variation of nuclear binding
energy with atomic number is found not to give sufficient
evidence from which to draw any general conclusion.
Electron positron theory indicates that a part of the nuclear
forces consists of many-body interactions.

'NDERSTANDING of certain features of
nuclear constitution has been gained by ap-

plying, with proper limitations, concepts native
to atomic structure. To these ideas we wish in the
following to add some points of view more closely
related to molecular structure. If atomic struc-
ture be characterized by a central force dominat-
ing the motion of almost independent particles,
and nuclear constitution, by those collective
types of motion which Bohr and Kalckar' liken
to the modes of vibration and rotation of a liquid
droplet, then the feature which distinguishes

' I am indebted to the University of North Carolina
for leave of absence, December 15, 1936 to March 15,
1937, to the Institute for Advanced Study, where part of
this work was done, for its hospitality, and to the other
members of the 1937 Washington Conference on Theo-
retical Physics for discussion of some of the results.

'N. Bohr and F. Kalckar, Kgl. Dansk Viden. Selskab,
in press.

molecular structure from these is its division of
the constituent particles into more or less well-
defined groups, between which it is a good ap-
proximation to say that inter- "atomic" forces
act. It is the usefulness, and limitations, of this
concept of group structure that we wish to study
in connection with the mechanical description of
the atomic nucleus.

THE THREE-BQDY PRQBLEM

We consider in illustration first the three-body
problem (Fig. I), because here the differences
between the treatments of atom, nucleus, and
molecule are not accentuated sufficiently that the
similarities escape notice. In both the atomic and
the nuclear systems, there is no one particle
which provides a dominating center of force; and
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introduction of a time average field to represent
the action of two particles on the third is not
satisfactory because the two speeds involved are
comparable. These dif6culties, which distinguish
the helium atom among other atomic systems,
are the same ones experienced in approaching the
description of nuclear constitution in general by
the Hartree central field approximation.

In the molecular three-body problem, on the
other hand, the rapidity of the electronic motion
in comparison with the displacement of the heavy
particles is known to allow an approximate sepa-
ration' of the system into (1) electronic motion
with fixed force centers and (2) slow nuclear
motion in the time average field determined by
(1). In contrast to the situation in the helium
problem, we have here a relatively simple basis
from which to approach the nuclear three-body
system.

As the mass of the light particle is gradually in-
creased in the transition from molecule to nucleus,
two new features reveal themselves. First, the
molecular potential acts not from nucleus to
nucleus but from the center of gravity of a pair
consisting of a heavy and a light particle to the
other heavy particle. Second, the velocity of
approach of these two parts of the system has
an influence on the interaction which grows as
the mass of the light particle is increased and its
speed becomes more comparable with that of the
intermolecular motion.

We shall find it possible to bring both of the
above facts into evidence by dividing the original
molecular potential into two parts:

V, an ordinary potential; and
Z, a velocity dependent potential, represented for

quantum-mechanical purposes by an integral operator. 4 In
addition, we introduce

~ To the order (m/M)&, m and 3f being electronic and
nuclear masses. M. Born and J. R. Oppenheimer, Ann. d.
Physik 84, 457 (1927).

4 A discussion of the quantum mechanics of velocity
dependent forces is given in Phys. Rev. 50, 643 (1936).
Cf. also J. H. Van Vleck, Phys. Rev. 48, 367 (1935), and
appendix of Ostrofsky, Breit, Johnson, Phys. Rev. 49,
196 (1936).A distinction must be made between possible

X, a vector with components X, F', Z, representing the
separation between one heavy particle (which, not stated t)
and the center of gravity of the other two particles;

/=it, s, f), simply a vector variable of integration,
which however is shown below to be interpretable as the
separation between the second heavy particle and the
center of gravity of the other two particles (see Fig. 1);and

p12, the reduced mass associated with the relative motion
of the two groups of particles composing the system:

Then the equation we use to describe the
integroup motion is

(5'/2p„) v'ii(X)+EP(X) = U(X)P(X)

+ "X(X, g)P(g)dg (1)

(an equation which is derived independently in
Appendix I). Rapid motion means many nodes
in P and a diminished contribution from the
integral; thus the velocity dependence of the
potential. Integration over g, X remaining con-
stant, is seen from the figure to represent a type
of averaging over the different internal configura-
tions of a pair consisting of a heavy and a light
particle. In the limiting case where the mass of
the light particle approaches zero, the average
difference between g and —X becomes smaller
and smaller. Thus, for fixed value of X, the func-
tion E(X, g) is different from zero in a more and
more limited range of values of g near the point
(= —X, and eventually becomes representable as
a delta-function:

E(X, g)~W(X) 8(X+)).
In this limit, the molecular potential is now

U(X)+ W(X); as in the customary treatment of
molecular binding, it shows no dependence on
velocity. The very deep narrow "trough" pre-
sented by the interaction kernel X(X, g) in the
molecular case, widens out as the mass of the
light particle is increased. In the nuclear limit,
the half-width of E as a function of )+X, so far
as this concept is definable, is of the same order
as the average distance between the heavy
particles.

The relation of molecular ideas to the nuclear
three-body problem, brought out by the intro-
duction of velocity dependent forces, is more

velocity dependence of the forces between the fundamental
particles themselves, and the variation of intergroup forces
with velocity, of which we speak here.
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easily visualized with the help of the concept of
resonance. Just as the general diatomic molecule
is said to resonate between a condition of ionic
binding and one of atomic binding, so the three
particles in the nucleus may be regarded as
spending part of their time in the grouping (13)2
and part in the configuration (23)1. In the cor-
responding mathematical treatment, the nuclear
wave function, @(r&, rm, rq), is approximated by a
linear combination of terms associated with the
two groupings:

3IIr,+mrs'
@=/( r2—

)
C (r~ —r&)

m+m )
3IIr, +mrs'

WP( rg— ~C (r,—r2). (2)
~+m )

—p(2 —1)'j. Second, the form of the wave func-
tion is adapted to the description of excited states
of the nucleus as well as its ground level; in par-
ticular, collision processes, involving states in the
continuous spectrun, fall under this classifica-
tion. Third, the method has the disadvantage of
not explicitly taking into account the effect of
polarization of one group by the other. To be sure,
we could introduce into the internal group wave
function C of (2) a dependence on the position of
the third particle, but the mathematical treat-
ment would become unduly complicated (see
discussion at end of following paper). On the
other hand, for certain states of the total system,
the two terms of (2) are already correlated in such
a way as partially to allow for the action of
polarization.

The first product represents light particle 3
bound to heavy particle 1, and heavy particle 2

interacting with the center of gravity of 1 and 3.
The sign joining the two products depends upon
the kind of statistics obeyed by the heavy par-
ticles. As a starting point for the treatment of the
molecular and nuclear three-body problem, Eq.
(2) is independent of special assumptions as to
the nature of the binding forces.

The concept of resonating group structure
leads directly to the introduction of velocity de-
pendent forces. If we require that a wave function
of the form (2) give the best possible representa-
tion of the nuclear motion, in the sense of the
variation principle, then we find indeed exactly
the wave equation (1), containing a potential,
part of which is expressed in the form of an in-
tegral operator. The proof of this fact and the
explicit calculation of the interaction between the
two groups of the system is carried out in Ap-
pendix I, where the relationship to the Heitler-
London procedure is also traced.

Three features characterize the method just
described for treating nuclear structure. First, it
supplies a rational basis for the customary type
of variational calculation of nuclear binding
energies. The calculation in the appendix, for
example, gives —6.4 mMU (milli-mass-units) for
the binding energy of H', in contrast to the
value —5.6 mMU obtained with the same force
constants but a two parameter variational func-
tion of the form exp [—v(3 —1)2—v(3 —2)'

RESONATING GROUP STRUCTURE

The method of resonating group structure
shows a new characteristic when applied to the
nuclear four-body system. In contrast to the pre-
ceding example, which shows only a single type
of grouping, the alpha-particle may be divided
into two deuterons, triton and neutron, and He'
plus proton. The wave function is therefore ex-
pressed as a linear combination of six terms, of
which the first corresponds to one possible group-
ing into deuterons, and the second is its mate,
with sign chosen as in (2) so the two form a
combination antisymmetrical in neutrons and in
protons; the other four terms are divided into
two similar pairs, associated with the second and
third types of grouping. The relative importance
of each term may be regarded as determined by
the fraction of the time the whole system remains
in the corresponding configuration. Three simul-
taneous wave equations are now needed to de-
termine the relative motion of the groups in the
three different configurations. These equations
may be used to describe both disintegration proc-
esses and elastic scattering. For the detailed
calculations for the nuclear four-body problem,
reference is made to the work of Parker. '

The general mathematical details of applying
the method of resonating group structure to the
description of the motion in a nucleus containing

~ H. Parker, Phys. Rev. Sl, 683 (1937) and M. A. thesis,
University of North Carolina (1937).
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many neutrons and protons are given in the
following paper. Below, however, we are inter-
ested in the question: Which of the unmanage-
able number of possible types of grouping into
which a large nucleus may be divided are most
suited to describing approximately the actual
state of the system?

Characteristic of the heavy nucleus is the close
binding of the constituent particles. Viewed
classically, the motion of a typical particle is a
rapid zigzag emotion superimposed on a general
random drift. The velocity of the motion of
general drift is so low that it contributes little to
the total energy. The rapid motion with respect
to nearest neighbors, however, , represents the
same type of exchange phenomena which is re-
sponsible for the binding between the two groups
in the three- and four-body problems. The local
nature o'f the binding in a heavy nucleus can for
our purposes be best described by a division into
groups of contiguous particles, between which
act intergroup velocity dependent forces.

Let us pick out of all the particles in the nu-
cleus those neutrons whose spins at a certain
instant" are all +~. The Pauli principle assures
us that the wave function of the nucleus is anti-
symmetrical in these particles and hence has a
node wherever two of these neutrons approach
each other. To make the kinetic energy of the
system as low as possible, the various nodes space
themselves as far apart as is consistent with con-
siderations of potential energy. Close to each of
the neutrons just mentioned, a neutron with
opposite spin finds a position of lowest potential
energy, and similarly protons of both spins tend
to follow the structural plan of the original neu-
trons. This follows most directly from our present
information on nuclear forces: Unlike particles,
and like particles of opposite spin, attract each
other when the wave function is symmetric with
respect to interchange of their coordinates, but
not when it is antisymmetric. The configuration
of the nucleus which we have just described,
represents a grouping into alpha-particles, but
alpha-particles of continually changing indi-
viduality. The interchange of neutrons and pro-
"In mathematical terms, we suppose the nuclear wave

function to be known as a function of spins and coordinates;
we give the spins of the various particles fixed values and
then investigate the dependence of the wave function on
coordinates.

tons between the groupings, in fact, furnishes the
bonds that tie the groups together.

The usefulness of the group structure picture
for a description of nuclear vibration and rota-
tion, along molecular lines, depends on the extent
to which the groups remain well defined during
the period of one vibration. For this reason, ap-
plication of the method of resonating group struc-
ture to the nuclear three-body problem, although
as suitable there as the idea of resonance is in the
case of molecular structure, is not to be justified
on the basis of any clear-cut physical division of
the system into deuteron and neutron, any more
than the molecular treatment can be founded on
a sharp distinction between atomic and ionic
binding. On the other hand, division of a large
nucleus into a few groups, each containing many
particles, represents an extreme case where the
identities of the clusters remain relatively sharp
even after several periods of vibration. It is just
this fact that Bohr has recognized in his division
of nuclear excitation into rotational energy and
energy of volume and surface tension vibrations.
We shall see that many of these modes of excita-
tion find a simple representation in terms of the
motion of alpha-particle groups.

