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In order to test the present assumptions on nuclear
forces, the theory is applied to the nuclei in which the
first p shell of protons and neutrons is being built up, i.e.,
to the nuclei with masses between 5 and 16. The Hartree-
Fock approximation is used for the numerical calculations,
but the more qualitative results are independent to a large
degree of the approximations used. The angular momenta
of the ground states appear to be given correctly by the
theory. Although the wave-functions used do not corre-
spond to preformed alpha-particles, the first-order energies
exhibit a marked four-shell structure. The experimental

energy difference between the nuclear pairs (N, N+1),
(N+1, N) may possibly be somewhat larger than the
difference in the electrostatic energies. Support for the
use of spin exchange (Heisenberg) forces to account for
the singlet-triplet separation in the deuteron is found in
the singlet-triplet separation inferred from the Li' —He'
normal state energy difference. However, the B' —Be"and
N'4 —C'4 normal state differences do not fit the simple
theory which is adequate for the singlet-triplet spacing
in the two and six particle problems.

I. INTRQDUcTIoN

(1 g)A„e """o'P=(1 —g)A„e "'P —(1a)

for the Majorana force and

gA „,e "'PQ— (1b)

for the Heisenberg force between unlike particles.
Here A„=72 mc', ro ——2.25 10 ' cm, g=0.22

and n= 16 if r is measured in units of 5/c(3IIm) '*

=8.97 10 "cm.
The forces between like particles are less well

* Now at the Institute for Advanced Study.
f Now at Princeton University.'E. Feenberg and J. K. Knipp, Phys. Rev. 48, 906

(1935). E. Feenberg and S. S. Share, Phys. Rev. 50, 253
(1936).

T is generally accepted now that the explana-
tion of the binding energies and scattering

properties of the nuclei n, H', H', H', He', He4

requires several kinds of forces. ' The forces
which are generally assumed at present between
a proton and a neutron ("between unlike parti-
cles") are: (1) a "Majorana force" involving an
exchange P of the Cartesian coordinates of
the two particles and (2) a "Heisenberg force"
involving the product of a Cartesian coordinate
exchange P and a spin coordinate exchange Q.
The Heisenberg force has about 4 the depth of
the Majorana force and the same range of action.
For all present calculations the exact dependence
of the potential on distance seems to be relatively
unimportant and we shall use, for the sake of
convenience, the usual

known. Between pairs of protons and pairs of
neutrons one assumes a potential with a depth
A„„=41 mc' and the same width as between
unlike particles. ' This force is either assumed
to involve an exchange P of the Cartesian
coordinates

A „,,e "'P (2a)

or else the scalar product of their spin operators:

—-', A„„e "'(0g 0.2). (2b)

The latter possibility can be considered, be-
cause of Dirac's identity for antisymmetric
wave functions'

3 (0 1' 0 2) = 3+ 3P12~

95

as the sum of an ordinary and an exchange force.
It is undecided, at present, which of the two
forms of interaction deserves preference. In fact
it has been proposed' to assume interactions
which would give equal attractions between
pairs of like and unlike particles in the singlet
state. KVe obtain a problem having this property
by assuming for the interaction between like
particles the same forces as between unlike
particles:4

(1—g)A„,e «"'P+gA„,e ~"'PQ (2c)
' Cf. P. A. M. Dirac, Quantum Mechanics (Oxford,

1935), $19, )61; J. H. Van Vleck, Phys. Rev. 48, 367
(1935).

'G. Breit and E. U. Condon, private communications.
4 The assumption that the forces between all kinds of

particles are the same was first put forward by L. A.
Young, Phys. Rev. 47, 972 (1935).
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For like particles the second part of this expres-
sion can be wr&tten, because of the antisymmetry
of the wave function in the coordinates of the
protons (or neutrons), as an ordinary repulsive
force —gA„„e "'. We shall consider this "all
forces equal model" because it is at least a useful
approximation, the properties of which in some
cases, can be discussed with greater ease' than
the properties of a model with forces (2a) or (2b).
In addition to the forces (2), there are between
protons the electrostatic forces and also the
ordinary spin-orbit and spin-spin interactions are
generally assumed to exist. These latter inter-
actions seem to play only a minor role in nuclear
problems.

Of course, it is most probable that the inter-
action of the constituents of nuclei cannot be
described at all rigorously by a Schrodinger
equation, the variables of which are the Car-
tesian and spin coordinates of the protons and
neutrons only. A similar description is impossible,
strictly speaking, for the extranuclear electrons
also. The cause of the interaction is probably
some field in both cases—the electromagnetic
field of light quanta in the second case and,
perhaps, the electron-neutrino field in the first
case. The elimination of the field variables is
possible always in a certain approximation only
and breaks down in a higher order approxima-
tion. This is manifested by the phenomena of
spontaneous emission and line width for the
extranuclear electrons and by the P disintegra-
tion, for example, in the case of nuclear con-
stituents. Nevertheless, the usual Schrodinger
equation gives a practically perfect description of
atomic states and it may be hoped that a similar
equation exists for the nuclear constituents also.

We shall attempt here to find experimental
criteria which can be used to answer the following
three questions:

(1) Whether or not the difference between proton-proton
and neutron-neutron interaction is only the Coulomb force.

(2) Whether (2a), (2b) or (2c) is the more correct form
for this interaction.

(3) Whether or not the assumption is correct that the
neutron-proton interaction operator is a linear combination
of Majorana and Heisenberg terms.

Before examining these questions we apply
the Hartree-Fock approximation method to the

~ It is equivalent to approximation (2)" of the paper
of one of the present writers in this issue.

light nuclei between and including Li' and 0"
and perform the same calculation for the posi-
tion of the terms arising from the lowest con-
figuration which Slater' has made for atomic
spectra.

