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case the numbers of neutrons and protons differ
by more than 3, only a fraction of the configura-
tions will occur in both 0; and Cf with large
coefhcien ts.

We can illustrate this behavior by the following
simple consideration. Let us assume that for the
function @; a set of f configurations and for the
function Cf another set of g configurations is
important so that only part of them, in number h,
occur in both sets. In the average over all possible
distributions of the coe%cients, that means all
directions of the unit vectors + and 4 in their
respectively f and g dimensional spaces, we obtain

(iaaf')A =(& b)'=&(&*')A.(b*')A. =&/fg, (16)

where x designates an arbitrary component of the
corresponding vector.

It seems not possible at the present stage to
obtain estimates of the number of configurations
which are necessary to give a good approximation
for higher nuclei. But we think that the empirical
behavior of the matrix elements as found in f2
gives a definite indication about the nature of the
wave functions in heavy nuclei. From the crude
estimate (16) one would conclude that the num-
ber of configurations required for a fair approxi-
mation will increase more than linearly with the
mass number. A factor of the order 1/100 for the
heavy elements would be given by some such
values as f g 20 of which b 4 would coincide,
which means that a rather large number of con-
figurations would be necessary as would seem to
be required by our other knowledge of the
constitution of heavy nuclei.
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An attempt is made to correlate the kinks in the mass
defect curve with the energy differences between isobars,
both as obtained from direct measurements and also from
the shift of the isotopic number to higher values with in-
creasing number of particles. Since the single-particle pic-
ture is known to be an insufficient approximation, the syrn-
metry property of the wave function, resulting from the use
of a symmetric Hamiltonian is utilized. The average inter-
action between symmetrically and antisymrnetrically
coupled particles (L+L' and L—L') is determined mainly

from the kinks in the mass defect curve and enables one to
calculate the energy differences between isobars. The
energy change at the end of the shell is obtained from
experimental data. It should enable one to get some idea of
the probabilities with which the particles are in excited
configurations. For heavier elements, the formula obtained
here should naturally be identical with Weizsacker's semi-
empirical formula aind the connection between both is
discussed.

H E extension of the calculations of E.
Feenberg and the present author' on the

spectroscopic characteristics of the normal state
and the low excited states to higher elements
encounters great computational dif6culties. With
the one-particle picture, after the 2p shell is
completed at 0", the 3d and 2s shells begin to be
built up probably simultaneously. Even the

' E. Feenberg and E. Wigner, Phys. Rev. 51, 95 (1937);
also H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,
82 (1936), and F. Hund, Zeits. f. Physik, to appear soon.

normal states of these elements will contain wave
functions from several configurations (3d",
3d" "2s, 3d" '2s' ) with about equal coeffi-
cients. But even the d" configuration alone gives
rise to a large number of terms with the lowest
partition and the explicit calculation of all the
matrix elements between these states becomes
increasingly dificult. Table I shows' the "low
terms" of the d" configurations up to d4, together

2 For the preparation of Table I, cf. E. Wigner, Phys.
Rev. Sl, 106 (1937), F. Hund, ref. 1. The terms for Table
I have been first determined by E. Feenberg (private
communication).
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with the corresponding partition. In addition to
the terms of the d" configuration, one would have
to take into account the terms from the d" 's,
d" 's' etc. configurations, which are the same as
those of the d" ', d" ', etc. configurations. Even
for Ne" one would have three S terms already. On
the basis of the calculations of reference 1, one
would expect that the term with the lowest
azimuthal quantvm number would be the lowest—that is, in all cases an S term. This, however, is
certainly not correct for Na", which h@s a spin of
~3, although it is probably correct for the majority
of nuclei.