ALPHA-PARTICLE GROUPS

Before describing any mode of nuclear motion
in terms of the displacements of alpha-particle
groupings, we require that the following two con-
ditions be satisfied: (a) the half wave-length of
the disturbance must be larger than the group,
and (b), the period, r, of vibration must be
shorter than the average interval, t, required for
a moving alpha-particle to exchange a neutron or
proton with a part of its surroundings moving in
the opposite phase. The quantity t is a property
of the mode of vibration in question, and may be
termed "characteristic diffusion time:" it is in
order of magnitude the time required for a par-
ticle to diffuse a distance, p, of one-half wave-
length: p=X/2.

There appears to be no method by which to
calculate the characteristic diffusion time quan-
tum mechanically without entering into the de-
tails of the problem. An estimate on the basis of
the classical diffusion theory is limited in its
validity to energies much higher than those in
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n—V. :2X10 "sec., (6)

which is in general considerably larger than the
classical estimate of the characteristic diffusion
time.

In the above classical estimate of the diffusion
time the interaction between the particle in ques-
tiori and its neighbors was brought into evidence
only through the assumption of an effective mean
free path between collisions. But when the aver-
age energy of the particle is small in comparison
with the height of the surrounding potential
barriers due to nearby particle, there is only a
small probability that the particle will, by Huc-

6 Following Lord Rayleigh, Scientific Papers, Vol. I
(Cambridge, 1899), Eq. (40), p. 401. I am indebted to
Professor Bohr for reference to this paper.

~ Cf. for example H. Bethe, Rev. Mod. Phys. 9, 69
(1937), Eq. (314).

which we are interested; namely, the following
conditions must be satisfied: (1) the uncertainty
in the position of the particle due to its finite
wave-length must be less than the effective mean
free path, Xd, for diffusion; (2) the average mo-

mentum transfer per collision must be larger than
that uncertainty in the momentum of the particle
which is conditioned by our knowledge of its
position; (3) potential barriers surrounding the
given particle, due to interaction with its neigh-

bors, must be low in comparison with the avail-
able energy of the particle. In spite of its limita-
tions, such an estimate is instructive. The
classical equation gives

p'= (Xdv/3)t (3)

for the mean square distance of diffusion in terms
of the average speed, v, of the particle. We insert

p =X/2, where X is of the order 2v g/n for the nth
characteristic mode of surface tension vibration
(R =nuclear radius), and using Xd 2&(10 "cm,
3E„v'/2 25 Mev, R 2&&10 "A& cm, we obtain

t n—'A&X10 "sec. (4)

The period of the surface oscillation, on the
other hand, is given by'

T= 2v/Cd,
id'= n(n 1)(n+—2) (G/S) (47r/3M+), (5)

where G/S is the surface tension and A the
atomic number of the nucleus. Using for G/S the
value estimated' from the empirical variation of
binding energy with atomic number, we find

tuations in the distribution of energy, acquire the
amount required to surmount the ridge. Eyring
has shown that diffusion coe%cients can be calcu-
lated by the same methods which are used in
treating other absolute reaction rates. The prob-
ability that the required amount of energy be
concentrated on one particle is represented in
Eyring's formula by the factor e-'~~, where e is
an activation energy associated with the height
of the barrier. Allowance must be made also for
the possibility that the particle will penetrate
through the potential hill. Eyring has shown that,
even in ordinary liquids (diffusion of D20 in H&O,

for example) the value of the activation energy
has an important inHuence on the rate of the
diffusion; and it is dominating, of course, for a
solid body.

In the nucleus, the local potential barriers en-
countered by a typical particle may be estimated
very roughly to be of the order of 30 Mev. The
typical particle has a zero-point energy of
possibly 20 Mev and in addition a fluctuating
fraction of the nuclear excitation energy. It is
essentially only this latter energy which is avail-
able for concentration, by chance, on the particle
in whose diffusion we are interested. We would
estimate, then an activation energy of roughly 10
Mev. A more plausible way of stating this is as
follows: the binding energy per particle is 10
Mev; the, saturation character of nuclear forces
means that the given particle is bound as tightly
to its close neighbors as to the whole of the nu-
cleus; hence an energy of the above order of
magnitude is required to overcome their at-
traction.

The nuclear excitation in ordinary transmuta-
tion experiments is ordinarily never enough to
raise the nuclear temperature, k'1, above 2 Mev.
As the activation energy appears to be consider-
ably larger than this amount, we have to expect a
very strong dependence of the rate of diffusion
upon excitation energy. When the nuclear excita-
tion is low the simple classical treatment for this
reason undoubtedly overestimates the rate of
diffusion (cf. Eq. (4)) very considerably. It seems
safe to say that actually the characteristic time
of diffusion, t, is then definitely smaller that the
period of nuclear vibration, r, (Eq. (6)) and that
the condition is satisfied for applying the simple

8 H, Eyring, J. Chem. Phys. 4, 283 (1936).
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group structure picture of the nucleus mentioned
above. With higher and higher nuclear excita-
tion, on the other hand, the inRuence of diffusion
becomes progressively stronger, and predictions
based on a simple group structure treatment
gradually lose close correspondence with the
actual properties of the nucleus.

In accordance with the preceding considera-
tions on the special stability of alpha-particle
groupings and on the inAuence of diffusion, we
shall use a simple alpha-particle model on mo-
lecular lines to describe low states of excitation of
the nucleus. It is necessary to distinguish between
such a model, which must assume the forces be-
tween alpha-particles to be given beforehand,
and a direct application of the method of resonat-
ing group structure, which starts out from 6rst
principles, and only introduces the alpha-particle
concept in setting up a suitable approximate wave
function for the nucleus. The two treatments are,
of course, closely related.

The wave function of the whole system has the
proper antisymmetry when written in the form

Here 4 is the wave function for a single alpha-
particle, completely antisymmetrical' with re-

TABLE I. Number of allowed vibration-rotation levels for
three alpha-particles, determined from symmetry characters
of 4z and Pv

n1=0, 1,2, "n2=. 0 1

J K Character a y, b n, 7, 8 a, 8, y, b a, 2(y, 6)

0 0
1 1

0
2 2
2 1
2 0
3 3
3 2
3
3 0

P
y, 8

v~ ~

n, P

1 0 1
0 1 1
0 0 0
0 1 1
0 1 1
1 0 1
1 0 1
0 1 1
0 1 1
0 0 0

For simplicity, we treat neutrons and protons as
different spin states of the same particle. See Heisenberg,
Rapport du VII ' Congres Solvay (Paris, 1934), for proof
of equivalence to the treatment in which two different
types of particles are used.

F1+2+3+4
@(1, N)= P I'

a1.t

5+6+7+8
~C (1234)4 (5678) . ~ . (7)

spect to interchange of any two particles;
F(Xr, Xir, ) is a symmetric function of the co-
ordinates of the centers of gravity of the various
oo-particIes (4Xi = ri+ro+r, +r4 ——1+2+3+4);
and the sum runs over all those even permuta-
tions of the N particles which give really different
distributions into alpha-particles. It is in Ii that
we are interested; it describes the rotation and
vibration of the framework of alpha-particle
groupings. We write I" as the product ipsipr of a
rotational and vibrational wave function, and
apply the results of molecular theory to deter-
mine the allowed rotational and vibrational
quantum numbers for the nuclei Be, C" and 0".

LOW LEVELS OF BERYLLIUM) CARBON AND

OXVGEN"

A. Allowed states

a. Two a/pha parti cles -The rot.—ational energy
is given by the well-known expression

Zs ——(h.'/2A) J(I+1). (8)

Here the moment of inertia, A, is somewhat
greater than the moment, I, of a spherical
nucleus of the same density and mass: A =I/g
defines a dimensionless number g & 1. iPz is sym-
metric for even J, antisymmetric for odd I;Pr is
symmetric for all vibrational quantum menbers;
hence only levels with J=O 2 4 ~ are allowed.
As a matter of fact, owing to the stability of Be',
only the lowest vibrational level has a life long
enough to be observable. It seems likely that ro-
tational levels, too, above J=4 are too much
widened by dissociation to be of interest. We

— therefore consider only the three levels

E=Eo, Eo+6g(ho/2I), Eo+20g(PP/2I).
(J=0, 2, 4). (9)

b Three alp. ha particles -Negle. c—ting for the
moment the inRuence of vibration on rotation,
we consider the centers of gravity of the alpha-
particles located at the vertices of an equilateral
triangle. The moments of inertia about the axis
of symmetry and about a line in the plane of the
triangle we write, respectively, C= I/go and
A =I/gi, where I is the moment of inertia which

"Considerations on the influence of alpha-particle
symmetry upon allowed nuclear levels had occurred to
Professor E. Teller independently, and were mentioned
to the author in conversation.
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TABLE II. Symmetry characters of nave functions belonging
to Ne mbrations ~2 and coa.

0 A1 (1) Fg (3) A1+F+Fg (6)
1 B {2} F1+F2 (6} A1+A2+2F +F1+F2 (12)
2 As+F. (3) F1+2Fg (9) 2A1+Ag+3F-+Ft+2F2 (18)
3 Ag+Ag+Z (4) 2Fx+2Fa (12) 2A1+2A2+4F+2F1+2F2 (24)

would belong to a spherical nucleus of the same
density and mass. g2 and gi depend on the dis-
tribution of mass; for an ellipsoid of revolution
with major axis p times the minor axis, g2

——p ~/3,

g&=2/(p"'+p 4"). The rotational energy of the
system is

Es = (h'/2I) Lg&J(/+1) —(gl —g&)E'j, (1O)

where X is the quantized projection of the total
angular momentum, J, along the symmetry axis.

Two types of vibration are possible: a doubly
degenerate vibration (cu2), in which one side of the
triangle shrinks and at the same time moves
away from the third alpha-particle; and a dila-
tation vibration (co~) in which the triangle ex-
pands and contracts isotropically. The latter
vibration is symmetric in the three alpha-
particles. The symmetry character of the wave
function of the system therefore does not depend
on the vibrational quantum number n&. On the
other hand, associated with any value of e2, there
are ng+1 different states having the vibrational
energy (np+1)ha&~ For ev. en values of n&, one of
these states" is symmetric (n) and the others
divide up into n2/2 pairs of states having doubly
degenerate symmetry character (y, 8). For odd
values of ng greater than 2, we have in addition
a completely antisymmetric state (symmetry
character P).

We combine a given vibrational state with a
rotational state of the symmetry character
necessary to make the total wave function com-
pletely symmetrical in the three particles. "This
has been done in Table I. Example: For any
value of ni, and for n2 ——4, the rotational state
J=i, X=o is not allowed; but two states J=1,
K= 1 exist. (Each splits into 2J+1 = 7' states in

'0 Here and below we follow the terminology and use
the results of Hund, Zeits. f. Physik 43, 805 (1927'},
presented in convenient form by Dennison, Rev. Mod.
Phys. 3, 340 (1931).

"The combination rules are given in simple form by
Dennison, reference 10.

J
0
1
2
3

5

Character ~

F+F
A+2F
A+F+2F
F.+3F

0 1 0 0(0 1 0 0 0 0
0 0 0 1 0 1 0 0 1 1000112 1111
0 1 0 2 0 3 0 0 2 2
0 1 0 2 1 4 1 1 2 2
0 0 0 3 1 4 1 1 3 3

0 1 0 0 1 1
0 0 1 2 0 0
1 1 1 2 1 1
0 1 2 4 1 1
1 2 2 4 2 2
1 1 3 6 1 1

~~ We use here the notation)n and results of L. Tisza on
the symmetry of the vibrations of polyatomic molecules,
Zeits. f. Physik 82, 67 (1932).

a magnetic Geld!) These two states have the
same energy until we allow for the coupling of
vibration and rotation. Neglecting this and
similar re6nements, we have

E=EO+Es(J, X)+noh(og+n2ha)2 (11)

for the energy of C".
c. Four a/pha-particles. —The system has

tetrahedral symmetry and the following types of
vibration occur: a single vibration (~~), corre-
sponding to isotropic dilation of the nucleus; a
doubly degenerate vibration (cv2) in which the
alpha-particles are paired into two dumbbells
twisting with respect to each other; and a triply
degenerate vibration (aoa) in which one dumbbell
shortens, the other lengthens, but no tipping
occurs. In addition there exists the possibility
that one alpha-particle will push through or
around the other three and invert the pyramid.
This motion is not associated with a new degree
of freedom but there is a 6nite probability for it
to occur when the amplitudes of the above nine
vibrations are as large as they are in the nucleus.
Splittings, AE=2e, will occur in the energy level
system proportional to the frequency with which
such inversions occur.

