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One of the most interesting aspects of the
mutual agreement of the logarithmic curves
consists in the inference that the horizontal dis-

placements necessary to bring the curves to
coincidence are identical with the differences
(k/e)Av. On this basis, it appears possible to
determine h/e from empirical energy distribution
curves which are not in agreement with the
Fowler-DuBridge theory. This procedure would,
of course, be considerably strengthened by an
adequate theoretical explanation of the shape of
these curves. Meanwhile it may be of interest to
note that an evaluation of the present data from
this point of view gave k/e values within one

percent of Birge's" weighted mean. A further
increase in accuracy would thus open the possi-
bility of using empirical curves of this type for a
precise photoelectric redetermination of h/e.
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The probability of ejection of an electron in the surface photo-effect is expressed in terms
of a function of the potential barrier, the energy of the electron after ejection, and the fre-
quency. This function is dominated, for low energies of ejection, by the transmission coefficient
of the surface. It is then assumed that the function can be expanded in a power series in
terms of the energy of the electron after ejection. In calculating the total emitted current it is
shown that the power series development leads to a series of distinctive functions expressing
the current in terms of the frequency and the stopping potential. Each of these functions has
its own temperature dependence, so that from a complete knowledge of the energy distribu-
tion and the temperature dependence of the emitted current it would be possible to draw
conclusions as to the nature of the potential barriers. By comparing the theoretical expres-
sions with the observed curves of Overhage, and of Mann and DuBridge, it is possible to
conclude that the transmission coefficient of Overhage's anode and of the sodium cathode used
by Mann and DuBridge vanished linearly with the diminishing energy of the ejected electrons.
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INCE the development of the quantum
theory of solids various attempts have been

made to give a theoretical account of the
photoelectric emission from metals. The general
problem can be divided into two parts which have
frequently been treated separately. The first part
concerns the interaction of the light with the
electrons in the metal and the computation of the
probability of ejection. The second part concerns
the effect of the statistical distribution of the
electrons in the metal on the distribution in
energy of those ejected, and the effect of the
temperature on the photo-current.

Perhaps the outstanding conclusion from the
study of the first problem wap the recognition by
Tamm and Schubin' of the distinction between.
the surface effect and the volume effect. They
pointed out that it is the interaction of the free,
or conduction electrons, with the surface po-
tential barrier which makes possible the simul-

taneous conservation of energy and momentum
in the interaction. This cleared up a difficulty of
long standing which had been emphasized by

' I. Tamm and S. Schubin, Zeits. f. Physik 68, 97 (1931).
Also H. Frohlich, Ann. d. Physik 7', 103 (1930).
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Millikan. ' The experimental evidence shows
quite clearly that the photoelectrons have been
free within the metal and have been bound by
the surface work function only, and yet the
theory also shows that truly free electrons can
not absorb the radiation. The recognition that
the surface potential barrier provides sufficient
binding to satisfy the theoretical requirements,
cleared up the difficulty. In the volume effect, on
the other hand, the conservation of energy and
momentum is made possible by the binding of the
electrons to the atoms in the crystal lattice.
Tamm and Schubin gave reasons for believing
that the se1ection rules imposed by the periodic
structure of the lattice, prevent the onset of the
volume effect until a frequency is reached which
is considerably higher than that required for the
surface effect. Although this conclusion was
based on considerations which it is very difficult
to make precise, it seems probable that near the
long wave-length limit, and in the high energies of
the ejected electrons, the volume effect can be
neglected entirely.

Mitchell' has criticized the work of Tamm and
Schubin in some of its details without, however,
changing the major conclusions. He also extended
the treatment to the case of a potential barrier
representing an image field. The first part of this
paper will be devoted to the extension of
Mitchell's treatment to the case in which the
form of the potential barrier is not specifically
given, and it will be shown that some conclusions
about the barrier can be drawn from the observed
currents.