II. HARTREE-FocK CALcULATIQNs

It is well known that the Hartree-Fock method
gives only very roughly correct solutions of the
nuclear wave equation. This has been pointed
out by Weizsacker, FlCigge and Heisenberg' for
the older models (no interaction between like
particles). It is true, however, also for the forces
(I) and (2), though to a somewhat lesser degree.
Bethe and Bacher' performed similar calcula-
tions for both light and heavy nuclei using the
newer model with the result that the method
gives practically no binding energy for the ob-
served nuclear densities. Since the Schrodinger
equation without doubt has solutions with
much lower characteristic values at the same
densities (conglomerates of slightly compressed
alpha-particles), the result obtained by Bethe
and Bacher must be interpreted as revealing the
inaccuracy of the Hartree approximation in
nuclear problems. Considering the great similar-
ity between the nuclear and metallic wave
equations and the importance of the correlation
energy in the latter, ' this is not surprising.

TABLE I. Binding energies of elements with masses between
4 and 16.

n2=0 1

0 He 55
1 Li 62
2 Be
3 B
4 C
5 N
6 0

56
76 89

109 113
110 125

141 202
222
246

126
147 153
176 186
180 201

215

'Cf. E. U. Condon and G. Shortley, The Theory of
Atomic Spectra (Cambridge, 1936). In the Hartree approxi-
mation the nuclei of the group He' —0" are obtained by
successive additions to the p shell which is completed at0". This has been first pointed out by J. H. Bartlett,
Nature 130, 165 (1932). Cf. also his letter in the Phys.
Rev. 41, 370 (1932) and G. Gamow, Zeits. f. Physik 89,
592 (1934) and especially W. M. Elsasser, J. de phys. 4,
549 (1933);5, 389 and 635 (1934).

7 C. F. v. Weizsacker, Zeits. f. Physik 96, 431 (1935);
S. Fliigge, p. 459; W. Heisenberg, p. 473.

'H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82
(1936).' It is more than half of the binding energy in Na.
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Nevertheless, it can be expected that in the case
of light nuclei the order of the terms will be
given correctly by such a calculation. This is true
for the corresponding atomic spectra' although
the calculated ratios of the term differences show
marked deviations from the experimental values.

Table I gives the elements with which we shall
be concerned; n1+2 is the number of protons,
n2+2 the number of neutrons. The figures in the
table are the binding energies' in units of mc'.
As long as we neglect the Coulomb forces, the
constitutions of elements symmetric with respect
to the main diagonal of the table are identical.
The theory of holes" gives us furthermore the
constitution of a nucleus from its mirror image
with respect to the other diagonal.

In this section we shall neglect the Heisenberg
forces. This makes the Hamiltonian operate on
the Cartesian coordinates only and both protons
and neutrons will have a "multiplicity"; each
resultant spin angular momentum will be a good
quantum number. In addition to these, we have
the total azimuthal quantum number. The pos-
sible terms for Be', for example, can be deter-
mined by combining every term of the configura-
tion s'p' of the protons with every term arising
from the configuration s'p' of the neutrons. "
The former terms are 'S, 'D, 'P, the latter ones
'P, 'D, 4S. Taken together these two configura-
tions yield for the whole nucleus the terms "P,
12D 14S 12P 12D 12P 12S 12P 12D 12@ 12/ 14D

"S, "P, "D, "P, "D, "F, "P. The first index
represents the multiplicity of the protons, the
second the multiplicity of the neutrons. (The
Heisenberg forces will introduce an interaction
between proton spin and neutron spin and split
many of these terms into several new ones. )

Since the number of terms is quite high, we
first want a quick orientation as to which of the
terms will be the lowest ones. It is clear that
most of the terms just enumerated lie high in the
continuous spectrum. We shall be interested in
the low terms only.

For this first orientation, we shall assume the
interaction between like particles to be the same

'" Computed from the mass values given by Bethe and
Livingston at the Cornell Nuclear Conference, July, 1936.
The C'4 value is taken from a paper by T. W. Bonner (same
conference).

"Cf. W. Heisenberg, Ann. d. Physik 10, 888 (1931);
G. Shortley, Phys. Rev. 43, 451 (1933).

'2 Cf. reference 8, Table XIV for a complete list of terms.

as that between unlike particles. This amounts to
assuming (1a) to be valid for all pairs of particles,
since the interaction (1b) involving the spin is
omitted in this section. We shall call this model
the "equal orbital forces model. " It does not
constitute a good approximation to either (1a)
and (2a) or to (1a) and (2b), but it is useful in
obtaining a first orientation.

In the equal orbital forces model, the Hamil-
tonian is symmetric in all particles and acts on the
Cartesian coordinates only. Four particles can
be in the same orbit, namely two protons and
two neutrons. Hence, not only those representa-
tions of the symmetric group will occur" which
occur in atomic spectra, but we shall have
representations with 1, 2 and also 3, 4 as addends.
The representations play a very great role in the
calculation of the potential energy, because the
interaction operator contains a permutation of
the particles.

The kinetic energy is the same for all wave
functions arising from the same configuration.

If P&, Pq, P, belong to a certain representa-
tion D of the symmetric (permutation) group
of n =n11n2 particles, we can calculate the
matrix elements of the potential energy

V,.= (P„(xg x„),

g J(x. xp)P.pg„(xi x—.)), (4)

which is equal to

because of the relations

P.zP„( ,xx.)+QD(nP)&, „P&(x, x„). (6)

Only those terms will be great in the sum (5)
for which ~=); in the other terms the positive
and negative regions will about cancel each
other. This canceling would be exact if the range
of the forces were very long: in this case J could
be taken out of the integral as a constant J(0)
and the remaining integral would vanish for
I~/X and be 1 for ~=).The whole V„„ is for very

"Cf. E. Wigner, Grup pentheorie etc. (Braunschweig,
1931), Chap. 13. The "all orbital forces equal" model is
equivalent to approximation (1) of the paper mentioned
in reference 5.
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TABLE II. The terms of a p" configuration which correspond
to a definite Partition.