The wave function representing a particular
one of the three modes of vibration belongs to one
of the 6ve representations'2 of the tetrahedral
rotation reHection group:

A~, function unchanged in sign by any rotation or reHec-
tion.

22,. only reHection at a symmetry plane changes the sign
of the function.

Z; the function is paired with another; neither is altered
by rotation about a twofold axis; other operations
transform the two functions among each other.

Ii1', function paired with two others; transform among
each other for all operations of the group; character
of reHection in a plane drawn through two alpha-
particles is —1.

I"g, like I'1, except the reHection has character +1.
TABLE III. 2/lowed states for four a/pha-particles.

e1 =0,1, ." (es,n3) = (0,0) (0,1) (0,2} (1,0) {1,1) (2,0) (2,1) (3,0}



1090 JOHN A. WHEELER

The character of the vibration ~& is A& (sym-
metric) for all values of rii, and thus has no in-
fluence on the symmetry of the total wave func-
tion. Table II gives the types of vibrational wave
functions occurring for any given state of excita-
tion of co2 and co3, thus, for n~=n~, n2=0, n3

we have a single symmetric vibrational state, a
doubly degenerate state, and a triply degenerate
state of type I'2, making 6 different wave func-
tions altogether, provided we consider only small
amplitudes of displacement. But for large ampli-
tudes, inversion occurs, and a wave function will

or will not change sign according as it belongs to
the representation A~ or A2 of the inversion
operation. A function of the latter type possesses
one additional node and therefore has an energy
slightly higher than one of the type A2. Recalling
that A2A& ——A2, A2E=E, A2J'"2 ——I"~, we therefore
actually obtain for n&=n&, n2 ——0, n3=2 six energy
levels, consisting of three close pairs: A~, A2,
E, E; Jig, Ii~, the first member of the pair having
in each case the lowest energy.

Vie now combine the vibrational wave function
with the rotational function to obtain a state
completely symmetric in the four alpha-particles.
Table III gives the number of such allowed
states for any value' of nj and the tabulated
values of n2, n3, and the rotational quantum
number J. Example: For ni ——ni, n2 ——0, n3 ——1,
J=2, we have one allowed level (which splits
into 2J+ 1 in a magnetic field); this level is sym-
metric with respect to inversion of the tetra-
hedron, and therefore has an energy slightly less
(cf. minus sign in table) than it would othereise
possess. Neglecting interaction of rotation with
vibration, we have for the energy of 0" the fol-

lowing expression:

E=ED+(h'/2I) J(J+1)+nihcui+nnhcu2
+n3hco~ae (12).

If, in the example, we had had n2 ——1, ns ——0, we
should have had the plus sign as well as the
minus sign occurring in the energy expression

(e proportional to frequency of inversion).

B. Relation to the treatment by Bohr and.

Kalckar
u. Types of motion Bohr and K.

—alckar" divide

'3 N. Bohr and F. Kalckar, reference 2. I am indebted
to Professor Bohr and Mr. Kalckar for valuable discussions
of the liquid model of the nucleus.

the nuclear motion into rotation and volume and
surface vibrations of the nuclear material. They
calculate the frequency of these vibrations as for
a fluid substance. The legitimacy of this treat-
ment depends upon the extent to which diffusion
can be neglected during the period of one vibra-
tion, which co'ndition is also essential to the con-
siderations in the preceding section.

The modes of vibration of the fluid model bear
a close relation to those discussed in A from the
alpha-particle point of view, but characteristic
diR'erences are present due to the clustering
which we have attributed to the nucleus. For
example, the first surface tension oscillation,
n=2, represents a motion in which the nucleus
shrinks at the equator and expands at top and
bottom. The degeneracy is 2n+1 or S-fold, cor-
responding to the diferent possible orientations
of the pole of the motion. On transition to the
alpha-particle picture, say for 0", three of these
vibrations go over into the first excited level

(n~ ——1) of &v~, in which the tetrahedron shrinks
about a line which is normal to both a twofold
and a threefold symmetry axis, and at the same
time expands along this line. The other two
surface tension oscillations go over to the level
n~ ——1 of ~2, in which the flattening of the nucleus
is brought about by the twisting of the two
dumbbells towards the same plane (see Fig. 3).
Similar considerations hold for other levels. It is
to be expected that the actual position of the
low nuclear levels which are observed will lie
between these two extremes.

Once the connection is established between the
types of motion characteristic of the liquid and
the alpha-particle models, it becomes clear that a
great many of the levels predicted by the former
treatment have been excluded on symmetry
grounds in the latter. For example, when the
nucleus 0" is in its normal vibrational state, all
values of the rotational quantum number,

'J, are
allowed according to the homogeneous drop
model, whilst we find that the permitted levels
are limited to J=0, 3, 4, 6, ~ . Even those states
that occur have a weight much lower than pre-
dicted by the semi-classical model (2J+1=7
for J=3 as compared with (2J+1)'=49 for the
same value of J).The physical reality of the re-
strictions which symmetry puts on the energy
level scheme depends upon the extent to which
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NUCLEUS

Be'

016

/

AG) g

(5.2)
2.9g
2 +30

2.06
1.15 1.63

Los

1.9
1.54
1.33

k&/2I

0.41
0.21
0.13

'4 This is not true for the statistical weights, however."It is the intention in a later paper with E. Teller to
extend these considerations to the low energy levels of

the identities of the alpha-particles are preserved
during the course of the motion. The higher the.
energy level, the greater is the amount of diffu™
sion which occurs, during one period of vibration,
between parts of the system moving in opposite
phase, and the more the symmetry restrictions
break down. The influence of symmetry con™
siderations on the energy level system, it now
becomes clear, is in actual fact only one of degree
rather than one of kind. "The types of low levels
which were excluded on the alpha-particle pic-
ture are to be found in the energy spectrum, but
pushed upwards by some millions of volts from
the position predicted by the treatment in terms
of a homogeneous classical liquid. Those modes
of motion which are forbidden on the alpha-par-
ticle picture can attain the required antisym-
metry in neutrons and protons by modifications
in the motion equivalent to excitation of one of
the alpha-particles or to other divisions of the
neutrons and protons into clusters (i.e. , 5+3
+4+4 instead of 4+4+4+4). Th'e excitation
energy associated with such changes is large in

. proportion as the alpha-particle type of grouping
is well defined. On the other'hand, for volume and
surface tension oscillations of progressively
shorter wave-length, the definition of the group
structure in the nucleus becomes less and less
distinct under the influence of diffusion of neu-
trons and protons between parts of the nucleus
moving in opposite phase.

To summarize, we may divide the nuclear
energy level spectrum into two parts. In the first,
extending from the ground level up to an excita-
tion of perhaps four to eight million volts, the
effect of the nonhomogeneous structure of the
nucleus is to modify the types of motion pre-
dicted by the liquid model and in addition to
push to higher energies many of the levels which
on the classical model would be low lying, "but

TABLE IV. Normal @iterations of Be', C", and 0", and
constants of rotational energy, using "large radius" for
nucleus. (Energi es in thousands of a mass unit. )

which cannot be described quantum mechanically
as being symmetric in terms of alpha-particles
or similar stable structures. In the second region
of the spectrum, the group structure becomes
more and more washed out and the liquid model
should give a progressively more correct picture
of the nuclear excitation. We are, in fact, ap-
proaching the region of high quantum numbers
where, according to the correspondence principle,
the quantum-mechanical description approaches
the classical treatment, and the predictions of the
liquid model become valid to the extent that any
system of classical particles can be replaced by a
continuum.

b Vibr. ation frequencies and other constants.
Comparison with the theory of Bohr and Kalckar
now gives a control with which to check the
simplest assumption we can make regarding the
various vibrations of the alpha-particle model.
In default of a more satisfactory treatment (cf.,

however, Section E below) we assume, namely,
that a reasonable approximation is obtained by
calculating the characteristic frequencies as if
quasi-elastic central forces acted between the
alpha-pa, rticles. (In accordance with the satura-
tion character of nuclear binding, we do not as-
sume that these "equivalent forces" between
alpha-particles are the same within different
nuclei. ) Using V(r) = V(ro)+k(r —ro)'/2 for the
effective potential between alpha-particles, we
readily find for the vibrations of C",

co~'(dilatation) =3&(k'/4M),
~2'(tipping) =(5)'(k'/4M)'

and for 0",
(13)

caq" (dilatation) =2(k"/4M) &,

&vu" (twisting) = (k"/4M) &,

cats" (flattening) =2&(k"/4M)&, (14)

where M is the proton mass. We obtain an order
of magnitude estimate for k by equating
(k/2) (R/2)'(R =nuclear radius) to the energy re-
quired to break an alpha-alpha bond. Allowing
for the share of the zero-point kinetic energy"

heavy nuclei,
'

in connection with the problem of nuclei
having the same atomic number and atomic weight but
di8'erent properties (such as distinct half-lives)."In view of the roughness of potential approximation,
it does not seem justifiable to attempt to make a more
detailed estimate, allowing for the difference in the zero
point energies of the nuclei A and A —4 and for the
di8'erent state of internal binding of a free and a bound
alpha-particle.
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belonging to one alpha-particle, we obtain

2 (O'R"/8) —h(cog'+ 2 (v 2') /6
8.0080+4.0040 —12.0043 (MU),

3 (O"R'"/8) —h(s& i"+2 ~g"+3a)g")/8
12.0043+4.0040 —16.0000(MU), (15)

whence, with R'=4 1X10 ' R"=5.2X10 '

we find the vibrational excitation energies given
in Table IV. For comparison, we give the energy,
h~„of the lowest surface-tension vibration
(n=2) of the liquid model, as calculated from

Eq. (5), using for the surface tension the value
estimated from the empirical variation of nuclear
binding energy with atomic number (Bethe,
reference 7, Eq. (314)). As was to be expected
from our considerations on the transition between
the liquid and the alpha-particle model, m, for
oxygen lies between co2 and ~3. The favorable
comparison indicates a general agreement be-
tween two quite different methods of estimating
the nuclear surface tension.

We obtain the moment of inertia of the nucleus
of atomic weight A from I=(2/5)3IAR'. Using
units e'/mc'=2. 80 X 10 " cm for length and
mMU for energy, we have

O'/M' =5.56,

and

O/2I= (5/4)5. 56 (2.80X10 "/2.05X10 ")'A
= 13.0A —"'mMU (milli-mass-units) (16)

as given in Table IV. A rough estimate of the
Aattening of C" is long diameter = 1.5 times short
axis, whence the form factors g~

——1.06, g2
——0.76

(Eq. (10)). Similarly, we estimate for Be' long
axis = 1.5 times short diameter, g =0.80 (Eq. (9)) .
The uncertainty in the g's is unimportant com-

pared to that of I:a 30 percent decrease of the
nuclear radius from R=2.05X10 "A"' increases
O'/2I by a factor of two.

c. Dissociation. —The mean square displace-
ment of a harmonic oscillator of circular fre-

quency co and equivalent mass nz, when in the
nth state of vibration, is known to be given by

(x')A„——(m+-') (O'/m) (A(o)
—'. (17)

» In default of any certain way of deciding between
alternative theories of nuclear radii, we use throughout
this paper for definiteness the values given by Bethe,
Rev. Mod. Phys. 9, 166 (1937). It appears that the most
reliable estimate of nuclear radii will be obtained from
observations on the spacing of low rotational energy levels.

