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where

U(r„) = —J'(H„(r—r„) m, (r))dr,

H„(r) =curl (p„)&r)/r'

is the magnetic field of the neutron with magnetic moment

p and where the integral is to be extended over the volume

outside the surface S. m, is the well-known polarization
vector of Maxwell's theory, connected with the stationary
current density i, of the atomic electrons by the relation
i, =c curl m, . Accepting the law of action and reaction
between neutron and electrons the expression (1) follows

immediately from the force 1/c(i, P H )d ~ acting on the
volume element dr of the atom. We notice further that
the total magnetic moment of the atom is given by

(1/2c) J'(i, &&r)dr = J'm+7. . (2)

The values of i, and m, are to be taken as the expectation
values of the corresponding operators in a stationary state
of the atom; the above equations are then just as valid as
in classical theory. 2

Treating the scattering of the neutron, due to the
potential (1) by the usual Born approximation and
assuming that the nuclear cross section O„per unit solid

angle is small compared to the square of the neutron wave-

length the total cross section per unit solid angle is now

On the Magnetic Scattering of Neutrons. II
Some time ago' we have shown that the scattering of

slow neutrons in magnetized matter should depend notice-
ably on their magnetic moment. In deriving a formula for
this effect, it was assumed that the neutron could be
treated as a true magnetic dipole; at present the interior
properties of heavy particles are not known well enough to
decide whether this assumption, or any other, is justified;
but it is interesting to notice that the physical nature of
the neutron moment has an influence on the magnetic
scattering, marked enough to be decided experimentally.

To obtain a unique theoretical answer it is in fact not
sufficient to treat the neutron as a mass point, carrying an
angular momentum and a magnetic moment, since this
would lead to a magnetic field of the neutron, singular at
the position point in such a way as to make the result on

that basis ambiguous. To illustrate the situation, let us

consider a case in which the electron currents of the
scattering atom are flowing only outside a closed surface S,
surrounding the neutron. We shall see that the geometrical

shape of this surface matters for the result even in the
limit in which its linear dimensions are small compared to
the wave-length of the neutron and the radius of the atom,
both entering in a first-order treatment of the scattering
process. This exclusion of the interior of S is, of course,
not meant as a physical model; in fact with our present
knowledge it is impossible to give such a model as soon as
the linear dimensions of S become comparable to those of
the neutron itself or to the electron radius. The exclusion

is merely introduced as a device to separate the origin of

any ambiguities from well-established facts.
In this case the force acting on a neutron at a position

r„ is the negative gradient of a potential

easily found to be
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with C= (1/4 )J'(zds, /r'). (4)

y, and y are the magnitudes of p, measured in Bohr
magnetons and p„measured in nuclear magnetons, re-

spectively; q is the difference between the vectors of

propagation of the incident and scattered neutron wave,

and the plus or minus sign in (3) is valid according to the
two possible orientations of the neutron moment with

respect to p.. The integral (4) is to be taken around the
origin over the surface S, which is supposed here to extend
over linear dimensions, small compared to 1/9; ds, is the
z component of a vector in the direction of the external
normal to S with magnitude equal to the surface element.

In the limit, where the neutron wave-length is large com-

pared to the linear dimensions of the atom the quantity

p„. in (3) becomes simply the magnetic moment of the atom
in Bohr magnetons and the z axis points in the direction

of magnetization. The characteristic constant C depends
then solely on the shape of the surface S: If, for example,
one chooses S to be a sphere, one finds C= -'; choosing S as

a cylinder with height h and radius R around the z axis,
one has the two limiting cases

(a) R&(A. This corresponds to treating the neutron as a
true dipole and gives C=O, i.e., our result, obtained in I.

(b) R»A. This corresponds to treating the neutron as a
little amperian current and gives C=1, i.e., Schwinger's

result. s

An assumption about the interaction between nuclear

magnetic moments and atomic electrons, analogous to the
choice (b) underlies the usual calculations of hyperfine

structures and is experimentally supported for the proton
and the deuteron by the agreement of the results for their
magnetic moments obtained by the Stern-Estermann and

Rabi methods. What choice has to be made for the neutron

is not a priori certain and therefore the value of the

constant C should be left open. Since it appears in (3)
together with a strongly angle dependent term, one may

hope to determine this constant experimentally by directly

measuring the angular distribution of slow neutrons,

scattered in their passage through magnetized matter.
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i Bloch, Phys. Rev. 50, 259 (1936).Here referred to as "I".
~ If in the light of these considerations one examines a recent paper

by J. S. Schwinger (Phys. Rev. Sl, 544 (1937)) one finds that his result
for the magnetic scattering is not essentially based on the use of the
Dirac operator for the electron current but on the assumption, implicit
in the form chosen for the energy of the neutron in the magnetic field of
the atomic electrons, that the neutron can be treated as a little amperian
current.

3This result has been kindly communicated to me by Mr. M.
Bronstein, who obtained it by introducing polar coordinates around the
neutron and first integrating over the angles.

Here we have arbitrarily chosen as z axis the direction of
the vector

p, (q) = J'm, .(r)e'«")dr.