TABLE III. Interaction energies between like particles.

p2 or m. 2 p3 or x3

2
SD
1/1

1+1
P—1/1

.3
F P
1/1

2+1
0/2

1+1+1
s—1/1

p4 p5

4 3+1 2+2 2+1+1 4+1 3+2 3+1+1 2+2+1
GDS FDP DS P PDFG FDP DS P

1/1 1/3 0/2 —1/3 2/4 1/5 0/6 —1/5 INTE'R-
ACTION p4 or ~4 p5 or n5 p5 or ~6

INTE&R-
ACTION 1S 1D 3P 2P 2D 4s

(2a) L+2K L —K —L+3K 5K 3K —3L+9K
(2b) L+2K L —K ( —L+3K)/3 L+2K L —I+3K

ORDINARY L +2K L —K L —3K 3L —4K 3L —6K 3L —9K
FoRcE

4+2
GF DDP

3/9

3+3
F P
1/5

4+1+1
FP
2/10

3+2+1
DP
0/16

2+2+2s—1/5

(2a)
(2b)

ORDINARY
FoRcE

ADD —L+8K to p'
ADD L+2K to p2
ADD SL —10K to p~

—2L+ 16K
2L+4K

10L—20K

—3L +24K
3L+6K

15L—30K

long range forces

The last sum has to be extended over all

n(n —1)/2 transpositions and is equal to
n(n —1)/2 times the character x(T) correspond-
ing a transposition, divided by the dimension

y(Z) =s of the representation:

U„„=J(0)(n(n —1)/2) y(T)/x(Z). (8)

This expression is independent of the detailed
shape of the wave function and depends only
on the representation D to which the wave
function belongs. The formulas for the characters
of representations'4show that it is greatest for that

.
'« I. Schur, Berl. Ber. (1908), p. 664. We found the

following formula most suitable for the calculation of
characters:

Here the symbol IXI, X2, Xpj is the character of a
permutation in the representation corresponding to the
partition ) 1+)~+ ~ ~ ~ +Xp =n. The left side gives the
character of the representation of the permutation group
of n elements, the right side contains characters of repre-
sentations of the permutation group of n —1 elements.
The formula holds for every permutation and can be used
as a recursive formula. On the right side, all symbols must
be omitted in which one number in the bracket is greater
than the preceding. If the last figure in a bracket is a zero,
it can be dropped. Thus, e.g. , for a transposition,

I4+1+1j = (3+1+1j+ I4+0+1 j+ I4+1+0j= I3+1+1j+ I4+1 j.
The values of these symbols can be obtained by a further
application of the recursive formula, since, for a transposi-
tion, all symbols can be reduced finally to I2 j and I 1+1j
which are +1 and —1, respectively. They are, fop a trans-
position, 0 and 2, so that the character corresponding to
a transposition in I4+1+1}is 2.

representation which contains as many 4's as
possible and in addition to these only one other
addend. The terms corresponding to this repre-
sentation will be called the "low terms. "

It is easy to determine the terms of a p" con-
figuration which correspond to a definite parti-
tion" and the result is given in Table II.
The last row contains x(T)/y(E). The four
s particles form a closed shell and contribute
the same amount of energy to every term of a
configuration.

We proceed now to the secular equations,
using (2a) and (2b) for the interaction between
like particles. The kinetic energy has been
omitted, because it is the same for all terms of the
same configuration. In the calculation of the
potential energy, the closed s shell has been
omitted for the same reason and the wave func-
tion for the p particles only used. To illustrate,
for Li' the configuration is px', the Greek letter
~ corresponding to the neutron, p to the proton.
First the wave functions for the diA'erent m' terms
'S, 'D, 'I' are written down. Then, for example,
to calculate the "I' term, wave functions with
the azimuthal quantum number 1 are constructed
from the proton wave function and the 'S
neutron function, and from the proton function
and the 'D neutron function. The spin functions
can always be omitted when calculating in this
way.

With this choice of wave functions, the inter-
action between like particles has only diagonal
elements, these being the sum of the energies
of the proton term and the neutron term used.
The matrix elements for the proton-neutron

"The simplest method for this is described in Section 4
of reference 3. (Cf. Table I there. )
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XR„(r')' J(~ r r'—~)drdr', (10)

where (x/r)R„(r) denotes the p wave function.
If there is any ambiguity we shall use L and E'
with the index vm if J signifies the interaction
between unlike particles, with an index vv if it is
the interaction between like particles, and with
an index c if J is the electrostatic potential.

The matrix elements for the interaction ener-
gies between like particles are tabulated in
Table III.

Table IV contains the matrix elements

I.= I I (x/r)'R~(r)'(x'/r')'R„(r')'

XJ(
~

r r'
~

)drd—r',

X=
~

(xy/r')R„(r)'(x'y'/r")

XR„(r')'J(
~

r r'
~

)drdr'—

by means of the identity

interaction must be calculated separately for f'

each case. I. 2E—=, ~ t (x r)'R„(r)'(y'/r')'

It is well known that all potential energy
integrals for the p" configuration can be expressed
in terms of the following two,

TABLE IV. Matrix elements of theinteraction between unlike particles. "

('P2P)»S L+2K,

(2P1D)»F 2L —2K,
('P'D)»D —L+4K,

Lis

(2P2P)»D L —K,

Li7

(2P2P)»P —L+3K

(2psp) 22D(2P2P)»P L+2K,
(2P'P) 2'S —2L+6K,

(iS2P) i2P
(1D2p) 12p
(1D2D) 12P

Bes

(iS2P) 12P. (lD2P)»p (1D2D) 12P

2L+4K 0 (20/3) $(L —K)
0 (L+17K)/2 —(49/12) &(L —K)

(20/3) & (L —K) —(49/12) &(L —K) (—L+23K)/2

(2P iS)2ip
(2P lD) 21P

(2P1S)21p
2 (L +2K) /3
(20)~ (L —K) /3

(2P1D)21P

(20) 5(L —K) /3
(L+14K)/3

(1S2D)12D
(1D2D) 12D
(lD2P) 12D

(1S2D)12D

2L+4K
0

2(L —K)

(iD2D) i2D

0
(L+17K)/2
(7/4) 5(L —K)

(lD2P) 12D

2(L —K)
(7/4) ~(L-K)
(3L+11K)/2

(isis)»s+
(1D1D) llS

Bes

(lSlS) 1lS

4(L +2K) /3
(80)&(L —K)/3

(iSiD)»D+

('S1D)1'D+ 4(2L+K)/3
('D'D)»D+

~
(56)&(L —K)/3

(1D1D)11G+ 4L —4K.