If we assume a quasi-elastic character for the
alpha-particle oscillations of C", we find for the
mean square displacement of one alpha-particle
from equilibrium the expression

(X')A„——(2n~+1)(0.282)'+(2n2+1)(0.336)' (18)

(units e'/mc' = 2.80 X 10 "cm for distance). The
frequencies ~& and or& are incommensurable, how-

ever, and when the two vibrations happen to be in
phase with respect to the radial motion of one
alpha-particle, we shall have

(8R')'A„——(2n~+1) &0.282+(2n2+1) &0.336. (19)

Energy enough for disintegration being available
in the nucleus, the probability for the emission of
an alpha-particle will be of the order of magnitude
of the number of times per second that bR exceeds
the range of nuclear attraction, provided that the
energy is still not so high that diffusion completely
destroys the identity of the alpha-particle during
the period of vibration. In particular, this condi-
tion requires that the available energy of the
system be small in comparison with the amount
required for the release of a neutron or proton.

Although the range of validity of the simple
alpha-particle description of disintegration is
much limited for nuclei of light and medium
atomic weight by the energy restrictions above,
nevertheless the resemblance to the evaporation
concept used in the liquid model is apparent.
Thus, on both pictures, emission of a particle from
the nucleus occurs when by chance the amounts
of kinetic energy associated with the various
modes of collective motion of the nucleus have
become concentrated on one particle to the extent
required to break its binding to the nucleus.

For heavy nuclei, the conditions are improved
with respect to the applicability of the alpha-
particle picture of disintegration, above all when
spontaneous disintegration can occur. In the
latter case, each alpha-particle already has the
energy required for release, and penetration
through the potential barrier is the factor which
determines the nuclear lifetime. Whether ob-
served disintegration constants can be used in
conjunction with the Gamow penetration formula
to calculate nuclear radii is, of course, another
question, in view of the ambiguity due to the
size of the alpha-particle itself. Application of the
method of resonating group structure should
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FIG. 2. Low levels predicted for the nucleus C". Exci-
tation energy in thousands of a mass unit. JA gives total
nuclear angular momentum. At left, the states given by
simple alpha-particle model. Labels refer, respectively, to
quantum numbers m& and n& for vibration and X for
rotation about symmetry axis of the triangle of alpha-
particles. Weight of levels is 2J+1. Arrows show corre-
spondence with dotted levels calculated by Hartree-Fock
procedure (Feenberg, Wigner, Phillips). At right, levels
given by the liquid droplet model. Weight given by number
in parenthesis times (2J+1)'. Labels refer to degree of
excitation of the surface tension vibrations m=2, 3, 4, 5,
respectively.

make it possible to eliminate this ambiguity by a
mathematical treatment which goes beyond the
Gamow model and treats the disintegration from
first principles (cf. in this connection a following

paper on the interaction between two alpha-
particles).

It does not seem possible, however, to justify
the so-called "many-body" picture'~ of spon-
taneous alpha-particle disintegration. In this
treatment, the probability of penetration through
the potential barrier is multiplied by a factor
which is termed "probability for concentration of
energy on an alpha-particle, " and is identified in
order of magnitude with the similar factor en-
countered in the theory of the disintegration of a
nucleus which is normally stable but has been
excited. The two cases are actually quite differ-
ent. In the latter, it is essential that the remainder
of the nucleus lose energy if one particle is to
have energy enough to escape. We must allow
for the time required for the various degrees of
freedom to concentrate the energy on the particle
in question, by a favorable fluctuation. In the
former case, the vibrations associated with the
various modes of collective motion in the nucleus
are all. in their lowest state; the zero point energy

"'For details, cf. H. Bethe, Phys. Rev, 50, 977 ($93&).
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is distributed almost uniformly among the vari-
ous particles; and we do not have to wait for the
concentration of energy to occur.

C. Energy level spectrum

a. Beryl/imns. —With the values of the con-
stants given above, we have E'=0 33J(J+1)for
Be . The alpha-particle treatment therefore pre-
dicts a normal 5 level (J=0), a D state(J=2) at
an excitation of 2.0 mMU (milli-mass-units),
and a G level (J=4) at 6.7 mMU above the
ground level. The first excited level has been ob-
served' to lie at 3.0 mMU, and to have a width
of 0.8 mMU. There also exists evidence" for an
even broader level at about 10 mMU, which it
seems reasonable to attribute to J=4. The same
normal and excited levels are predicted by Feen-
berg and Wigner" and their energies are calcu-

"Oliphant, Kempton and Rutherford, Proc. Roy. Soc.
150, 241 (1935),

"See paper on the scattering of alpha-particles in
helium, to be published in the Phys~cat Review.

'0 E. Feenberg and E. Wigner, Phys. Rev. 51, 101
(1937); cf. also E. Feenberg and M. Phillips, Phys. Rev.
51, 597 (1937).

5 ' s 2. 10+01 2 3 ' 5

p,o,o- 0.0.0(0

FrG. 3. Low levels of O'. At left, according to simple
alpha-particle model; at right, on liquid droplet model.
Numbers at left are vibrational quantum numbers for
dilatation (co1), twisting (co2), and flattening (coa) of the
tetrahedron, respectively. Levels marked with a minus
sign are slightly lowered with respect to those marked
with a plus sign because the wave function for the minus
levels does not change sign on inversion of the tetrahedron.
For numbers at right, see Fig. 2. The dotted lines exemplify
how a state of the liquid model becomes modified under
the influence of a tendency to form alpha-particle groups.
In the example, however, the two dotted levels are excluded
in the alpha-particle treatment on symmetry grounds, and
therefore would also be missing in a refined liquid drop
theory. The left portion of the diagram shows similar ex-
amples of how profoundly symmetry considerations influ-
ence the appearance of the lower part of the nuclear energy
level spectrum.
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lated on the basis of a perturbation treatment
using 1s and 2P harmonic oscillator functions for
individual neutrons and protons: E(G) E(S—)
=6.9 mMV, E(D) E(S—) =2.1 mMU. The two
theoretical treatments fail by about the same
amount. To obtain agreement of the alpha-
particle model with experiment, it is necessary
to decrease the nuclear radius from 2.05 )& 10 "A &,

used above, to 1.67)&10—"A& cm.
b. Carbon. —The alpha-particle model in the

form used above gives

E(C")=2.92m q+ 2.06n2+ 0.22J(J+1)
0 0—6E. '(mMU) (20.)

Fig. 2 presents the low allowed energy levels,
and shows for comparison the states predicted by
the semi-classical droplet model. The effect of
symmetry considerations is excluding low levels
is very marked. The high lying levels given by the
alpha-particle model will certainly be strongly
modified by the growing effect of diffusion dis-
cussed in B.More con6dence can be placed in the
general feqtures of the spectrum predicted at
lower energies. It should be stated that the
smaller nuclear radius suggested by the case of
Bes would increase the rotational energies of C"
states by a factor 1.5 and vibrational energies by
a factor 1.2.

In view of the number of excited levels, it ap-
pears that a comparison of the spectrum with the
three gamma-rays if Ci' known at present would

not yield any useful information. Observations on
the fine structure of low levels would be of inter-
est; the separation of levels differing only in the
quantum number X depends upon the extent to
which the nucleus is flattened by grouping into
the alpha-particles.

The dotted levels on the diagram are those
predicted by Feenberg and signer. Their ap-
proximate calculations place the levels at the
same position in C" as in Be .

c. Oxygen. —The model which we have dis-

cussed gives for four alpha-particles

g(O") = 2.03n~+ 1.15n2+ 1.63n3
+0.13J(J+1), (mMU) (21)

with uncertainties in the constants similar to
those mentioned in the case of carbon. The low

lying allowed terms are shown in the left-hand

portion of Fig. 3. The dotted lines for J=0 indi-

cate the two levels ni ——0, n2 ——1, n3=0 and n~=0,
n2 ——0, n3 ——1, which are forbidden on symmetry
grounds. If symmetry did not exclude them,
then on our altering the nuclear forces in such a
way as to leave no tendency to grouping into
alpha-particles, we should 6nd these two levels
merging into the 6rst excited level, n,2

——1, of the
lowest mode, n=2, of surface tension oscillation
of the liquid model. Other levels of the alpha-
particle model show similar correlation properties.
Whether observation gives a scheme of vibra-
tional levels corresponding more to the one
model or the other will give important informa-
tion on the extent to which the group structure
of the riucleus is affected by diffusion.

D. Relation to Hartree-Fock type of calculation

Wigner" has shown that the symmetry char-
acter of the total nuclear wave function comes
first in determining the energy of the nucleus;
next come the finer details of dependence on co-
ordinates and spin. The symmetry character is
described by a certain partition of A, the number
of particles in the nucleus; the nucleus has its
lowest energy for the partition containing the
largest possible number of 4's: A =4+4+ ~ ~ ~ .

The partition of lowest energy is automatically
given by the alpha-particle treatment, which is
not adapted as it stands, however, to the de-
scription of the highly excited nuclear states
belonging to other partitions.

The Hartree-Fock description of the nuclear
motion, on the other hand, (1) starts out with an
equivalent central 6eld to represent the interac-
tion of a particle with its neighbors; (2) builds up
out of single particle states in this 6eld a wave
function. of the desired symmetry character for
the whole system; and (3) by a perturbation cal-
culation attempts to allow for the difference be-
tween the equivalent field and the actual 6eld. In
principle, such a treatment is no more (or less)
complicated for one partition than for another.
Carried through to a 6nish, it would yield a wave-
function which recognized the collective types of
motion common to the liquid and the alpha-
particle models of the nucleus. In point of fact the
perturbation calculation just mentioned is either
carried out only to a low order of approximation,

~' E. Wigner, Proc. Nat. Acad. 22, 662 (1936).
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where it gives a false picture of the nuclear state
of motion; or with more labor, is made to yield
a better wave function, which is, however, too
complicated in form to have its meaning read or
its accuracy certified.

The relationship of the Hartree-Fock type of

wave function to the alpha-particle description of
the nucleus is most easily seen in the case, of the
ground state of oxygen. We compare the resonat-
ing group wave function of Eq. (7) with the
zero-order wave function of the central field
treatment:

(su
I 1) (sb

I 1) (scl 1) ' ' ' (P&d I
1)

(s& I2) (22)
~ ~ ~

(sa
I
16) (p,d I16)

In the determinant, 2 stands for the spatial,
ordinary spin, and isotopic spin coordinates of
particle 2 (which may be either a neutron or a
proton). ' The function (p&a I 1) represents a single
particle behaving as a proton with spin +-', and
moving in a 2p state with m~=1; b, c, d, refer,
respectively, to a proton state of spin ——', and
neutron states with spin +-', and —-', ; s indicates
the is state. We add and subtract rows of the
determinant without changing its value and
obtain

(IVd
I 1)(I~

I
1)

(Ia
I
16) (IVd

I
16)

(23)

Here the states x, y, s are defined by

(~l )=2 '{(p il ) —(p+ll ),

(yl )=~2 '{p-il )+(p+~l ),

(&I )=(pol ).
(25)

In the form (23), the Hartree-Fock zero-order
wave function is adapted to recognize the same
spatial arrangement which the alpha-particle

where the new states I, II, III, IV exhibit the
same type of tetrahedral symmetry (cf. Slater,
Pauling, etc.) which characterizes the bond
eigenfunctions of a carbon atom:

(Il ) =2-~{(sl )+(xi )+(yl )+(sl ) l,

(III )=2 '{(sl ) —(~l ) —bl )+(si ){
(24)

(«ll )=2 '{(sl )+(~l ) —(xl ) —(sl ) I

(IVI )=2- {(sl )-(xl )+bi ) —(.
I )I.

model attributed to the oxygen nucleus': the form
of + indicates that in the region of space near
each vertex of a tetrahedron there exists a large
probability of finding the building material of an
alpha-particle —a pair of protons of opposite
spins and a similar pair of neutrons. The wave
function does not, however, seize this oppor-
tunity actually to construct alpha-particles; the
exceedingly strong interaction between the four
particles in the same region of space is not recog-
nized by any dependence of the wave function
upon the mutual separations of the neutrons and
protons and the result is much the same as we
should obtain on attempting to describe a helium
nucleus in terms of particles moving in a central
field. The initial advantage being lost by this
neglect, a practicable series of perturbation calcu-
lations can regain it only in the case of light
nuclei. For example, Inglis" has shown that suc-
cessive approximations to the binding energy of
He' converge well (E= —27.6 mMU in first
order, —28.8 mMU in second order), but that
for Li' higher order contributions fall oA less
rapidly (E= —14.9 mMU in first order, —27.7
mMU in second order). Already in the case of
0"a first-order calculation" misses the observed
binding energy by 100 mMU. That the weakness
of the central field procedure really lies in neglect-
ing the alpha-particle type of correlation follows
most readily from the fact that internal binding
of four free alpha-particles is already i22 mMU,
only 16 mMU less than the binding energy of the
same neutrons and protons in oxygen.