It is well known also that the single-particle
picture is not as good an approximation for nuclei
as it is for atorpic spectra. ' Although it is probably
at least a useful guiding principle for the determi-
nation of the lowest term4 it may be that even for
a light element like B"or N" it leads to erroneous
results. ' The greatest difference between nuclear
and atomic spectra in this respect is doubtless the
fact that while the terms of a configuration in
atomic spectra are rather close together and more
or less well separated from other configurations,
the situation is exactly opposite in nuclear
spectra. Even the lowest configuration spreads
out its terms from low energy values to large,
positive values. An example of this is given in
reference 1, Table V, in the case of Li' where all
terms (not only the "low terms") of the configu-
ration p' are listed The p. otential energy of the
terms extends from —12.7 pppc' to +5.5 mc',

giving an actual repulsion in the latter case. This
great difference between atomic and nuclear
spectra is due to the fact that the interaction
between nuclear constituents is not only a func-
tion of the distance but is for the same distance

TABLE I. Lo'I terms of the d" configurations.

d dl d3 d4

Terms D SDG SDFGI SDDGGH IK
Partition 4+ ~ ~ -+4114+ ~ ~ ~ +4+2 4+ ~ ~ .+4+3 4+ ~ ~ .+4+4

'This point has been especially emphasized lately by
N. Bohr, Nature 137, 344 (1936).Cf. also S. Flugge, C. F.
v. Weizsacker, W. Heisenberg, Zeits. f. Physik 96, 459,
431, 473 (1935)also M. Ostrofsky, G. Breit, D. P. Johnson,
Phys. Rev. 49, 22 (1936).' W. Elsasser, Phys. Rev. 51, 144 (1937).

5 According to E. Feenberg and M. Phillips, Phys. Rev.
51, 597 (1937) the ground states of B"and N" are possibly
D states, instead of S states as one would expect on the
basis of the single particle picture (reference 1).

2p 2s-
(2pP—

Spectrum of 0++

2p2s

(2p)2 p+

„)s
Spectrum of Li' nucleus

FIG. 1. In atomic spectra, the states with the same con-
figuration are usually close together while the effect of the
symmetric (+) or antisymmetric (—) character of the
wave function is comparatively unimportant. In nuclear
spectra, the symmetry character of the wave function is
much more important than the configuration. Observed
values for 0++, crude estimates for the Li nucleus.

negative or positive according to the symmetric
or antisymmetric character of the wave function
for an interchange of the two particles. In
consequence hereof', those configurations which

give the strongest binding, give the strongest
repulsion between the particles also. While in
atomic spectra the terms of the same configura-
tion are close together, in nuclear spectra this is
much rather true of terms of the same symmetry
character with respect to permutations, though,
of course, for extremely high configurations
(kinetic energy) the terms of every symmetry
class become extremely high. The situation is
schematically illustrated in Fig. 1. It is evident
from this picture also that the configurations
will be least mixed up for the ground state and
the shell structure will be most noticeable for
this state.

Cf. reference 1, Eq. (6).The + sign in this equation is a
misprint and should be replaced by an = sign. There is an
error also in Table VIII, p. 104 of this paper, insofar as the
experimental energy differences are too small by 1 mc'
throughout the table, excepting the pair H' —He'.

Since a calculation of the potential energies on
the basis of the one particle picture is hardly
practicable, a calculation on the more general
lines of reference 1, Eqs. (4)—(8), suggests itself.
Neglecting again spin dependent forces and
differences between proton-proton, proton-neu-
tron, and neutron-neutron forces (approximation
1 of reference 2) the wave functions belong to
irreducible representations D(R) of the whole
permutation group. Consequently, if I'z is the
permutation R of the coordinates'

f
P&P.(xi, , x„)= P D(R)~,P~(x~, . , x ), (1)
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where x; always stands for the three positional
coordinates of the ith particle. The P are sup-
posed to be orthogonal and normalized and ~, X

take on the values 1, 2, , f
The potential energy is symmetric in the n

particles in approximation 1.Hence, it will be the
same' for all f wave functions ))(), , P) and we
can use instead of the potential energy of any of
them, the mean value of all of them. Assuming
only Majorana interaction, the potential energy
V will be

n

V= Q Q„, J(x xp)P, p—g„)
a&P

=(1/f) 2 2 (4. J(x- xp)P-—p4 )
p(=l a&P

(2)

where uP is the transposition of u and P so that:

P pf(xg, , x, , xp, )

=P(x x- xlg 7 P1 ay / ~

In reference 1, in order to make qualitative
estimates of the integrals occurring on the right
side of (4), J(x)—x2) was assumed to extend over
a region which is large compared with nuclear
dimensions. Then J(0) could be taken out of the
integral and this vanished for zg). However,
this can be done only for purposes of qualitative
estimates, since the range of forces is certainly
not very large compared with nuclear diameter.