The second part of the problem has been
treated by Fowler and by DuBridge. ' In these

- treatments various assumptions were made as to
the probability of excitation of the electrons, and
the assumptions were based to some extent on the
possibility of integrating the resulting expressions.
These assumptions have been analyzed and
classified by Rudberg. ' Mitchell also worked out
this part of the problem on the basis of his results
from the study of excitation probabilities, and

' R. A. Millikan, Phys. Rev. 18, 236 (1921).' K. Mitchell, Proc. Roy. Soc. A146, 442 (1934); Proc.
Carnb. Phil. Soc. 31, 416 (1935).

4 R, H. Fowler, Phys. Rev. 38, 45 (1931); L. A. Du-
Bridge, Phys. Rev. 39, 108 (1932).' E. Rudberg, Phys. Rev. 48, 811 (1935).

showed a connection between the form of the
transmission coefficient of the surface and the
temperature dependence of the photo-current.
near the threshold. In the second part of this
paper the distribution of energies normal to the
surface will be calculated, and the dependence of
this distribution on the form of the potential
barrier will be discussed.

The third part will be concerned with the
application of the theory to the experimental
results, especially those described by Overhage in
the accompanying paper. The fact that the
distribution of normal energies measured by a
retarding potential should, in the high energy
region, be essentially independent of the cathode
potential barrier makes it necessary to invoke
some other factor to explain the observations.
This factor is the potential barrier on the anode,
and it is possible to draw some conclusions as to
the transmission of this barrier from a considera-
tion of the observed energy distribution.

PART I. PROBAB II.ITY OF EXCITATION

In treating the surface photo-effect it will be
assumed that the problem is essentially one-
dimensional. This is justified by the fact that
a change in electron energy parallel to the surface
is subject to the restrictions of the volume
photo-effect, and may be expected to require
frequencies considerably higher than the ordinary
threshold. It is also true that an absorption of
energy in the motion parallel to the surface
reduces the energy available normal to the
surface. For both of these reasons this possibility
can be neglected near the threshold. In addition
it will be assumed that the potential inside the
metal is constant, and that the periodic structure
is unimportant. This, also, is to be justified on the
basis of the selection rules for the volume effect
and the restriction of the results to apply to the
surface effect.

Consider then a one-dimensional potential
field in which three regions are to be distinguished:

Region I x(0, V(x) = —W,
Region II 0(x(xo, U(x) arbitrary,
Region III xo(x, V(x) =0.

For regions I and III the stationary state wave
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ln region I from x = —~ to x =0 the functions
The constants af and bf could be evaluated for are known, and with a convergence factor as used
any specified form of the potential in region II. by Mitchell the integration gives
Also for E~ &0, in region I

A =2a cos 27rv(t+x cos 6/c), (2)

where 8 is the angle of incidence. If the resulting
wave function is u=uv. +v, with Nv. =gqe
v satisfies the equation'

(k'/2m) 8'v/Bx' (k/i) —(Bv/Bt) —Vv =

where k'=(2m/Iv')(W, +BI) and Bv, could be
determined for a specified potential in region II.

The problem is now to find the perturbation of
a given initial state nI, by a light wave whose
vector potential is

The remainder of the integral can be transformed
by using the properties of the functions as
expressed in the differential equation. Take the
equation for P„+"and multiply it by dP&/dx. Then
differentiate the equation for P& and multiply by
P,+*. By subtracting the second from the first,
integrating by parts, and using the original
differential equation it can be shown that

Iv

(&, &v) P,*— dx = (&~+C)4 A"*
p dX

dPv, dP„*
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Following exactly the procedure of Mitchell leads
to The quantity C is a mean value of the potential
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With the known values of the functions at x = 0
Corresponding to this value of v is a current, the matrix element is
when x)xp, given by

=(4m'me/hr)
I (k la, l

r)+I'I b„+I'. (5) Inserting this value of the matrix element the
current from this one initi'al state is

where the transmission coefficient' The signs of this equation diR'er from those given by
Mitchell because of the consistent use of the opposite
convention for the sign of k/i. D(r) =(rig) Ib, l'

On the assumption that the wave-length of the
light is long compared with the thickness of the j.= (s'/&~)(s/m~)(a. /kv)'I a'~ I'
potential barrier, so that the vector potential X I

W. —Cl' cos' BvD(r)/g, (8)
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Let
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~

' cos' B~D(r)/g = F(E v) k(h'/2m). (9)

The component parts of I are all functions of k

and r, and so can be expressed as functions of

E,. and v.