Description of excited levels of the nucleus by
the Hartree-Fock procedure in general requires

~ D. R. Ing1is, Phys. Rev. 51, 531 (1937).



the introduction in the wave function of terms
representing the excitation of individual neutrons
and protons to higher states. The dotted levels
in Fig. 2 (carbon), for example, were obtained by
considering" only 1s and 2p states of the indi-
vidual particles in a central field. The next ex-
cited single particle states, 2s and 3d, lie about 10
mMU higher. At the least the ten states just
mentioned must be taken into account if the
central field calculation is to account for the
levels of whose existence and approximate posi-
tion the alpha-particle model informs us. There
does not seem to be any physical argument to
justify one in believing that this degree of ap-
proximation in the Hartree-Fock treatment will

give one generally correct energy level. differ-
ences, since the difference is so great between the
starting point of the calculation and the actual
modes of collective motion which characterize the
nucleus. For example, the three low energy levels
predicted by the central field approximation for
Be' and C" have been shown (Feenberg and
Philhps, reference 20, Eq. (3a)) to satisfy the
relation Z =ED+I.(I +1)X', which has the same
form as the rotational energy given by the liquid
model of the nucleus. Nevertheless, the constant
X' represents an integral of potential energy
rather than the inhuence of altered kinetic
energy; moreover, X' has the same value for Bes
and C", although the moment of inertia with
which we should expect it to be correlated differs
for the two nuclei by a factor between 1.6 and 2.

The lack of any valid picture of the nucleus
with which to visualize the results of the Hartree-
Fock treatment means unfortunately that one
must depend on convergence arguments rather
than physical insight to recognize in what cases
one can rely on the results of the central-field
calculation for binding energies and term differ-
ences. This emphasizes the desirability of de-
veloping a mathematical procedure more closely
related to nuclear models which recognize the
collective nature of the nuclear motion.

E. Refinement of the alpha-particle mod. e1'

The alpha-particle model used in A and 8
above must be distinguished from a thorough-
going application of the method of resonating
group structure. The latter treatment takes
explicitly into account the interchange of neu-

trons and protons between the various groupings,
and allows us to derive the energies of the various
nuclear levels directly from our information
about the forces between elementary particles.
The former description, of course, tacitly recog-
nizes that such interchanges do go on and that
they are in principle responsible for the forces
between alpha-particles. Nevertheless, it depends
for its validity on the assumption that the diRu-

sion does not go on at such a rate that the alpha-
particles altogether lose their identity during one
characteristic period of the nuclear motion. Ke
have seen that this assumption is reasonable for
low nuclear excitation but grows progressively
worse at high energies. It then becomes necessary
to adopt the true method of resonating group
structure to obtain a satisfactory treatment. It
will be a good approximation to limit the group-
ings we consider to alpha-particles alone, if we

are interested in nuclear levels of the symmetry
type 4+4+; levels of this kind in fact dom-

inate the nuclear spectrum below 10 Mev. We
wish now to indicate how our mathematical
procedure can be simplified by taking over the
results of the alpha-particle model as regards
modes of vibration and allowed levels.

a. Analytic expression for a/pea particle wa-ve

function For de.—finiteness, let ns treat that level

of C"which in the simple alpha-particle model is
described by the quantum numbers n& =2, n2 =0,
J=3, X=3, tng =3. The system has six degrees
of freedom exclusive of translation; they are
associated with the three Eulerian angles y, 0, x
of a symmetric top, the normal coordinate, $, of
the dilatation vibration, and the coordinates q

and g of the doubly degenerate tipping vibration.
In terms of our molecular picture, the nuclear
level in question would be described by the wave

function

(sin' (0/2) e ""—cos' (8/2) e"")e""H2($')

&&IIo(v )IIo(P')e "+" +" ' (26)

Here the II's. are the usual Hermitian poly-
nomial. s encountered in the oscillator problem;

is an abbreviation fol" (rngG&i/k) *$; g, fol

(nt„a&2/tt) v etc. , where mt is defined by rntP
=classical kinetic energy of the first mode of
vibration.

In the method of resonating group structure,
we write the nuclear wave function as an expres-
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sion completely antisymmetric in the twelve
neutrons and protons:

(1+2+3+4
%(1 12)= P F{ ~ ~ ~ ~ ~ ~

perm & 4

)(4(1 2 3 4)rI (5 6 I 8)4&(9 10 11 12). (27).

~t +*H+dr t%'*+dr =E=a minimum.

The function Fexactly satisfying the condition
of minimum energy (i.e. , containing an infinite
number of adjustable parameters) is found by
solution of a wave equation, which is derived in

the following paper and applied to the treatment
of collision and disintegration problems. Here,
however, F is taken to depend on a relatively
small number of parameters, and to have a
mathematical form which is at the same time
simple enough to make practicable the analytic
calculation of the energy of the system, and yet
sufhciently flexible to give a good description of
the nuclear motion. What is the most convenient
form for Fdepends on the manner in which C and
the nuclear interactions depend upon distance.
We shall assume that the potential between
elementary particles varies with distance as
exp (—b'r; ), arn2d shall use for the alpha-particle
wave function, 4, an exponential expression
which allows in the simplest manner for the close
interaction between the four constituent par-
ticles:

The wave functions C describing the internal
motion of the alpha-particles are taken to be
fixed, while F(Xz, Xzz, Xzzz) varies from state to
state of the system, and corresponds in our prob-
lem to the wave function (26). Our procedure is

(1) to write down a suitable analytical expression
for Ii, having approximately the same symmetry
and transformation properties as (26), but con-
taining certain adjustable parameters; (2) to
adjust these parameters to obtain the best
possible wave function 0 in the sense of the varia-
tion principle; that is, + shall be orthogonal to
all lower states of the same J and mJ value, and
at the same time shall minimize the energy of
the system:

zz(1) n(4)

C (1 2 3 4) =24 & 8(2n/m. )"'
d(1) d(4)

III z

F exp I
—P P(ijx)X;X; P—g(ix)X; }.(29)

Here the (ix) and (ij x) are numerical parameters;
also (ij x) =(jix), etc. The typical term in such
an integral as

~
zIi' *Hei' dr or I %'„*%'„dr,

when expressed in terms of the coordinates of the
twelve neutrons and protons, is thus repre-
sentable as the product of- three exponential
integrals, associated respectively with the x, y,
and s axes. The exponent of the first integral is a
function of the Cartesian coordinates x1, ~, x12

and depends in addition on the constants n and
b', the nine parameters (ijx) and (ix) of F,
and nine similar parameters belonging to ~„:

I,= I exp ( P)dr, —

12

where P, = Q [klx7xi,xi+Q[kx7xi, (3o)

and the brackets are combinations of the above-
mentioned parameters. The integration gives
at once

12

I,=x""6 & exp 6 ' P [kx7[lx7, (31)
k, l 8[klx7

where

[1, ix7 [1, 12x7

e

[12, ix7

and in the differentiation, [klx7 and [lkx7 are
regarded as independent, being afterwards set
equal to each other.

Xexp —a(rz2 + zi3 +zz4 +123 +124 +134 ) (28)

where a, b, c, and d are the four spin states de-
fined in D. Then simplest of all choices for F is an
e power with the exponent a second degree func-
tion of the Cartesian coordinates of the three
alpha-particles:
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FIG. 4. At right, " correlation (on long range force model) between levels of Bee (b) and those of
groups into which the nucleus can be decomposed. Energy of levels is completely determined in
this approximation by partition, The two groups whose energies are combined at (a) each contain
four particles; those at (c), six and two particles. In the method of resonating group structure, states
of Be' belonging to a particular partition are built up from those states of the various groups with
which the given state is connected by correlation lines. The lowest states of Bes (partition 4+4}
may be described approximately in terms of the normal states of two alpha-particles alone, since
all other group states possess so much higher energy. At left: The experimental values for the normal
energies of the constituent nuclei give a useful but less detailed guide to the choice of groups to
represent a given state of the compound nucleus. (Energies in mass units. ) Dotted levels predicted
by alpha-particle model and by Hartree-Fock treatment.

Evaluation of the expressions

H„„=~f%' *H%'„dr and I„„=]t%' *%'„dr

actually requires calculation of a number of
integrals of the above type, since @ contains
(12!/(4!4!4!3!))=5775 terms EC@4 correspond-
ing to the different ways twelve particles can be
grouped into alpha-particles. Symmetry argu-
ments easily reduce the 5775 integrals entering
I „to only nine, and in the same way enormously
simplify the work of evaluating II„„.The nine

integrals all contain as 6rst member of the inte-
grand the expression F ((1+2+3+4)/4,
~ ~ )C(l 2 3 4)C(5 6 /8)C(9 10 11 12); in the last
member, which contains F„,the i2 particles have
been interchanged. The 5775 integrals divide

up as follows, according to the type of rear-
rangement:

1 belonging to the original arrangement
48 belonging to grouping (5234)(1678)(9 10 11 12)

128 . . . . , . . . . . , . . . . . . . . (9234)(1678)(5 101112)
54 . . . . . . . . . . . , . . . . . . . (5634) (1278)(9 10 11 12)

576, . . . . . . . . . . . . . . . . . . (5934)(16/8)(2 10 11 12)
216 . . . . . . . . . . . . . . . . . . . (91034)(1278){561112)

1728 . . . . . . . . . . . . . . . . . . . (9234)(1 10 .78) (5 6 11 12}
1728 . . . . . . . . . . . . . . . . . . . (9634){110 78) (52 11 12)
1296 . . . . . . . . (569 10)(127 11)(34 8 12).

The result of our choice of mathematical
expression for Ii,

F„exp I
—P(ij x) X;X; P(ix)„—X;I, (32)

istogivesimpleanalytical formulaeforH „,I „,
and the energy 2 =I„/I, in terms of the
parameters (i'), (ix), (i')„, and (ix)„We.
now observe that these three formulae, once ob-
tained with the aid of the "generating functions"
F and F„, enable us readily to find the cor-
responding quantities H „, I „, and E for any
other pair of functions F„and F„. In fact. we
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have only to differentiate F a suitable number
of times with respect to the parameters (ijx)„and
(ix)„, and then carry out linear combinations to
build up a function F consisting of a general
polynomial in the alpha particle coordinates,
multiplied by the same exponential as occurs in
F (cf. for example Eq. (35) below). But since the
parameters behave as constants in those integra-
tions over coordinates which gave H„„and I „,
the values of H „and I are obtained by carry-
ing out the same processes of differentiation and
linear combination which produced F from F
and I'„ from F„.This point explains the motive
for giving the exponent of the generating function
a dependence on alpha-particle coordinates which
is more general than allowed by symmetry and
the requirements of proper transformation under
rotation and translation, In fact, after the differ-
entiations just referred to, the (ix) are set equal
to zero, the diagonal coefficients (iix) are all

equated to one constant, and the off-diagonal
coefficients (ijx) are all identified with a second
constant. The parameters which really make the
wave function flexible are those which enter in
the formation of the linear combinations referred
to above.

c. Application of alpha particle m-odel to con
struction of wave functions We have.—obtained in

(b) a relatively simple method for the determina-
tion of the matrix elements of the energy and of
unity with respect to any two wave functions.
We now have the problem of actually building up
from the generating function F the proper type of
wave function to represent a given state of the
system.