(1D1D)11S~

(80)$(L —K) /3
2(L+14K)/3

(1D'D) D+

(56}& L —K)/3
( —'L+23K)/3

(iD2P) i2F
(lD2D) 12F

(isis) lis
(1D1D)11S

(isis) iis

Be10

8(L+2K)/3—(80)& (L —K)/3

(iD2P) i2F

3L+K—25(L —K)

('D2D) '2G 4L —2K.

(1D1D)12F

—2$(L —K)
2L+4K

(iDiD) iiS

—(80)5(L —K)/3
( —8L +50K)/3

(2P2P) 22P
(2P2D) HP

(2P2D) 22D
(2P2P) 22D

Lis

(2P2P) 22P

(L+7K)/2
(15)5(L —K)/2

(2P2D) 22D

(L+7K)/2
35(L —K)/2

(2P2D}22F 2L —K.

(2P2D) Hp

(15}&(L—K) /2
(—L+13K)/2

(2P2P) 22D

35(L —K)/2
(3L+K)/2

(2P2P)»S
(2D2D) 22S

Blo

(2P2P) 22S (2D2D) 22S

2L+9K (15)&(L—K)
(15)5(L —K) 15K

('S'D —1D'S)»D ('S'D+1D1S)11D (1D'D)»D

(lS1D lD1S) 11D 4L +4K 0 0
(lS1D +1D1S)11D 0 (4L+20K) /3 (56)&(L —K)/3
(1D1D)11D 0 (56)~(L —K)/3 (5L+28K)/3

('D'D)»F 4L+4K, ('D'D)»G 4L.

(2P2P) 22D+ (2P2D+2D2P) 22D+ {2D2D)22D+

(2P2P)»D+ (7L+9K)/2 0 (21)5(L—K)/2
(2P2D+2D2P)»D 0 SL+SK 0
(2D2D) 22D+ (21)&(L—Z)/2 0 (3L+21K)/2

(2D2P+2P2D)»F+ 5L+2K, (2D2D)»G+ SL.

The + sign signifies that the wave function remains unchanged if the proton coordinates are interchanged with the neutron coordinates. This
quantum number exists only for elements with equal numbers of protons and neutrons and also in this case only if the multiplicity for both is
the same. If the multiplicities for protons and neutrons are diferent, the + term coincides with the —term and the degeneracy is doubled.

"The matrix elements for Li' are given by Bethe and Bacher, reference 8, $36.
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for the proton-neutron interaction. The symbol
('D'P)"F denotes the wave function with the
azimuthal quantum number 3 which can be
constructed out of the 'D protonic and the 'I'
neutronic wave functions.

Table IV contains all matrix elements for
Li' and Li, but for the other nuclei only those
which are necessary for the calculation of the
"low terms" (as determined by the equal orbital
forces approximation). The matrix elements

P„q for the nucleus with 6 —n~ protons and 6 —n~

neutrons are obtained from the corresponding
matrix elements V„q of the nucleus with nI pro-
tons and n2 neutrons by means of the relation

U„q ——U„&,+ (6—nr —n2) (2L+4K) 8„q, (11)

which can be derived from the theory of holes.
Thus we have all the matrix elements for the
Majorana forces.

The next task is the calculation of the integrals
L and X. Because of

(xy' x'y)'/r'r" —R„(r)'R„(r')'

XJ(~r r'~)drdr'=2L— 6K)0 —(12)

we know that at any rate 3X&L. The actual
calculation of the ratio and absolute values of
L and X is given in the appendix. It is clear that
these quantities depend principally on the radius
r„of the p shell and on the range ro of the nuclear
forces. If ro/r„ is very large, K will vanish. This
corresponds to the approximation made in

Eqs. (7) and (8). The appendix shows that K,
though not zero, is 7 to 11 times smaller than L.

For the calculation of energies of terms which
do not appear as solutions of secular equations,
the interaction energy of like particles has to be
added directly to the matrix element of Table IV.
In the other cases, the like particle interaction
matrix elements must be added to the diagonal
elements of the secular determinant of Table IV.
It must be remembered that the L and E' in
Table III are not identical with the correspond-
ing quantities in Table IV. If, however, we sup-
pose that the two different L's are equal and
set E=O, the result must be that given by
Eq. (8). This shows that in the equal orbital
forces model, the differences between the "low
terms" are due to the finite value of X. With the

other models the numerical results for the spacing
of the "low terms" in a multiplet depend es-
sentially on the value of E and hardly at all on
the L/K ratio.

The actual solutions of the secular equations
are given in Table V in units of mc' for the terms
which are "low" in the equal orbital forces
approximation. Although the term differences
are independent of the choice of like particle
interaction, we do not believe them to be correct
(because of the use of the Hartree method).
However, we think that the order of the terms
will be right. 'The situation is the same in the
corresponding atomic spectra. '

The symbols (i) and (ii) designate different
methods of making the numerical calculations
which are fully described in the appendix.
Models (2a) and (2b) (and consequently also
model (2c)) give the same order and spacing of
the "low terms" within a multiplet. The spacing
is also practically independent of the method of
calculation, because X has nearly the same value
in both methods. Fig. 1 gives the calculated total
energy (method (ii)) of the lowest term and the
experimental binding energy. Only the most
stable nucleus with a given total mass is shown
on the diagram. To obtain the theoretical curve
a linear function c(n&+r12)+d is added to the
computed total energy and the constants c and d

determined to fit the experimental points at
He' and 0". The observed "4 shell" structure
is clearly evident in the computed curve,
although the wave functions used do not corre-
spond to preformed alpha-particles. In general
the agreement is somewhat worse than for the
similar calculation in atomic spectra. '

For the comparison of the calculated excited
levels with experiment there is available only a
limited amount of experimental material. P.
Savel'8 and W. Bothe" have investigated the
gamma-radiation associated with some nuclear
transmutations. Unfortunately, Savel's results
do not allow any conclusions to be drawn as to
the character of the excited states. Bothe seems
to have found three states in the C" nucleus,
the positions of which agree fairly well with our
"low" terms. However an interpretation of
Bothe's terms on these lines hardly seems

"R.Peierls, Zeits. f. Physik 59, 738 (1929).
'8 P. Savel, Ann. d. Physik 4, 88 (1935).
"W. Bothe, Zeits. f. Physik 100, 273 (1936).
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TABLE V. Calculated p shel/ potential energies in units mc .