There is a certain arbitrariness in the f„si nce

all the matrices of the representation can be
subjected to a common similarity transformation
D(R)~SD(R)S '. This will amount to a new

choice of the set of wave functions P), , Pr. It
is in particular possible in this way to make all P
either symmetric, or antisymmetric in the first
two particles, while still maintaining their
orthogonality. Supposing that the first s wave
functions f&, Pu, .

, P, are symmetric in x) and x2

and the rest are antisymmetric, then D(12)„),

will be i)„), if )(~s and —i)„), if )()s. Thus (5) will.

become

Because of (1) the (f„, J(x xp)P pP, )—can be 8

all expressed by the (f)„J(x)—xm)P»$„)
V= [n(n —1)/(2f)][+I'I P„I'J(x,—x2)

(P„, J(x. xp)P.py„)— f

(P(p2)(a1)far P(p2)(al) J(xa xp)Pap))('s)

(P(pl) (al) 4 st J(x( x2)P12P(p2) (al)4 ) (3)

Q D((P2) (u1)))„*D((P2)(u1))„„

X ()('xi J(x) x2)P»gp) ~

where (P2)(u1) denotes two simultaneous trans-
positions of P with 2 and of u with 1. This
inserted back into (2) gives, because of the

,unitary character of the representation

V=(1/f) P P b)„(Pq, J(x)—x&)P»g„)
a&P

(4)= [n(n —1)/(2f)]g()l)„J(x,—x2)P»$),).

This transformation can be performed with an
arbitrary interaction of the form +II p.

Using (1) again, to expand P)2gq one obtains

—2 f IP" I'J(» —xm)] (6)
«=s+l

The integrals in this expression can be inter-
preted in the following way:

S

g, (x, —x,) = (1/s) Pf I P„ I
'dx3 dx„(7a)

«=1

is the probability of the distance
I

x& —x2
I

for two
symmetrically coupled particles and

f
g.( — ) =(1/(f —)) 2 f IP. I'd d ~ (7b)

@=8+1

—J'g, (x)J(x)dx =L+L' (Sa)

is the probability of the distance
I
x) —xm I

for two
antisymmetrically coupled particles. The ex-
pression

V= [n(n —1)/(2f) ]+D(12)„),(P~, J(x(—x2)P„).
'Ax (~)

is the mean interaction for the former, and

—J'g. (x)J(x)dx=L —L' (8b)
7 Cf. e.g. , E. signer, Grlppentheorie, etc, (Braunschweig

1931), p. 124-125. is the mean interaction for the latter. Necessarily,
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both L+L' and L—L' are positive. L and L'
will be positive themselves for smoothly varying
functions, J having the same sign throughout.
In order to obtain s, we can remember that the
matrix D(12),1, contained +1 in the main
diagonal s times, —1 it contained f—s times. The
trace of any matrix corresponding to a trans-
position is therefore

x(T) =s—(f s) =—2s f. — (9)

The whole potential energy thus reduces to

V= I. (n(—n —1)—/2)I. ',

" =n(n —1)x(T) /2f.
(10)

' J. A. Wheeler, Phys. Rev. 50, 643 (1936).

For ordinary forces, the potential energy will
have the same form (10), only the role of L and
L' will be interchanged. Henceforth, L and L'
will mean that combination of the left sides of
(Sa) and (Sb) which enter into (10) allowing for
ordinary forces. For Wheeler's velocity de-
pendent forces, s (10) remains formally valid also,
however L=L' in this case. The approximation
consisting in using linear combinations of Slater
determinants with wave functions belonging to
one configuration is a special case of (10) if one
drops all small integrals (the Z of reference 1)
and keeps only the large ones (corresponding to L
of reference 1).

Of course, (10) is only a formal expression for
the potential energy in nuclei, since L will vary
with atomic mass and will be different for
different terms of the same element. However,
the variation of L and L' can be reasonably
assumed to be a smooth function of the number
of particles and also of the excitation energy so
that the rapid irregular variations may be attrib-
uted to . We shall be confined, thus, in our
discussions to the comparison of the binding
energies and stability of isobars and the kinks in
the mass defect curve. It may be expected that
the smoothness of the variation of L will be the
better the more the configurations are mixed
with each other. It will not be attempted in this
paper to use (10) for the total binding energy.