Let us first take as example the ground state
of C". There is no rotation of the nucleus, and
only zero-point vibration. It is clear that the
wave function F(Xz, Xzz, Xzzz) has its maximum
value when the three alpha-particles are equi-
distant from each other and at some equilibrium
distance, ao, from the center of gravity of the
nucleus. Moreover, for a uniform dilatation of
the triangle of alpha-particles, the wave function
will fall off approximately as e &"~' or as
1 —(msgz/2h) $s, where $ is the normal coordinate
for the given mode of motion; a similar falling off
will occur for the deformations of the triangle de-
scribed by the normal coordinates )t and l (cf. a,
above). A suitable form for the ground state wave

(1/4) (sin' 0/2e "& cos' t)/2e'—"'')e"&

~ (Xz+s Fz) (Xs+s Fs) (Xs+s Fs)/a, (34)

where a as+ P. To introduce the factors
X+iF into the wave function (33) used in the
preceding example, we have only to operate on

0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0
Fro. 5.

function, having the above properties, and ex-
pressible as a linear combination of generating
functions, is the following:

p —g
—p(1—tzt) (R12+R22+g32)

0

)( {e—(p)'/s) Bzs e—(p/s) Z/'+a) Rzs

)( {e—(p&/s)R&s e
—/p/s)(&+e)R&s }

X {e—tp//»»s' —e
—&p/»&I+~»»'}, (33)

The first factor tends to keep the alpha-particles
near the center of the nucleus, whilst each suc-
cessive factor represents a given pair of alpha-
particles seeking to preserve a certain equi-
librium separation. Fo reaches its maximum value
when Rz ——Rs ——Rs ——as„where pass = c ' In (1+s);
and in the neighborhood of the maximum we have

P, ,s(1y, ) s s/ ~ {1 —6(—1+,)Pa sPP

3(1+—s)P«'P (n'+V) }

Minimization of the energy of the ground state
with respect to p, e, and tz fixes these parameters,
from which we estimate directly as=Lp zs '
ln (1+s)]& and h(vz~(hs/M ao')s '(1+s) ln'

(1+s).
Let us now consider as a more general example

the state to which we referred in (a):nz ——2,
n2=0, J=3, %=3, m J ——3. To represent in terms
of Cartesian coordinates the angular part of the
wave function given by the alpha-particle model,
we note that
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the generating function (29) with the differential
expression

8 8 8 t9

+z +$
8(ix) B(1y) 8(2x) a(2y)

(35)
8(3x) 8(3y)

The proper dependence of the wave function on
the normal coordinate f' which enters in the fac-
tor H2($') =4)"—2 is introduced by analogous
differential operators.

In summary, then, we use the method of
resonating group structure as follows to calculate
the position of the levels predicted by the alpha-
particle model: (1) we build up the type of wave
function suggested by the simple model, by
operating on a generating function with the
proper combination of differentiation and linear
superposition; (2), we calculate the matrix ele-
ment of unity between this state (s) and any
lower state (t) of the same J and mg value by
carrying out on the generator I „ the same set
of operations which give F, and Ii& from the
generating function F; (3), we put on the
parameters of Ii, the condition that this matrix
element shall vanish (requirement of orthogo-
nality to lower states); (4), we obtain the diagonal
matrix elements II„and I„by a similar opera-
tional procedure; (5), we minimize the energy
F,=II.,/I„by varying the parameters in F„
subject to condition (3); (6) we then have the
energy and wave function of the state s in a form
which (a) bears a close relation to the results of
the alpha-particle model, but (b) maintains its
validity even when the rate of exchange of
neutrons and protons between alpha-"particles" .

is very rapid, and in fact (c) brings into evidence
the fact that the forces between alpha-particles
are intimately bound up with this interchange
phenomenon.

RELATIVE IMPORTANCE OF VARIOUS GROUPINGS

The usefulness of the alpha-particle model
treated above, and the importance of alpha-
particle groupings in the description of the nu-
cleus by the method of resonating group struc-
ture, both depend on those properties of nuclear
forces (cf. p. 1085) which make the alpha-particle

grouping particularly stable. Other types of
group structure must be taken into account, how-

ever, if we desire a more accurate treatment of a
nucleus of the type 4X, or if we wish to apply our
method to nuclei which cannot be built up from
alpha-particles alone. In general, the various
groups in which we may be interested wi11 be
characterized by their state of excitation as well

as by the number of neutrons and protons they
contain. In the following we develop with the aid
of group theory and energy considerations some
general qualitative arguments as to which types
of grouping will be most important for the de-
scription of a certain state of a given nucleus.

We can discuss the general relationship be-
tween the energy levels of a compound nucleus

(C) and the nuclei (A and 8) from which it is
synthesized with the aid of group theory alone,
if we adopt a model of the nucleus (Wigner's"
model (1)) in which the forces depend only on

space coordinates and are the same between all

pairs of particles. Then the eigenfunctions have
the form

|t'"&(x&o&r&, , x o„r )
x(&)

= Q fp&s&(o&r&, .
, o„r„)upas'&(x&, .x.). (36)

Here x; denotes the position and 0-; and v;, the
ordinary and isotopic spin variables, of the ith
particle. x(E) is the character of the identity
operation. The f&,

&s& constitute the normalized
orthogonal basis of an irreducible representation,
R, through unitary matrices, of the group II„of
permutations on n symbols. Similarly, the u&'"'~

compose the substratum of that matrix represen-
tation, R', the "associate" of R, obtained by
changing the sign of (—1)& and multiplying by
o„(—1 for odd, +1 for even permutations I').

With each irreducible representation of II is
associated, according to Young, a certain "sym-
metry pattern" constructed by arranging n dots
in rows and columns, all rows starting at a fixed
vertical axis and extending to the right, all
columns running upwards from a fixed base line.
Successive columns do not increase in length, nor
is a given row ever longer than the rows beneath
it. (Fig. 5 represents that symmetry pattern of
H~s which is said to correspond to the partition

"E.Wigner, Phys. Rev. 51, 107 (j.937).
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4+4+4+4+2 or 4'2.) Start with any function
of n variables, put the n labels on the blocks in

any order, symmetrize the function with respect
to the variables associated with the rows, anti-
symmetrize with respect to the columns. The
result (if not identically zero) gives a function
belonging to the corresponding representation of
the symmetry group. The pattern of the asso-
ciated representation, R', is obtained by rotating
the pattern R by 180' about the diagonal which
begins at the lower left-hand corner. Since the
pair of numbers 0., ~ take on only four sets of
values, it follows that the spin functions
f&' '(o i r„) belong to a symmetry pattern
whose columns do not exceed four dots in length.
The rows of physically allowed partitions R'
therefore never contain more than four dots.

The interaction of n~ particles in nucleus 2
with n2 particles in nucleus 8 will be described to
the first order in terms of the zero-order wave
functions of the individual systems. In their
dependence on spin, these functions are linear
combinations of products of the type

obtained by distributing the n=n&+n2 pairs of
variables a.r between A and 8 in the n!/ni!n2!
possible different ways. The x"(E)x (E)n!/ni! n2!
products give a representation of H„. Broken into
its different irreducible parts, this representation
provides the proper linear combinations of wave
functions for treating the energy levels of C. To
find the symmetry patterns belonging to these
allowed levels of C from the patterns of A and B,
we make use of the f'ollowing procedure given by
Littlewood and Richardson' and drop those
compound patterns not physically possible:

"Take the tableau (pattern) A intact, and add
to it the symbols (dots) of the first (bottom) row
of B.These may be added to one row of A, or the
symbols may be divided (proceeding from the
left, and) not disturbing their order, into any
number of sets, the first set being added to one
row of A, the second set to a subsequent (higher)
fow, the third to a row subsequent to this, and
so on. After the addition no row must contain
more symbols than a preceding (lower) row, and

'4 D. E. Littlewood and A. R. Richardson, Proc. Lond.
Math. Soc. A233 (1934).

no two of, the added symbols may be in the same
column.

"Next add the second row of symbols from 8,
according to the same rules, with this added re-
striction. Each symbol from the second row of B
must appear 'in a later (higher) row of the com-
pound tableau (pattern) than the symbol (if
any) from the first row (of B which now lies) in

the same column (of the compound pattern).
"Similarly add each subsequent row of sym-

bols from B, each symbol being placed in a later
row of the compound tableau than the symbol in
the same column (which came originally) from
the preceding row of B, until all the symbols of 8
have been used. "

The application of this simple rule is based
upon Wigner's observation that the gross struc-
ture of the nuclear energy level system appears to
be determined by the symmetry of the wave
function, the splitting into a multiplicity of levels
arising from the finer details of the dependence of
the wave function on coordinates and spins. As-
suming an exactly saturated mixture of ordinary
and Majorana long range forces (so that the
splitting is negligible) he has in fact shown that
the energy levels of an n particle system are
given by

+kinetic energy. (38)

Here J is the constant of the two-body interaction
V= J$( ', )+P~).—R in-dicates the representa-
tion to which the spin part of the wave function
belongs and x(2) is the charactet of a transposi-
tion in this representation" (see Table V in

Appendix). In this simplified model it is very
easy to trace the relation between the energy
levels of the compound nucleus and those of the
groups into which it can be decomposed. Fig. 4
gives the correlation diagram for the lower "gross
structure" levels of a system of eight particles.

Decrease of the range of the forces and intro-
duction of electrostatic and spin interactions
splits up the levels in the correlation diagram and
complicates the tracing of correspondences. Also,

"Reference is made to F. D. Murnaghan, J.Am. Math.
Soc. 59, 437 (1937), for a treatment of the properties of
the symmetric group in a form convenient for application
to nuclear theory. I am indebted to Professor Murnaghan
for informing me of his results before publication.
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the symmetry character of the wave function is
no longer an exact integral of the equations of
motion. Nevertheless, it is approximately an
integral, and dominates the discussion of the
composition of the compound wave function
from the wave functions of the constituent
groups. Particularly, in applying the method of
resonating group structure in its simplest form
to approximate the description of a certain level
of C, we can neglect all but the lowest of the
"symmetry levels" of the groups A and 8 into
which C may be decomposed. The usefulness of
this approximation is based on the relatively
enormous dependence of the energy of the system
on the symmetry character, in comparison to
other effects.

Vhth the above considerations as a guide, we
are able to make an approximate estimate as to
which types of groupings are most important in
describing a given state of a given nucleus. This is
particularly important for the development of the
following paper, in which the mathematical
treatment starts out with the assumption that
the important groupings are already known.

Two-BoDY AND MANY-BQDY FQRcEs

So far we have applied the concepts of resonat-
ing group structure to the nucleus in a way which
has been independent of all but the simplest as-
sumptions about the properties of the interactions
between elementary particles. Nevertheless, the
question of the detailed nature of these interac-
tions must have an essential, if indirect, connec-
tion with the types of collective motion occurring
in the nucleus.