(2a) (2a) (2b)

TERM TERM

Li6 Be"or C"

22S
22D
22P

For N'4 add

—18.6 —12.7—14.3 —8.4
11.5 5.5—137.1 —105.7

Li'

—18.6 —12.7—14.3 —8.4
11.5 5.5—195.9 —133,6

11S
11D
lla
11+
llG

—90.0—87.6—86.8—84.1
78.4

B10

—62.6 —104.7—60.2 —102.3—59.4 —101.5—56.7 —98.8—50,9 —93.1

—69.6—67.2
-66.4—63.7—57.9

12P —44.0 —28.4 —44.0 —28.4
12P —37.8 —22. 1 —37.8 —22.1

For C'3 or N" add —102,8 —79.3 —146.9 —100.2

Lis

22S
22D
22D
22P
22G

—96.9—92.9—92.5—88.7—84.1

—67.6 —111.6—63.5 —107.6—63.0 —107.2—59.2 —103.4—54.5 —98.8

—74.6—70.5—70.0—66.2—61.5

22P
22D
22+

For B"add

11S
llD
llG

For C" add

12P
12D
12+
12G

For B"or C" add

—39.2—36.2—32.8
-68.5

Be'

—88.1—84.3—75.6—68.5

Be'or B'

—83.1—80.7—77.0—72.0—34.3

-27.4—23.9—22.4—52.9

—56.8—53.0—44.1—52.9

—55.8—53.3—49.5—44.4—26.4

—46.5—43.5—40.1—97.9

—88.1—84.3—75.6—97.9

—90.5—88.1—84.4—79.4—49.0

-30.9—27.4—25.9—66.8

—56.8—53.0—44.1—66.8

-59.3—56.8—53.0—47.9—33.4

11S
11D

12P

11S

' orO

—148.9 —113.7 —207.7 —141.6—146.2 —111.0 —205.0 —138.9

N" or 0"
—171.4 —132.2 —244.9 —167.1

016

—205.6 —158.6 —293.8 —200.5

feasible, because the transition from "G to "S
should be so much less probable than the
transition to the "D level that the gamma-ray
corresponding to the former transition should be
unobservable. Hence, if our results are correct,
at least one of his lines must have another
interpretation. A possible interpretation is that
two of the lines observed by Bothe come from
the transitions ~'Q —"D "D—"g and the third
from another excited level which happens to be
near "G. Such an excited level might arise from
a,n excited configuration. This interpretation
gains in plausibility from the fact that N" has an
excited state" " with an excitation energy of
10.5 mc'. Since the normal state configuration of

20 E. O. Lawrence, E. McMillan and M. C. Henderson,
Phys. Rev. 47, 273 (1935).

2' J. D. Cockcroft and W. B. Lewis, Proc. Roy. Soc.
A154, 261 (1935).

N" has only one term, all the excited states
must be ascribed to configurations in which one
or more particles are excited. The occurrence of
short and long range groups of particles together
in transmutations in which C" is produced
confirms the existence of an excited level about
10 mc above the normal state ' ' Cockcroft
and Lewis" find two excited states in B", one
of which falls between the levels "G, "I' and
the other between the levels "F, "D of the
theoretical calculation. Bonner and Brubaker"
observe three excited states in B" with the
energy 8.4 mc' available to produce excitation.
The theoretical calculation shows three triplet
levels and one singlet level in this range.

If we assume in analogy with H' that there

22T. W. Bonner and W. M. Brubaker, Phys. Rev. 50,
308 (1936).
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spin coordinates —though it is not invariant
with respect to the rotation of the proton spin
alone any more, as were the Majorana forces.
Consequently, it will leave the total spin angular
momentum an exact quantum number, not,
however, the proton spin and the neutron spin
separately.

By Dirac's identity the exchange of the spin
coordinates can be written

E
(mc ) Q12 2+ 2 (&1 &2)' (13)

IOO

50

Y
93 2 4 6 8 lO l2 l4 16 I8

N= n, +n, +4

FIG. 1. Binding energy against nuclear mass. The
calculated values lie on the solid curve; the circles mark
experimental points.

are forces which tend to direct the proton spin
parallel to the neutron spin (the Heisenberg
forces will be shown to have such an effect),
we obtain Table VI for the total angular mo-
menta of the ground states. The ambiguity, in
the cases for which several possible values of
the angular momentum are given, is caused by
the lack of knowledge concerning forces coupling
the spin to the orbit. Experimentally the follow-
ing momenta are known: Li' —1, Lir —3/2,
C"—0, N" —1, 0"—0. These agree with the
theory.

III. THE HEISENBERG FORCE BETWEEN
UNLIKE PARTICLES

The comparatively large singlet-triplet separa-
tion in H' ( 4 mc') points to an interaction
between protons and neutrons which involves
the spin in some way. The simplest assumption
for such an interaction —though not the only
possible one—is the Heisenberg force (ib) which
involves the exchange of both Cartesian and
spin coordinates of the interacting particles.

It is characteristic of this interaction that it
is invariant with respect to the rotation of all

The matrix elements of the second part of (1b)
for the ground state when they do not vanish

TABLE VI. Angular momenta for normal states.

Li6
1

B1 1
1 3
2 sg

Li7
1 3

C11
fig

Lis Bes
0, 1,2 0

B» C»
0,1,2 0

Bee
3

C13
kA

Ba Be'o B o C o

0 1 0
N13 N N N 15 O16

1 1 3 0

The first part gives matrix elements which are,
apart from the factor g/(1 —g), just half as great
as the matrix elements of the Majorana force,
thus effectively increasing this by the factor
(1—kg)/(1 —g). The matrix elements of the
second part vanish by the selection rules if both
wave functions have a proton spin 0 or a neutron
spin 0 or if the proton spins or the neutron spins
differ by 2 or more. In these cases the addition
of the Heisenberg force amounts only to an
increase of the Majorana force by the factor
(1——',g)/(1 —g). For most purposes it is more
practical to unite the first part of the Heisenberg
force with the Majorana force and consider the
rest as an interaction involving I', the inter-
change of the Cartesian coordinates, and the
scalar product of the spin operators. The effect
of the first part of the Heisenberg force is
numerically much greater than the second in
most cases. It has been included in Tables IV
and V and in Fig. 1 by calculating with a modified
form of (1a) in which g is replaced by —',g.