The kinetic energy is usually estimated on the
basis of the statistical model. This estimate is

certainly too low since the wave function of the
statistical model gives the smallest possible
kinetic energy for a given radius r of the nucleus.
This energy is

Jl. = (9/20) (311rl/21) (Il'/(der')) (n "'+n„"'), (11)

where n~ is the number of protons, n„ the number
of neutrons, r is the nuclear radius. Setting
n = -', n+ T~ and n„= -', n —T~ and developing into
a power series of T~, this gives

E= [7 05n'~'+. 15 7T '/n&. + ]mc'(r/r, ) ' (12)

where r, =e'/mc' is the electronic radius.
If we confine ourselves again to the discussion

of isobars and kinks in the mass defect curve,
only the second term will be of importance. This
gives us the increase in kinetic energy if the
number of neutrons is greater than that of the
protons. Although there is not much reason to
expect that this term is correct in (12), it is not
possible to tell whether it is too great or too
small and it will therefore be used below.

The second part of (12) will be used as it
stands for even n„and n„. If n„or n„ is odd, it
seems more appropriate to use the mean value
of the corresponding expression for the adjoining
even elements. This whole term will be only a
small correction for most of the present paper.

The third important quantity for the nuclear
binding energy is the electrostatic interaction of
the protons. It will be dealt with in detail in
Section 4.

(3)

The wave functions discussed so far contain
only the positional coordinates of the particles.
In order to form the complete wave function they
must be completed' by functions of the ordinary
and isotopic spin coordinates s and v.

and +will be antisymmetric if Ji„- belongs to the ~

row of the representation eRD(R), adjoint to
D(R); (eR

——1 for even and —1 for odd permu-
tations R). In general there are several such sets
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FiG. 2. The coefficient ' of L as function of the difference
between the number of protons and neutrons for the three
types of nuclei with masses 4k, 4k+1, 4k+2. The plots
for 4k and 4k+2 show breaks, the plot for odd nuclei not.

M stands for S,Tt Y~ and even for given S„T~, Y~

there may be several sets' of Fz z As long as the P„
are unchanged, 'all the wave functions (13) with
the diferent S„T~, etc. , indices for P„have the
same energy in our approximation 1, which
neglects all spin forces, and form a multiplet if one
introduces them. The character of the multiplet
is determined by the representation D(R) of the
original wave functions IIq, , p~. From the
partition characterizing D(R), the partition
A4+A3+A&+A& characterizing the adjoint repre-
sentation e~D(R) can be obtained (Eq. (17),
reference 2) and the latter partition can be
replaced by the (STY) symbol (Eq. (11),
reference 2). The S in this latter is the greatest
value of S, for which functions of the s and 7 can
be found belonging to eRD(R); T is the greatest
value of T~ compatible with the greatest value S
of S, for such functions; and Y is the greatest
value of Yt compatible with both. Since the
possible sets of S,T~Y~ are the same as the
possible sets of Tt S,P~ or of any permutation of

'The number of such sets of F„ for given S„Tg, Yt is
given by the numbers in the circles of Fig. 1, reference 2.
The middle number in the figure for (STY) = (110)
(partition 2+1+1+0, page 113) should be a 3 instead of
a 2. The last sentence in the legend was meant to correct
this mistake. There are two errors in Fig. 4 also. One is in
the figure for the masses 4n+2 for (STY) = (210) where the
point on the top should be a line, extending from Tg= —1
to Tg=+1, and the point below should have a 1 to the
left, rather than a 0, denoting that the total ordinary spin
momentum is 1 for this term. The other mistake is in the
figure for the masses 4n: for (STY) =(200) a point is
missing which should have a 0 to the left, denoting that
the term is a singlet.

of Ji „, which can be distinguished by three indices

S„Tg, Yg.

g (~zl+ ' ' ' +~zn) FzM = SzFzMy

g (rr1+ ' ' ' +Trn)FzM TrFzMy

g (szlrrl+ ' ' ' +sznrrn) FzM = YrFzM.

these numbers, S is at the same time also the
greatest value of Tr (or also of Yr) for which
functions F„can be found such that (13) becomes
antisymmetric.

The (STY) symbol has thus a more immediate
physical significance than the partition by which
the representation D(R) usually is characterized
and will be used instead of the latter henceforth.