The computation of F(E„,v) can always be
carried out by suitable approximation methods if

the potential is specified, although in using a
W.K.B.approximation care must be taken not to
neglect the reHection. For potential barriers made

of discontinuities the function can be given

exactly in relatively simple form. For a simple

discontinuity region II shrinks to zero and

F(E„,v) =4(W,+E„—hv) '*W,E„'*/
{(E,+W ) l+E,.l}'. (9a)

For small values of Z„this varies as B„&due to
the form of the transmission coefficient. The
variation of the other factors is of little
importance.

In case the potential rises from —W to +8 at
x =0, and then drops to zero at x =d, the exact
form of F(E„,v) is more complicated. In the
important case in which the energy of the bound
state is enough less than zero and the thickness
of the barrier is not too small

with

F(E„,v) = (W.+B)'(W h.v+E„)'*—D(E,)/W. (W.+E,)
4(B E)(E+ W—.) ~E i

D(E) =
(ByW.)B cosh' {(2m/5')(B —E) }~d —{E'*(E+W) **B+E}'— (9b)

In each of these cases the behavior at B„=Ois
governed by the behavior of the transmission
coefficient. In cases in which the potential does
not vary too rapidly in the barrier the trans-
mission coefficient will approach a finite value
and the derivative will be finite. Under these
circumstances the function F(E„,v) can be de-

veloped in a power series in E„with coefficients
which are functions of v but can be expected not
to vary too rapidly with it.

PART II. CALCULATION OF OBSERVED CURRENT

Equation (8) gives the current due to the one
initial state in which the electron density is

~

n~~'. To determine the total photocurrent it is
necessary to insert the value of this density,
which is given by the Fermi statistics, and to
integrate over all of the initial states.

The Fermi distribution function gives the
electron density as a function of the energy, and
for strictly free electrons this can be expressed in
terms of the quantity k. The free electron
approximation is certainly very good for the
alkalis, but to make some allowance for possible
deviations from it let

E(k, k„,k.) =E(k'+k„'+k2)

such that if k'+k '+k '=s' and E(so') =hp,

s~ —sp =P(E—hv) +y(E —hv), (10)

where hv is the energy for which the Fermi
function gives a probability of —,. With the
potentials used here p(0. Eq. (10) imposes a
condition of spherical symmetry on the energy
which is probably satisfied in the region of
importance. It may be regarded as the first part
of a series expansion in which s' is expressed as a
function of E. s' is expressed as a series in E
rather than E as a series in s' in order that the
required derivatives shall have a simple form.

Let
A = (he'/8m'c') (a,/hv)',
w= {E(k'+p') —hp}/r(T,
y= {E(k')—hr }/rT,
p'=k '+k '.

J=2Az kdkF(E„,v)
"(P+2y~Tw)du

(e"+1)

The integration over k can be transformed to an
integration over E(k') by Eq. (10) and then to

Consider first the case in which the saturation
current is observed. All of the electrons which

penetrate the potential barrier of the cathode
will be collected and the total current can be
obtained by integrating over all of the electrons
with positive 8„.Thus
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one. over Z„,so if

Sg(y) = wdw/(e +1),

4,(x)=f yA Iog (1+e-"),

S~(y)dy.