The splitting of a term with proton multi-
plicity s and neutron multiplicity o- is caused by
the second part only. There are new com-
ponents with the total spin angular momenta
S= ls —a l, ls —0 l+1, , s+0 the displace-
ment of the term with the total spin S being
proportional to
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(in all these cases s=o.=-', ) are given in Table
VII for the triplet state only, since the elements
for the singlet state can be obtained by multi-
plication with —3. Here L, and X are identical
with the same symbols in Table IV. These
matrix elements must be multiplied by the factor
g/2 (1—~~g) and added to the corresponding
effective Majorana matrix elements in Table IV.

The numerical calculation (method (i)) yields
a splitting of 9 mc' for both Li' and B'0 (and
thus also for N"), the triplet term being always
the lowest. Method (6) gives a splitting of
6.3 mc' for Li' and N' and of 6.6 mc' for 8"
For Li both methods give very little splitting
so that it is impossible, in this case, to tell what
should be the normal state.

Since the azimuthal quantum number and
the resultant spin angular momentum both
remain good quantum numbers, the Heisenberg
force does not introduce a splitting of the 'P or
similar terms into the fine structure components
'Po, 'P1, 'P2. It has been suggested by D. R.
Inglis (at the summer symposium at Ann Arbor,
as yet unpublished) that the spin orbit coupling
should have the same sign (giving the larger j
the lower energy) for both neutrons and protons
in nuclei. A relativistic (Thomas) term results
from the acceleration of the particles by the
nuclear forces. According to Inglis this is the
preponderating spin orbit coupling term in
nuclei.

TABLE VII. Matrix elements of the second part of the
Heisenberg force.

Lis

Lis

(2P2P) 3P
(2P2D) 3P

@10

(2P2P) 3S
(2D2D) 3S

(2P 2P) 22S

(2P2P) 'P

( —I,+3K)/2
(15)& (L —3K)/6

(2P2P) 3S

(2L —K)
(15)&( —L+3K)/3

L+2K

(2P2D)3P

(15)&(L —3K)/6
( —5L+ 11K)/6

(2D2D) 3S

(15)&( —L+3K)/3
(8L —SK)/3

IV. THE CoULQMB ENERGY

A further question of interest is that con-
cerning the difference between proton-proton
and neutron-neutron interaction. The simplest
assumption is that the only difference' is the
electrostatic interaction between protons.

According to this assumption the binding
energy and the whole spectrum of two nuclei

should differ only in the Coulomb energy if the
number of neutrons in the first element is equal
to the number of protons in the second element
and vice versa. Known pairs of this type are
H3 He3 Be9 Q9 Bll C11 C13 N13 N15 O15

O17 F17

For He' there already exists a simple calcula-
tion of the Coulomb energy' and a more accurate
calculation giving substantially the same result
has been made by S. S. Share. "The computed
Coulomb energy for He' appears to be about
15 percent smaller than the experimental
H' —He' energy difference. For the other pairs
we have performed the calculation, adding the
electrostatic energy to the like particle inter-
action. The details of the computation are
given in the appendix. For all cases in which
the positron spectrum has been observed the
experimental energy difference is obtained as a
sum of three terms: (1) the upper limit of the
positron spectrum (in electron mass units, taking
the inspection value for the upper limit), '4

(2) the n' —H' mass difference, (3) the mass of
two electrons. Table VIII exhibits the electro-
static and experimental differences. The agree-
ment is quite good. Nevertheless the experi-
mental values are always somewhat greater than
the theoretical ones. Considering the rather large
uncertainty. of these calculations, one cannot
claim with certainty at present that the neutron-
neutron interaction is stronger than the proton-
proton interaction.

V. CQMPARIsoN oF IsoBARIc NUcLEI

In this section we wish to make a few remarks
concerning the spectra of isobars and the possi-
bility of deciding between the alternatives (2a),
(2b) and (2c) for the interaction between like
particles.

It is clear from Table V that for the same
values of the depth and range of the potentials,
(2a) gives much less binding than (2b). Hence
using the statistical method one obtains a smaller
discrepancy with (2b) than with (2a). This
cannot be considered, however, to be decisive
evidence in favor of (2b), since it is possible that

2' S. S. Share, Phys. Rev. 50, 488 (1936).
24W. A. Fowler, L. A. Delsasso and C. C. Lauritsen,

Phys. Rev. 49, 561 (1936);F. N. D. Kurie, J.R. Richardson
and H. C. Paxton, Phys. Rev. 48, 167 (1935);L. Meitner,
Nature 33, 420 (1934).
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TABLE VIII. Electrostatic and measured energy di tferences.

H3 He3 Be9 B9 B11 C 1 1 C13 N13 N ls Q15 Q17 @17

Electrostat. 1.37 3.11 4.06 4.62 5.54 5.62
Experim. 1.57 3.20 4.90 5.10 6.00 6.80

the correlation energy can account for the greater
difference between the observed energies and
the results of the statistical calculation with
(2a). The discrepancy for (2c) is even greater
than for (2a), but (2c) also cannot be excluded
on this basis."