The quantity =n(n —1)x(T)/2f can be ob-
tained either using Frobenius' character formula
or by an argument similar to that of Dirac for
atomic spectra which is given in the appendix. "
It is

Z = —n'/8+2n+5/2 —Z'

="= 2 t (S+2)'+(T+1)'+Y'I (15)

"Formulas similar to (10) and (15) can be derived on
the basis of the Hartree model also. This was pointed out in
reference 1, p. 100, bottom of first column, and also Proc.
Nat. Acad. 22, 662 (1936), last paragraph. The calculation
on this basis has been performed recently by D. R. Inglis
and L. A. Young, Phys. Rev. 51, 525 (1937).In this paper,
for sake of further simplification, the orbital and spin
degeneracy is neglected also, although they will occur, of
course. The argument in references 1, 2 shows that not only
the orbital and spin degeneracy does not matter but also
that the results are valid also outside the limits of the
Hartree scheme. The condition g&g, derived by Inglis
and Young for the instability of odd-odd nuclei should
read g+2g, &g~.

The kinetic energy is, of course, the same for all terms
of the same (STY) multiplet. Hence, the quantity which
enters into (12) should not be Ty but rather the highest Tg
of the multiplet, i.e. the S of the (STY).

Again, the first part of the expression for ™can be
omitted for most applications because it is the
same for all isobars. The restrictions on the
S, T, Y are the following: S~T~Y, T+Y~O.
All three are integers for even n, half-integers for
odd n; the sum S+T+ Y is even if n is a multiple
of 4, it is odd if n has the form 4k+2, it has in
general the form 2k' ——',n (k and k' are integers).

Since the quantity L in (10) is necessarily
positive, the binding energy of a term will be the
greater, the smaller ' is. The stablest nucleus
with given isotopic spin —,(n„—n„)=Tr is ob-
tained, therefore, by giving S its minimum value
S= T~ and besides making T and Y as small as
possible; for by doing so one gives to ™/its
minimum value. Fig. 2 gives the smallest value
of ' for given n„—n„. The curve is smooth for
odd masses, because T and Y can be -', and ~-'„
respectively, which gives 5/4 for the sum of the
last two terms of "' throughout. The curves for
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energy will be assumed to have the form

E.= -', Cn„(n~ —1) = -,'C(-', n —Tr) (-', n —Tr 1)—

= C(n' 2—n)/8 —2C(nTr —Tr(Tr+1)). (16)

Op

FIG. 3. The coefficient C in the expression (16) for the
Coulomb energy as function of the total number n of the
particles. The points result from the comparison of pairs of
isobars in which the number of protons and neutrons is
interchanged.

even masses show breaks, because for masses of
the form 4k+2, for even S=Tr the T+ 7 must
be odd and T= 1, Y= 0 is the best choice, while
for odd S= Tr, the T+ F must be even and both
T and I' can be 0. Thus the last two terms of ™1
give 2 in the former, -', in the latter case. For
masses of the form 4k it is the other way around.
The breaks in the two latter curves will be made
responsible for the instability of nuclei with odd
number of protons and neutrons, i.e. , of elements
with masses 4k+2 and even Tr and elements
with masses 4k and odd Tg.

The last important term in the Hamiltonian is
the Coulomb energy. This is supposed, at present,
to represent the only difference between protons
and neutrons in the Hamiltonian. "The Coulomb

"The hypothesis that the proton-proton interaction
differs only by the electrostatic energy from the neutron-
neutron interaction was first introduced by W. Heisenberg,
Zeits. f. Physik 77, 1 (1932) and has not been questioned
seriously so far. The most direct experimental verification
for the H' —He' pair leads to a moderate agreement only:
S. Share's calculation (Phys. Rev. 50, 488 (1936)), yields
1.37 mc' or the electrostatic energy in He', the experi-
mental difference in the binding energies is 1.58 according
to the most recent masses of H. A. Bethe and M. S.
Livingston (cf. reference 18). The experimental energy
difference would be even much greater, 2.0 mc', on the
basis of the masses of S. Flugge and A. Krebs (Physik.
Zeits. 38, 13 (1937)).These are thus definitely in contradic-
tion to Heisenberg's hypothesis.