Can nuclear properties be accounted for by
forces acting between pairs of particles, or is a
field theory necessary from the beginning in any
reasonably accurate account of nuclear proper-
ties& Although present theory supplies no answer,
we can at least expect a priori an intimate con-
nection between electron theory and forces
within the nucleus. The disturbance of the elec-
tron-positron 6eld near the heavy nuclear par-
ticles owing to the rapidly alternating electro-
magnetic fields within the nucleus necessarily
counter induces a reaction of the electron positron
distribution upon the heavy particles. In the
terminology of the quantum theory, we may say
that virtual pairs induce forces between the heavy

particles in the same sense in which we speak of
virtual quanta being responsible for the Coulomb
interaction.

It is instructive in this connection to recall the
method by which we may abstract from the
existence of the electromagnetic 6eld to obtain
the ordinary expression for the interactions in a
system of charged particles: from the fields E;
and H; of the individual particles we obtain the
total 6elds E=ZE; and H =ZH; and thence that
part of the field energy which does not contain
self-energy terms:

(82r) ~ I (E2+H2 —QE 2 —QHP)dr. (39)

In the static case the result is

Pe2e;/r;;,

and also in general it is the sum of terms, qach of
which represents the int'eraction between only
two particles, a consequence of the quadratic
expression for the 6eM energy.

A similar calculation of how much the electron-
positron field contributes to the interaction of a
system of particles might be made in the same
way if it were not that a general expression for
the energy density, U', of the field is lacking.
However, even in the expansion for U' given by
Euler and Kockel"

U'= (1802r2) 'mC2()2/mC) '
)( I (1)(f2 g2) (3f2+g2) + (7/2) (f .g)2

+ (2/7) (f2 —g2)2(5f2+g2)

+(»/7)(f g)'(3f' —g')+ I («)
Dh/mc) eE =mc2f; (A/mc) eH =mc'g j,

valid only for not too strong or too rapidly vary-
ing 6elds,

0'2/mc)
~
grad F

~
((

(
F ~, (l'2/mc')

~

F
j (( ~

F ~, (41)

it is clear that that part of the interaction energy
of a group of particles at nuclear distances
(~f ~, ~g~))1) which isdueto the electronpositron
6eld involves many-body forces and two-body
forces of the same order of magnitude.

The observed dependence of nuclear binding on
numbers of neutrons and protons gives little un-

' H. Euler and B. Kockel, Naturwiss. 23, 246 {1935);
also W. Heisenberg and H. Euler, Zeits. f. Physik 38, 714
(&936).
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ambiguous information on the question of the
existence of many-body forces. Nevertheless, if
we adopt the long range force model by which
Wigner2I freed the group theory discussion of
nuclear binding from complications due only to
the dependence of forces on distance and spin,
we can draw one important conclusion; namely,
that no. compromise is available between two-
body forces and many-body forces. More pre-
cisely, to account for observed binding energies,
either (a), the many-body forces must be much
weaker than the two-body forces; or (b), with
increasing number of particles in the nucleus,
each successive group of many-body forces com-
ing into action must make a contribution com-
parable with the total binding energy. Excluded
is situation (c): 2, 3, , k-body forces strong
(238))k)2), t-body forces negligible (t&k). This
result can be seen in a general way from a com-
parison of the number of adjustable force con-
stants with the requirements of observation:
saturation character of nuclear binding, observed
energy differences between isotopes, relative
stability of nuclei of the types 4N, 4N+ 1,
4%+2, 4%+3, How it comes about in detail is
shown in the appendix for the cases k=3 and
k =4.

It must be emphasized" that the above con-
clusion depends on the (incorrect) assumption
that nuclear forces are of long range; for example,
it does not follow that the conclusion is true for
short range many-body forces; and it is probably
false if the many-body forces depend on velocity.
Our arguments, in fact, are not quite general
enough to allow us the satisfaction of dividing

possible theories of nuclear forces into two
sharply differentiated groups: (1), the usual, a.nd
plausible, description in terms of two-body
forces; and (2), a description whose mathe-
matical f'ormulation requires from the beginning
essentially a complete field theory of nuclear
fol ces.

That many particle forces are consistent with
our present information about the nucleus
emphasizes the almost insuperable mathematical
difficulties in the way of attempts to make nuclear
spectroscopy alone yield any complete and un-
ambiguous account of nuclear forces Conce.rning
the symmetry properties and certain other gen-
eral features of the nuclear wave function, how-
ever, it appears possible to draw definite conclu-
sions which depend on only a few very general
assumptions about the exchange nature of nu-
clear forces—not, for example, on the number of
particles involved in the interactions, nor par-
ticularly on the way the forces may vary with
velocity. Although the nuclear liquid model of
Bohr and Kalckar does not attempt to take ac-
count of symmetry properties, the qualitative
correspondence in other respects between the
modes of nuclear motion predicted by this and
by the alpha particle treatment emphasizes to
what a small extent the details of the interactions
really enter into the determination of the general

' structure of the nuclear energy level spectrum.
From this point of view, the most permanent
value of detailed calculations based on special
types of two-body forces is the correlation achieved
between the properties of nuclear wave functions
or states of motion and energy level systems.

APPENDIX I. TREATMENT OF THE NUCLEAR THREE-BODY PROBLEM BY THE METHOD
OF RESONATING GROUP STRUCTURE

Particles 1 and 2 are protons (neutrons); 3 is a neutron
(proton). Consider the system as composed of proton
(neutron) plus deuteron. The spin of the deuteron has
three possible orientations:

Cg(2, 3) =0.(2)n(3)q(3 —2),
Cia(2 3) =2 ~Lor(2)p(3) +a(3)p{2)lp(3 —2)

C y(2, 3) =P(2)P(3)q(3 —2). (42)

In these deuteron wave functions, q{3—2) is supposed to
be a known function, depending only on the separation
r = (3—2

~
of neutron and proton, and to be normalized so

that J'P(r) 4~r'dr = 1.
"I am indebted to Professor Wigner for making this

observation.

According as S=$ or S=-,' for the combined system
He'(H'), we have two types of antisymmetric total wave
function, typified, respectively, by
%(1,2, 3) =2 4(1)0.(2)a(3))F((2+3)/2 —1)y(3 —2)

—F((1+3)/2 —2)q (3—1)g (43)
and

%(1, 2, 3) =12 &jo;(1)a{2)P(3)+0.(1)P(2)~(3)—2P(1)n(2) 0.(3)jF((2+3)/2 —1)y(3 —2)—12 &t at(2)a(1)P(3)+a(2)P(1)a(3)
—2P(2) 0.(l)a(3))F((1+3)/2 —2) q {3—1). (44)

Kith the help of these expressions, we calculate in terms
of F the average energy of the system:

8=f@(T+V)+d~/f'0'dr.
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J(X, g) =(64/27)v(u)v(v)f —B ll/6

exp 1
—b (u, —v)2g+B

1
—1/2

)exp (—b'u')

+exp (—b'v') j— 1
—1/2

e'iu —vi-'

+(256k'/81M) Lq (u) &'q (v)

+p(v)&'v (&)+&~ (&) '&v'(v) j (49)

Before proceeding further, we investigate how accurate
a treatment of the binding energy of H' is possible with the
simplest analytical expressions for the deuteron wave
function and the intergroup wave function:

q(o) =exp (—aos); F(X) =exp (—pX2). (50)

No electrostatic terms enter this problem. The state of the
system is 2S. The energy becomes a simple function of a ancl

P. Its minimum value, —6.4mMU, is reached when
n=0.87(mc'/e')' P =0.68(mc'/e')2. In comparison, a wave
function of the form

%{l,2, 3) = 2 4(3) t a{2)P(1)—n(1)P(2) gN
&(exp $—(s /2) (r&32+r23s) —(p /2) r&p| (51)

gives an expression" for the energy of H', whose min-
imum value, —5.6 mMU, is obtained when @=0.8 and
p = 1.0(mc'/e')2. (The same values of the force constants are
used in both calculations. W'e estimate by the equivalent
two-body method that an accurate calculation using these
constants would give E= —8.7 mMU for the binding
energy. ) We compare the spatial parts of the wave function
(51) and the resonating group wave function (44):

exp I
—(p, is }X2/2 —(p, +5&)o2/8+(p —s)X o/2)~ exp I

—PX2 —no~I, (52)
gg Eqs. (22a, b, c), "The Interaction Between Two Normal Alpha-

Particles, " give the exact expressions used. (To be published in the
Physical Revie2v. )» E. Feenberg, Phys. Rev. 4V, 854 (1935),Eq. (14).

We represent the interactions between the constituent par-
ticles by combinations of Majorana and Heisenberg forces. ms

We find by integration

E= I (3a'/4m) J'(V'F)'dx
+EDJ'F'(X)dX+ J'F'(X) V(X)dX
+J'fF(X)j(X, $)F(()dXd()/
IfP(X)dX+ffF(X)I(X, $)F(()dXd(). (45)

Here M represents the proton mass and Eo the average
energy of a free deuteron described by the wave function q .

Eo= (k /M) J'(&4p) do —BJ'y (o) exp (—b o )do. {46)

Brackets are used below to represent the dependence of
the ordinary interaction potential V and the integral
operators I and J upon spin; the upper component belongs
to S= v3, the lower to S=-,'. .X, (, o' are vectors, as are also
u= (4(+2X)/3 and v = (4X+2g)/3.

&(&, o=/64/2/)(g/I) / )p/ ), (47)

V(X) = (1—2g)B J'P(o) exp P —b'(X —o/2)'/do1/3
—2/3

+e'f vp[X —cr/2) 'do, (48)

The polarization term, X.o, in the first function is in the
right direction to allow for polarization of the deuteron by
the neutron, but is small owing to the near equality of p
and v. That the second function gives a binding 0.8 mMU
better than the first in this problem must be attributed
mainly to its having a better form of spin dependence, built
up from deuteron spin functions (cf. discussion below),

How can one find the best possible wave function of the
form (44), supposing q to be given? We use the variation
principle, varying F(X) to make the expression (45) for the
energy a minimum. The necessary and sufficient condition
for stationary E is found to be ss that F satisfy the wave
equation"

(3k'/4M) /'F(X) +(E—Eo)F(X)= V(X)F(X)
+fEI(» K) —&I(X, 4)jF(6)4. (53)

Thus the relative motion of deuteron and neutron is
governed by an ordinary potential V(X) and a velocity
dependent potential, represented by an integral operator
with the kernel X(X, g) =I EI. The thr—ee dimensional
equation of motion (53) is reduced" to a radial equation by
expressing X and g in polar coordinates r, t/, v and p, a, r
and making the substitutions

F(X)=r if1,(r)PI.(cos 8);
cos (X, g) =/s;

IC(X, $) =Z(2I+1)E's(r, p)Pn(p)/4vrp. (54)

For S states (I =0) we find

(3A'/435)d'f/dr'+(E —Ep)f(r) = V(r)f
+J'I.JO(r, P) —EI.(r, P) jf(p)dp, (55)

which is thus the wave equation applying to the ground
states of H'and He'.

We determine the dependence of neutron-deuteron
interaction on distance by substituting into (47-49) the
expression (2a/~) ~ exp (—ar ) for the deuteron wave-
function, with n=0.87 (see Fig. 6d). We find

V(r, p) = —(2B/3)(1 —2g)(1+bs/8a) &

&(exp I
—b'r'(1+b'/8a) 'j; (56)

I0(r, p) = (8/3)(2n/2r)& sinh (32nrp/9)
Xexp L

—(20 /9)(r'+p') j; (57)

Jo(r, p) = —(8/3) (2a/x)&{1+bs/4a} iB(11/3—19g/3)
~ sinh (32a/9+8b2/9) rp exp I

—(20a/9+4b2/9)
&((r2+ps) j—{8/3)(2aj~)&(1+b2/2n) iB sinh

(32n/9+16b'/9)rp Iexp 0 (20n/9+4b'/9)rs
—(20a/9+16'/9) ps j+exp L

—(20n/9+16'/9) r~

—(20n/9+4b'/9) p') I +(64k'a /9M) (2a/m) &

)&exp L
—(20a/9) (r2+ p~) jI L(11/4

—(56a/9) {r2+p2) ]sinh (32arp/9)
+(104arp/9) cosh (32nrp/9) I. (58)

V, Io and Jo are charted in Fig. 6.
The function f(r)=r exp (—Prs), with P=0.68, repre-

sents an approximate solution of the radial equation.
Curve A in Fig. 6 shows how this function is related to the
range of the neutron-deuteron interaction.