In all cases only a small fraction of the binding
energy is due to the interaction between like
particles. This makes it very difficult to draw
conclusions concerning these forces from experi-
mental term values. If we consider, however, the
Schrodinger equations of two isobars in the equal
orbital forces approximation, their characteristic
values will be absolutely equal. Nevertheless,
the energy values will not necessarily be equal
even in this approximation, because a charac-
teristic value which is allowed for one isobar,
may be forbidden for the other by Pauli's
principle. Thus the low terms of Be' arise from
the partition 4+4 of the equal orbital force
approximation, but this gives no allowed terms
for Li', the low terms of which come from the
4+3+1 partitions. These are allowed for Be'
also, but correspond to excited states. For Be"
and B", however, the low states come in both
cases from the 4+4+2 partition, in the first case
giving singlet-singlet, in the second doublet-
doublet terms. These coincide exactly in the
equal orbital forces approximation and their
similarity can be seen even in Table V. If one
now introduces the difference between (2) and
(1a) as a perturbation, the Be"', B" energy
separation will appear as a difference of,two
small quantities.

Experimentally the binding energy of Be" is
greater than that of B"by 0.8 mc'. From Table
VIII we estimate that the difference between

"H. A. Bethe and R. F. Bacher, reference 8, $6, have
shown that a symmetrical Hamiltonian gives stable nuclei
consisting of protons or of neutrons alone if one does not
take into account the Pauli principle. However the Pauli
principle causes the effective interaction between like
particles to be smaller than that between unlike particles,
even though the fundamental Hamiltonian does not
distinguish between like and unlike particles. A good
example in this connection is Li which is much less stable
than Be.

the proton-proton and the neutron-neutron inter-
actions (Coulomb energy) has decreased the
binding energy by 3.2 mc'. Thus the binding
energy due to nuclear forces alone is greater for
B" than for Be" by 2.4 mc'. The corresponding
quantity for the N'4 —C'4 pair is 5.1 —0.8
=4.3 mc'. Such small d~gerences are possible only
if the constants in the interactions between like
and unlike particles are essentially equal.

With (2u) or (2b) the difference between the
Majorana energies of the B" and Be" ground
states is seen from Tab1e V to be 5.0 mc' (method
(ii)). This must be increased by the amount
1.6 mc' by which the normal state of B' is
lowered when account is taken of the second
part of the Heisenberg force between unlike
particles. This gives a total difference of 6.6 mc~.

Using (2c) it can be shown that the ground state
of Be" coincides with the singlet state arising
from "S in B and hence the difference between
the binding energies of Be" and B' is 6.6 mc'
for all three models. The agreement between
models (2a), (2b) and (2c) in this case is not due
to numerical coincidence, but can be shown to
be true for all values of I. and X simply by
comparing the like particle contributions to the
secular equations of the two systems for each
of the three different models.

We see that the experimental difference be-
tween the binding energies of Be" and B" is
much smaller than the theoretical difference.
For C'4 and N'4 the situation is similar. Both
sets of low terms belong to the partition 4+4+2
and hence coincide in the equal orbital forces
approximation. Here also the energy difference
is independent of the model. From Table V
(method (ii)) the C'4 —N'4 energy difference is
4.7+1.6 = 6.3 mc', while experimentally the
difference is only 4.3 mc'.

In view of these discrepancies it is surprising
to find excellent agreement between the com-
puted and experimental Li' —He' energy differ-
ences. Bjerge and Brostrom" report the value
7.5+1.0 mc2 for the maximum kinetic energy
of the electrons produced in the transformation
of He' into Li'. Since the additional Coulomb
energy in Li' is almost exactly balanced by the
greater mass of the constituents of He', we

"T.Bjerge, Nature 138, 400 (1936), and T. Bjerge and
K. J. Brostrom, Nature 138, 400 (1936).
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R,(r) =ce "'i"s'=ce «"'

for the s particles and

(15)

(x/r) R„(r), (y/r) R„(r), (z/r) R„(r),
(16)

R (r) =c're "'I"&'=c'e «"'

for the p particles, where o. is the reciprocal square of the
range of the forces and is defined in (1).

It is well known that if a determinantal wave function
for the whole system is built up out of these functions
and the energy calculated, choosing the parameters o.

and r so as to make the energy a minimum, the absolute
value of this minimum will be very small and the corre-

27 The spin conservation law is practically rigorous for
nuclei if the singlet-triplet splitting is produced by a force
of the form (ib). We should mention at this occasion that
it is not sufficient for the validity of such a conservation
law that the forces acting on the spin be small. It is neces-
sary, in addition to this, that the separation of states with
di8'erent spin should not be small also. For atomic spectra,
this follows from the fact that the singlet-triplet separation
is of electrostatic nature, while the spin forces are magnetic.
For nuclei, if (1b) is correct, the singlet-triplet separation is
due to the Heisenberg force, while the spin forces still are,
under this assumption, of magnetic nature. Thus if (1b) is
correct, the situation is much better for the spin law in
nuclei than in the external shells. It is invalidated, however,
by any force, coupling the spin to orbit, as e.g. that as-
sumed by Inglis (cf. Section III, end).

obtain 7.5~1.0 mc' for the experimental singlet-
triplet splitting in Li'. The computed value is
6.3 mc' (method (ii)) or 9.0 mc' (method (i)).

The secular equations for the states of Be
corresponding to the 4+3+1 partitions are given
in Table IX.

We obtain —1.0 mc' for the (Li') 'P (Be—') "P
energy difference using model (2a) and —3.4 mc'

using model (2b). These numbers, added to the
experimental normal state energy difference,
yield the results 21 mc' (2u) or 24.4 mc' (2b)
for the excitation energy of the "I' term in Be'.
This term could be observed directly since it is
stabilized by the spin conservation law. " A
similar result can be deduced for C" also, by
comparison with B", since the experimental
binding energy difference is nearly the same.
It should be noted that method (ii) gives a
Li' —Be' normal state spacing in fair agreement
with experiment. Here, as well as in the problems
of the "four shell" structure and the singlet-
triplet separation, method (ii) gives better
agreement with the experimental facts than
method (i).

APPENDIX

We assume that each particle has a separate wave
function (Hartree-Fock model) and, furthermore, that
this has the form

TABLE IX. Continuation of Table V. Be'.

(tbsp)»p

('S3P)»p 4(L +2 K) /3
(iD3P)»P —(20)~(L —K) /3

('D3P) ' D 2L+3&,

(1D3p) 13p

—(20)$(L —K) /3—(4L —25K)/3

(1D3p) 13p

sponding radii greater than the radius of the nucleus.
The reason for this discrepancy is that it is impossible to
express the finer statistical correlations between the posi-
tions of the particles assuming a separate wave function
for each particle. In order to take into account at least
approximately the correlation energy, a semi-empirical
method is used, modifying the Harniltonian in such a way
that it gives the experimental binding energy for 0".