Another piece of evidence pointing in the direction that
the difference between neutron-neutron and proton-proton
interaction is greater than the electrostatic energy, is
given in Table VIII, reference 1, if the experimental values

If we approximate the charge distribution in a
nucleus by assuming it to be uniform within a
sphere of radius r and zero outside, the signifi-
cance of C is C=1'2e'/r. Actually the exchange
energy should be substracted from this. We shall
assume C to be proportional to n & which corre-
sponds to neglecting the exchange energy and
assuming a constant density for the nuclei. The
latter approximation probably introduces a
greater error than the former, and there is a
considerable uncertainty in the values of C
assumed here. This will affect the values of L as
well. Since I./C is less sensitive under a change of
C than L itself, the latter quantity will be used
in most cases.

C can be determined experimentally almost
directly by comparing the binding energies of
two nuclei' with T~ ——+-', . The difference in
binding energy is according to Heisenberg' s
hypothesis, only the Coulomb energy, which can
be expressed by (16) and the resulting C plotted
against n. The plot is given in Fig. 3, the solid
curve is 2'4n &, the energies are given in mc'.

Unfortunately, most of the points are at low n.
Only one is as high as n =27, corresponding to the
transition from ~4Si'~ to ~3AP' and this one falls
off the curve. This would indicate that the radius
increases more quickly than with the 3 power of
n, or that the energy of the transition is greater
than the value measured by I. Curie and Joliot"
for the limit of the P-ray spectrum. The latter
alternative is rendered probable by the energy
differences" ~~Na" —~ONe" and ~5P"—~4Si". As-
suming a symmetric Hamiltonian there will be a
term of Na" equal to every term of Ne", even
using "approximation 3" of reference 2, i.e.,

taking ordinary spin forces into account. The
term of Na" which has in approximation 3 equal

are increased by 1 mc' (cf. reference 6). In order to eliminate
the discrepancy here, it was necessary to decrease the radii
to 43 of the values assumed in reference 1. For the present
considerations this is not very important if one considers
(16) as the total difference between proton-proton and
neutron-neutron interaction."I. Curie and F. 'Joliot, J. de phys. et rad. 5, 153 (1934).

'3 L. Meitner, Naturwiss. 22, 420 (1934); C. D. Ellis and
W. J. Henderson, Proc. Roy. Soc. A152, 714 (1935).
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binding energy to that of Ne" can be the ground
state or an excited state of Na". The latter
possibility is the more probable one, on account
of the Heisenberg forces which have a similar
effect in the nuclei Li' B",N". At any rate, the
binding energy of Na" is at least equal to that of
Ne'2 in approximation 3. If the departure from
the symmetric Hamiltonian is caused by the
electrostatic forces alone, these must be at least
equal to the experimental binding energy differ-
ence of 8'1 mc' between Ne" and Na". This gives
10C&8'1 mc' or C).81 mc' for n=22. The
P"—Si" pair gives in the same may 14C&9 mc'.
The corresponding points are inserted as small
arrows in Fig. 3 and render the value obtained
directly for n=27 improbable. Further experi-
ments would be needed, however, to definitely
settle this point.

The energy difference between a particle in the
2p and 3d shells should be, according to the
central field model, " about 41 mc', while it
actually is only" about 10 mc'. The energy
change at the end of the (3d) (2s) shell should be
according to Hartree's model" about 17 mc'
while the experiments indicate about 3 mc'. It
seems that roughly 5 of the increase in kinetic
energy is concentrated at the end of the shells,
the rest is probably rather uniformly distributed
all over the shell. We shall decrease, hence, the
expression for increase in kinetic energy with
isotopic number to (SOT//n) mc'.

The final expression for the binding energy —Z
will be, hence, '"
—8= —Zo(n) "L+',—C(n T-r —1)—Tr

—(5OTr2/~) men

C= 2 4mc'/'n& (17)
In the following we shall assume C= 2'4 mc'/I&

which leads to r= n&r. /2, a radius for the nucleus
which is much smaller than that obtained by
Bethe. '4 It must be remembered, however, that
our radius is the distance over which the wave
function extends while Bethe's radius is the
distance in which the electrostatic repulsion on
an o,-particle becomes as strong as the attraction
due to specifically nuclear forces. It is natural
that Bethe's radii are greater than ours.