J=Aa dE„F(E„,v) (P+2y&Ty)

X {p log (1+e v)+2y((TS, (y) }. (12)

The form of this integral will clearly depend
upon the form of the function F(E„v)which is
not known and which depends upon the surface
potential barrier, especially through the trans-
mission coefficient D. In the case of an image
field this transmission has a finite value at
E„=O.In the case of the discontinuous potentials
mentioned above the transmission vanishes at
A =0 and increases with E,.: above it until in the
second case the exponential factor becomes domi-
nant. It seems probable that the increase with
El is largely due to the nonphysical discon-
tinuities introduced into the assumed potential;
and that in most cases a form of F(E„,v) can be
expected which can be expanded in a Taylor
series above the point E,.=O. At least let us
assume this to be the case and let

In the other case in which only part of the
electrons are collected because of the use of a
retarding field it is necessary to integrate not
from E„=O,but from the minimum value of E„
with which an electron can reach the anode. Let
this minimum value be Ve. It is also necessary to
take account of the reflection at the surface of
the anode since its potential barrier also will, in

general, transmit only a part of the electrons.
Let R(E,—Ue) be the anode transmission coeffi-

cient, and assume that this can be expanded
about the point 8„=Ve. Then the observed
current will be

I= A (~T)' dy {R(0)+R'(0) (y+x') + }
—x.I

X {F(0,v)+&T(y+x) F'(0, v)+

X(P+2y~Ty) {Plog (1+e v)+2y~TS&(y) }

=A(zT)'{Io'+vTI, '+

p(E v) F(0 v) +E p (0 v) + (13) whe"e Io' ——P'R(0) F(0, v)@0(x'),

where

E,/I(T=y+(hv+. hv)/aT=y+x,

x=+(hv+hr)/AT

Eq. (12) then becomes

From the conservation of energy
I,' =P' {R (0)F'(0, v) +R' (0)F(0, v) }

X {&,(x')+x'C, (x') }

+P'R(0) F'(0, v) (x—x')4 p(x')

+2P7R(0)p(0 ) {C' (x')+O (x') }

and x'=+(hv+hv —Ue).

J= 1

=A (~T)'{I,+zTIg+
C g(x) = —x(e*—e"/4+e'*/9 — )

A(((T)' dy{F(0, v)+((T(y+x)F (0, v) The various integrals in Eqs. (14) and (15) can
be easily evaluated after expansion of the inte-

+ }(p+2y~Ty){plog(1+e v)+2v~TS(y)} grands in series. The function Co is just that
given by Fowler. For x(0,

with Io P'F(0, v) dy log (——1+e ")
+ (e~ —e'*/8+ e'*/27 — )

=p'F(0, v)C o(x), and for x & 0,

Ig ——P'F'(0, v)(Cg(x)+xCO(x) }

+2Pyp(0, v) {C,(x)+O, (x) },

Cg(x) = —x'/3+x(e ' —e '*/4+e "/9 —. . )

+ (e
—' —e-'*/8+ e-"/27 — ) .
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TABLE I

4 p(x) 41+XC P LOG (C&1+XCP)

—5 0.00673
0 0 8225
5 14.138

10 51.645
15 114.15
20 201.65
25 314.14
30 451.64

0.04039
0.9014—41.660—333.33—1125.00—2666.67—5208.3—9000.0

0.00674
0.9014

29.030
183.12
587.3

1366.3
2645.2
4549.2

—2.171—0.045
+1.463
+2.263
+2.769
+3.135
+3.422
+3.658

A few values of these functions are given in

Table I.

PART III. APPLIcATIQN To ExPERIMENTAL

RESULTS

Equations (14) and (15) indicate a number of
possible forms of observed current as a function
of the variable x. The form to be expected in any
particular case depends upon the characteristics
of the cathode and the anode as expressed in the
functions F(F„,v) and R(E„Ve).By corn—pari-
son of the observed curves with the various
theoretical functions one can attempt to draw
some conclusions as to the surfaces.