3' For the variational calculation, see following paper, Eq. (17).
» In a recent paper [Proc. Phys. Math. Soc. Japan 19, 542 (1937)l,

Yukawa and Sakata discuss the scattering of neutrons in deuterium
and derive an integro-differential equation which is similar to (53) but
contains no term analogous to I. since their treatment was not based on
the variation principle.

3I Wheeler, Phys. Rev. SO, 647 (1936), Eq. (10).
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FzG. 6. Interaction of neutron and deuteron in 'S states
of H'. (a) Ordinary potential V(r) in mMU as a function
of r (in units e'/mc'=2. 80&(10 '3 cm). (b} Contour map
of the kernel, Jo(r, p), of the velocity dependent inter-
action, in units mMU (e'/mc') ', as function of r and p.
As one carries through the transition from the nuclear to
the molecular three-body problem, the trough in Jo
becomes deeper and narrows down in the ratio m/M
= 1/1840, representing finally an interaction nearly
independent of velocity. (c) Io(r, p), in units (e'/mc') '.
(d) B, approximate solution of the radial wave equation
for relative motion of neutron and deuteron. A, internal
wave function of deuteron used in calculating V, Io, and
Jo(ry(r) =Er exp (—nr')). C, exact wave function of free
deuteron, for comparison. (A, B, and C not normalized. )

A calculation of V, Io and Jo using for q the exact wave
function for a free deuteron, although complicated, would
not give interactions very difFerent from those shown in the
figure, as one sees from a comparison of curves B and C.
This choice of q, however, makes one essential simp]ifica-
tion: the wave function (44) for the three-body problem has
exactly the right asymptotic behavior to describe dissocia-
tion and scattering. Solution of (53}then gives phase shifts
and scattering cross sections.

The connection between the method of resonating group
structure and the Heitler-London procedure is easily
traced. The forces between 3 and 1, and 3 and 2, no longer
depend appreciably on spin. In contrast to the deuteron,
the atom has stable states of both the singlet and triplet
type. Out of these we can build up two types of doublet
wave functions, for the molecule, one of the form (44), the
other being

2 ~n(1) Pa(2)P(3) —a(3)P(2) )G(Xr)x(3—2)
—2 '~(2) Lo.(1)P(3)—~(3)P(l) jG(Xzr)z(3 —1). (59)

The states of the whole system are actually represented by
linear combinations of the two types of doublet function.
In the nuclear problem, the slight admixture of the second
type was neglected, although our treatment would have
been improved by taking into account the virtual ~S level
of the deuteron, describable by x. In the molecular case, the
atomic wave functions g and y are to be identifie, as the
dynamical effect of spin is negligible. The proper linear
combinations are easily found: F=(3&/2)F&, G= —(~&)F&

gives the molecular state built on a singlet state of the two
protons; the doublet state built on a triplet is obtained
when F=(-',)F3, G=(3&/2)F3. It is to the former that the
nuclear ground state is most closely related. The associated
wave functions are

%1=2
L a(1)P(2) —0'(2)P(1)gn(3) LFp(Xz) p(3 —2)

+ F,(Xrr) v (3—1)j,
+3= 12 &L2cx(1)a(2)P(3) —0.(1)J8(2)a(3)
—~(2)P(1)~(3)3 LF~(Xr) y(3 —2) —F3(Xzz) p(3 —1)j. (60)

I(X, $) = b(X+))D(X)

(for singlet states; I and J have opposite sign for triplet
states). Here D is the orthogonality integral, and J and X
the direct and exchange integrals, which are familiar from
the Heitler-London approximation:

D(X) = J'q (—X/2+1) q (X/2+2)dk,
e2

J(X}= J'P( —X/2+3 }
]X/2+&[

IC(X) = J'p( —X/2+2) p(X/2+X)dX. (62)
X/2+2

The velocity dependence of the interaction between the
two groups has degenerated in the molecular problem to a
kernel which is approximately a 8 function. Two cases are
possible: (1), F(X) an even function of X(I =0, 2, ~ ~ ).
Then J'b(X+)) F(F)dg= F(X); the effective molecular
potential represents attraction for singlet states (ionized
parahydrogen), instability for triplets (derived from ortho-
hydrogen); (2), L =1, 3, ~ ~ ~; J'b(X+() F(()d(= —F(X);
and the roles of the ortho- and parahydrogen molecular ion
are interchanged.

If p is the exact wave function for the ground state, Ep,
of the hydrogen atom, we have

—(A'/2m) &'D(X) =BOD(X) —X(X)
and the wave equation (53) can be put in a form which
exhibits the usual Heitler-London molecular potential:

e' J&E
(1~D) ~(jp/3f) Q~F+ (F—Zo) F= + F. (63)

fX/ 1WD

In addition we also have four quartet states built on triplet
states of the two protons. These are like (43) in spin
dependence, and have the same coordinate dependence
as 4'3.

The different spin dependence of atomic and nuclear
forces governed the just mentioned changes in the spin part
of the compound wave function, changes which had nothing
to do, however, with the decrease of the mass of particle 3
from M to m = M/1839. At the end of the latter transition,
in the limit m/M~O, the separation of particle 1 from
group (23), namely, Xr=(Mxg+mx3)/(35+m) —xj, ap-
proaches the negative of the complementary separation
Xzz. The calculation of the energy of the system in this
limit is very simple and gives the same type of expression
as occurred in the nuclear problem, (Eq. (45)},with k'/M
as coefficient of the kinetic energy term and

V(X) =I(X)+e'/)X),
I(X, g) =b(X+))L2X(X)+D(X)e'/[X[

—A'/2m&'D(X) j,
(61)
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TABLE V. Table for determining the character ratios y(Z)/x(E), x(3)/x(B), X(4)/~(E), y{Z')/y(E) for certan simple
partitions. Example: For the partition (t+I)'t of the number n =4t+3, x{Z)/x(B) = (4t' —lot —6)/n{n —l).

n!x(2)/
(n —2)!x(E) n!x(3)/(n —3)!x(E) n!x(4)/(n —4)!x(E) !x(2')/( —4)!x(E)

PARTITION
(SPIN)

AD JOINT
(COORDI-

NATE)
ORDER

n t2 t 1 t3 1 t» t3 tm 1 t4 t3 tm t 1

t4

(t+ 1)4t~

(t + 1)&t&

(t+1)st
(t+2) t3
(t+2) (t+ 1)t2
(t+2)&tm
(t+2}(i+1)&t

(t+2)2(t+1)t
(t+2) st

4t
4'1
4'2
4'3
4'12
4'21
4t22
4'31
4'32
4'32

4t
4t+1
4t+2
4t+3
4t+2
4t+3
4t+4
4t+4
4t+5
4t+6

4 —16
4 —14
4 —12
4 —10
4 —12
4 —10
4 —8
4 —8
4 -6
4 —4

0 4
0 4—2 4

+2 4
0 4
0 4—4-4 4—6 4

—48 +68—45 +56—42 +38—39 +14—42. +50—39 +32—36 +20—36 +8-33 —4—30 -22

p 4
0 4
0 4

+6 4
0 4—3 4—12 4
0 4—12 4

-24 4

—96 +404—92 +356—88 +296—84 +224—88 +320—84 +260—80 +212—80 +188—76 +140—72 +80

—336—268—172—24—236—156—136—24
-20
+12

0 16 —144 +416 —264 p
. 0 16 —128 +344 —232 0

0 16 —112 +264 —128 0
0 16 —96 +176 +24 0
0 16 . —112 +296 —272 0
0 16 -96 +224 —168 0
0 16 —80 +176 —136 +24

+8 16 —80 +144 —24 —8
+24 16 —64 +104 —8 +24
+72 16 —48 +56 +48 +72

That the factor {1~D) ' occurs in (63), although absent
in the customary molecular treatment, is due to the fact
that we have consistently applied the variation principle.
Indeed, without this factor, the wave functions + derived
from I"s for two different energies would not have the
proper orthogonality. The modification which the above
factor introduces in the mass of the system gives an

improvement, in principle, on the H —L approximation.
Although the Born-Oppenheimer theory' requires use of the
customary value for the reduced mass, this does not contra-
dict our conclusions, for this theory assumes an accurate
calculation of the molecular potential.

APPENDIX II. TWO-7 THREE- AND FOUR-BODY LONG

RANGE ExcHANGE FoRcEs

A number of important consequences were drawn by
Kigner2' by considering a Hamiltonian arising from long

range two-body interactions, linear combinations of or-
dinary and Majorana forces, equal between all pairs of
particles:

~=PL ~o ~(~j)7- {64)

The symbol (ij) represents the Majorana coordinate
exchange operator. The J's are numerical constants. The
expression

II= 2 L
—~o —~('j)3+ 2 L I:. &(~ik)j- —

pairs triples

+ E $ Lo L(ij kl) $— —
quadruples

+ Q L
—Mo 7d(ij)(kl) j (65)—

double pairs

represents the corresponding Hamiltonian operator if
forces exist between larger groups of particles, The permu-
tations are defined by equations like

{sgk)u(x, .x;. ~ x" .x - )
=u(xI . . ~ xt x" x ) (66)

In terms of the number, n, of particles and the characters, g,
of the representation of the symmetric group, H to which

the coordinate part of the wave function belongs, the
energy, W; of the system is given exactly by

g = L
—Jp —Jx(2)/y(B) jn(n 1)/2

+L
—&p —E'x{3)/x(E) jn(n —1)(n —2)/6

+L
—Lp —Lx{4)/x(E)]n(n —1)(n —2) (n —3)/24

+L-~.-~x(2)/x(~) i
&(n(n —1)(n —2) (n —3)/8. (67)

From Table V one finds that exact saturation requires
that

Mp ———j/I/16, Lp=L/64, M= L/4, Xp ———IC/16,
Jp = J/4+45%/48+ 575L/512,

J, X, and I being arbitrary. Under these conditions, the
normal energy level of the system is given by
—H/'= n(15J/8+ 75K/32+ 915L/768) (n =4E)

=n(15J/8+ 90%/32 1945L/768)
—(15J/8+90%/32+ 6750L/768) (n =4K+1)

=n(15J/8+ 95%/32+ 1195L/768)
—(20J/8+160%/32+ 2000L/768) (n =4K+2)

=n(15J/8+90X/32+ 1305L/768)
—(15J/8+150%/32+ 2745L/768)

(ri =4K+3) (68)

and when n=4N, the first excited level is determined by
—W= n(15J/8+107%/32+1363L/768)

—{32J/8+ 256E'/32+3584L/768), (69)

the partition being 4+4+ ~ ~ ~ +4+3+1. The excitation
energy

P'= 4J+(8—n) (X+7L/12) (70)

corresponds in the case of actual nuclei to the diR'erence of
binding energies in pairs such as 3Li', 4Be'. Allowance being
made in the experimental values for electrostatic energy,
this difference does not change by as much as 50 percent in
the light nuclei up to n = 16, whence

)X+7L/12[ (J/8. (71)
From the almost periodic manner in which the binding
energy of )ight nuclei is observed to vary with atomic
number, we conclude by the same type of argument that
X and L individually cannot exceed approximately 10
percent of J. In conclusion: if a mixture of two-, three-,
and four-body exchange and ordinary forces is to account
for the characteristic features of nuclear structure, the
two-body forces must be responsible for at least 90 percent
of the binding energy of the light nuclei up to oxygen,
provided first, that the forces are of long range, and second,
that they do not depend on velocity.