The kinetic energy per particle is (3/2)ao. and (5/2)nr
for the s and p particles, respectively. For a system with
N particles the total kinetic energy is taken to be

(1—1/N) (6o —10r+ (5/2) Nr) 0.. (17)

The factor (1—1/N) serves to eliminate the spurious
kinetic energy of the center of gravity which arises from
the use of single particle wave functions with coordinates
measured from a fixed point. ' For the Coulomb energy we

obtain

CB(s) = (no./8) &, (within the s shell),
CB(sp) = (1/3) (o T) &(o +T) ~(3T+2o —Zr~a'(o 1T) 2) n&, (18)

(between the s shell and each proton in the p shell),

L,= (49/120) (cur/2) &,

X,= (1/40) (ar/2) &.
(19)

If we use the relation Avv~(i —2g)Av& the total po-
tential energy in the s shell is

6(1—g)A. B( ), B( ) =( / +1)', (2o)

for all three forms of the like particle interaction.
The total interaction energy between the s shell and a

single particle in the p shell (including both like and unlike
particle forces) has the form

3(1—g) A vxD+ (1 2g) A vx(D C), (ia+2a),
3(1—g) Av~D, (1a+2b), (21)
3(1—g)Av~D+(1+g)Av&(D —C), (1a+2c),

with D(o, T) = 16o'(T /(o +T) ) I (o +r+ 2)
C(o.) T) = (2cr) ~r'~'(1+2o) (2or+o'+T) 'I'

Within the p shell

Lvn. =A.vm (1 g/2)L, I vv =Ave (1 2g)L
(for 2a and 2b),

&vm' =A vm(1 —g/2) X, Xvv =A v~ (1—2g) X, (23)
L0= (r/T+1) '

I 1 —(47+1)/4(r+1) }
E0= (r/r+1) ~/4(T+1)'

In computing Eqs. (21) and (22) the Majorana inter-
action between unlike particles is given the depth
(1—g/2)Av& in order to take into account part of the
Heisenberg interaction (as discussed in Section III).

It appears to be sensible to try to compensate for the
correlation energy by either multiplying the potential

28 S. Fliigge, reference 7.
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energy by a suitable constant, ~ 8 or by allowing the
particles to interact at a greater distance than they really
do. With (2b) we found that multiplying the potentials
by 1.36 yields a function for the sum of all energies which
has a minimum value of —246 mc' at o =0.80 (taking
~=o since very little improvement is obtained from vary-
ing both r and o independently). The second method
(method (i)) is believed to be somewhat more reliable.
With (2b) the radius of action must be increased by the
factor 1.3 to make the minimum value of E(O") agree with
experiment. The minimum is assumed at o-=1.01 (again
taking o-=r for the same reason as before). To obtain the
numerical results discussed in the text we use the values

Lvm = 15.74, Xv~ = 1.41,
Lvv = 10.05, Xvv =0.90,
L, =0.892, E, =0.055, Method (i). (24)

CE(s) = 1.09, CE(ps) = 1.63,
3(1 g)D(o o )A v/ = 14.95

6(1—g) a(~)A,.=120.00.

In computing the kinetic and Coulomb energies a is re-
placed by n/(1. 3)'.

The straight-forward application of this procedure to
the models (2a) and (2c) is not very satisfactory, because
an increase in the strength of the potentials or in the radius
of action which serves to fit the experimental 0" energy
will give far too much energy to the lighter elements.

Finally it was found most satisfactory to make the
calculations without modifying either the range or depth
of the potentials. With o. =1.01/(1.3)~ the kinetic and
Coulomb energies are exactly as in method (i). The other
matrix elements have the values

Lvm =9.83, Xvn = 1.44,
Lvv =6.19, Xvv ——0.90, Method (ii).

3(1 g)D (o, (J)A y ~ = 12 .13,
6(1—g) B(o.)A = 77.37.

(25)

The correlation energy is introduced by adding to the
total computed energy a linear function of the number of
particles. Since the general linear function contains two
parameters it is possible in this way to fit exactly the
measured binding energies of two different nuclei, i.e.,
He' and 0".Then the energies of all the others are uniquely
determined.
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The structure of the multiplets of nuclear terms is investigated, using as first approximation
a Hamiltonian which does not involve the ordinary spin arrd corresponds to equal forces
between all nuclear constituents, protons and neutrons. The multiplets turn out to have a
rather complicated structure, instead of the S of atomic spectroscopy, one has three quantum
numbers S, T, Y. The second approximation can either introduce spin forces (method 2), or
else can discriminate betw'een protons and neutrons (method 3). The last approximation dis-
crirninates between protons and neutrons in method 2 and takes the spin forces into account
in method 3. The method 2 is worked out schematically and is shown to explain qualitatively
the table of stable nuclei to about Mo.

ECENT investigations' appear to show that
the forces between all pairs of constituents

~ ~ ~ ~

~

~

of the nucleus are approximately equal. This
makes it desirable to treat the protons and
neutrons on an equal footing. A scheme for this
was devised in his original paper by W. Heisen-

*A paper delivered at the Tercentenary Conference of
Arts and Sciences at Harvard University, September, 1936.

~ M. A; Tuve, N. P. Heydenburg and L. R. Hafstad,
Phys. Rev. 50, 806 (1936); G. Breit, E. U. Condon and
R. D. Present, Phys. Rev. 50, 825 (1936).

berg' who considered protons and neutrons as
different states of the same particle. Heisenberg
introduced a variable v which we shall call the
isotopic spin, the value —1 of this variable can
be assigned to the proton state of the particle,
the value +1 to the neutron state. The assump-
tion that the forces between all pairs of particles
are equal is equivalent, then, to the assump-
tion that they do not depend on v or that the
Hamiltonian does not involve the isotopic spin.

' W. Heisenberg, Zeits. f. Physik 77, 1 (1932).