The work of Overhage described in the ac-
companying paper is characterized by two facts.
First, the observations are clearly not to be
fitted to the curve Co(x). Second, the curves for
different frequencies can be superimposed with
considerable accuracy. These two facts can both
be accounted for on the assumption that R(0) =0.
This leads to the equation

J=A(vT)'P'R'(0)F(0, v)

y {C,(x')+x'C, (x') }. (16)

In this expression a11 of the dependence upon v is
in A and F(0, v) which occur in the multiplicative
factor. When the logarithms of both sides are
taken this dependence upon v will affect the
shift necessary for each frequency, but will not at
all affect the shape of the curve. Fig. 1 shows the
theoretical curve of log {C»(x)+xC'p(x) } plotted
against x. Superposed on it are points taken from
Overhage's composite curve of log I against
Ve/~T after the necessary horizontal and vertical
displacements have been made. The agreement is
sukciently good to give one some confidence in

the correctness of the suggested explanation.
Furthermore, in view of the fact that the anode

work function was apparently considerably re-
duced by a very thin layer of sodium on it, it is
not surprising that the transmission coefficient of
the barrier should approach zero gradually rather
than stopping suddenly.

If it were possible to keep the surfaces of the
electrodes, and the work functions, unchanged
during a change of temperature, the temperature
dependence at the threshold should show a
variation with T' rather than with T'. Although
an observation of this point would be very
interesting it probably presents grave experi-
mental difficulties because of the tendency of a
complex surface to change with the tempera-
ture. 7 Mitchell indicated that the temperature
dependence might be expressible in terms of T&

on the ground that the transmission coeScient
should be expressed as a series in r rather than K
Investigation of this point would certainly throw
some light upon the nature of the surface.

Although the agreement between the experi-
mental points and the theoretical curve in Fig. 1

is quite good, there is a definite systematic

0

-5
C

'0 5 10 y, 15 20

Frr.. 1. The solid curve is log I41(x)+x@0(x)I plotted
against x. The points are taken from the composite curve
given by Overhage in the accompanying paper.

' In a paper which has just appeared, Cashman has
shown that the observed temperature variation of the
photo-current at the threshold is not of the type required
by any theory, and has attributed the difference to a tern-
perature dependence of the work function. Whether or not
this is a complete explanation, it is a factor which must
certainly be considered, and which will complicate the
interpretation, of the observed currents. Phys. Rev. 52,
512 (1937).
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FIG. 2. The curve is log ICI(x)+x@0(x)I plotted against
x. The points are taken from those published by Mann
and DuBridge for sodium.

discrepancy, especi. ally at the lower end. This is,
of course, the region in which the measured cur-
rents are very small and where some experimental
error is to be expected. If, however, this dis-
crepancy is regarded as significant, it indicates
that the terms in the next power of aT are im-
portant. In fact, if to the function {4'&(x)+xCo(x) I

there is added (1/10)J'",(y+x) log (1—e &)dy,
the agreement can be made almost perfect. It is
questionable, however, whether the data is such
as to justify so detailed a treatment.

Other observations on the photocurrent from
sodium which show a lack of agreement with the
simple theory have been published by Mann and
DuBridge. ' Since they were observing the satura-

' Mann and DuBridge, Phys. Rev. 51, 120 (1937).

tion current as a function of frequency Eq. (14)
should apply. Fig. 2 shows log {4&&+xCO} plotted
against x and compared with some points taken
from their published curve. The agreement is
very similar to that in Fig. 1 and would indicate
that the transmission coefficient of the sodium
surface which they were using increased, from
zero with the first, and possibly a small contri-
bution from the second, power of the energy.
Correspondingly the current at the threshold
should have been roughly proportional to T'.

In these two cases it is unnecessary to invoke
the constant y to satisfy the observations. This is
certainly what was to be expected in the case of
the alkalis, although for some other substances it
may be necessary. The value of P must then be
(2m)'/A. One can also conclude that in the
considerable number of substances for which the
observed currents have been shown to follow the
Fowler curve, the transmission. coefficient is
roughly constant above the threshold. This
seems to be true rather generally for the heavy
metals in very pure condition.

It thus seems possible to determine from the
energy distribution of the photoelectrons and
from the spectral distribution of the photocurrent
something about the nature of the potential
barriers on the cathode and on the anode. It
may also be possible to study the effect of alkalis,
or of oxides, on the surfaces of pure metals by
observing the change of the distributions with
time.