The value of r can be inserted into (12), the
second part of which becomes (63Tr2/n) mc'. This
value for the change in kinetic energy with
increasing isotopic number is too high within a
shell and too low at the end of the shell. In
Hartree's model, the kinetic energy of all isobars
is the same, as long as all the particles can be in
the same shell; it is very different, however, if one
particle is forced out of the shell. This will not be
true actually, of course, but it is to be expected
thatour expression is too high in the middle of the
shell. At the end of the shells, there will be an
additional decrease in binding energy for all
particles which are outside the shell. This de-
crease, on the other hand, will not be as great as
one would expect on the basis of Har tree's model. "

"H. A. Bethe, Phys. Rev. 50, 977 (1936).
1~ W. Elsasser, J. de phys. et rad. 4, 549 (1933); 5, 389,

635 (1934);cf. also K. Guggenheimer, J. de phys. et rad. 5,
253, 475 (1934). What is called central field model here is
really only a somewhat crude potential well picture, with-

where ' is defined in (15), plotted for the lowest
state in Fig. 2. Zo(n) is a smooth function of n
which contains all terms omitted and is re-
sponsible for the greatest part of the binding.
I will be supposed also to depend mainly on n,
and a smooth function of this.

According to (17), there are (apart from the
small mass difference between neutron and H')
two causes which tend to keep T~ small: the po-
tential energy and 'the kinetic energy. For sma11

T~ the former one will be more effective, for large
T~ their values will be in a constant ratio. The
Coulomb energy is the only term which tends to
increase. the isotopic spin.

The following sections will be devoted to a
comparison of (17) with experiment. The only
unknown quantity in (17) is L, . This I will be
derived from the kinks in the mass defect curve,

out direct interactions between the particles. Also the term
Hartree's approximation, as used in papers dealing with
nuclei, often refers only to the kind of conclusions which
one can draw, according to Slater, (Phys. Rev. 34, 1293
(1929)), for the relative positions of terms, without a
detailed knowledge of the wave functions. The direct
interaction between the particles is taken into account
here at least in first approximation."According to E. O. Lawrence, E. McMillan and M. C.
Henderson, Phys. Rev. 4'7, 273 (1935) and to J. D. Cock-
croft and W. B. Lewis, Proc. Roy. Soc. A154, 261 (1935)
there is an excited state of N" in this height above the
normal state.'" In the last term of (17), it would be more logical to
write S instead of T~ (cf. footnote 10), However, the S of
the lowest term of a nucleus is Tg.
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from the energy difference between isobars, and
from stability conditions for isobars; the results
then compared.

(6) KINKs IN TIIE MAss DEFEcT CURVE

Through the work of Brasefield and Pollard
and of Aston'7 the masses of most stable elements
up to 40 are known with su%,cieot accuracy to
make a comparison with (17) possible.

Formula (17) written for the atomic mass M
instead of the binding energy reads (electronic
mass units)

M(n) =MD(n)+'L ,'C—(n—Tr—1)Tr—
+50Tr2/n+1. 4Tr (18)

(1.4 is the difference between the mass of H' and
the neutron). Fig. 4 contains the difference be-
tween the actually observed masses'~ and the
next integer number, multiplied by 1825. The
points for the three kinds of masses, 4k, 4k+1,
4k+2 are connected by broken lines. Around
n=30, the line for the 4k+2 type of masses runs
just in the middle between the lines for the two
other types. Using this as an empirical fact, one
obtains

15L/8 —C(n —,') /4+ —50/(2n) +0.7
= 2 (5L/2 —C(n 2) /2+—50/n+1. 4)

or L/C=4. 7; L=3.5 mc'

Some corrections, applied by Bethe" on the
masses" make the lines for 4k and 4k+2 just
cross at n=28 and we obtain 5L/2 —C(n —2)/2
+50/n, +1.4=0, or the somewhat smaller values
L/C =4.0; L =3.15, This is as accurate a value as
can be expected -with the present masses.

At lower masses, one can make a calculation
for individual points also. It gives for n = 13, 14,
15 the values I./C= 4 6, 4.5, 4.4, re-sp. ectively,
with an average error of 0.3 each. For n=21, 22,
23, one obtains L/C= 4.2, 4.8, 4.0, resp-ectively;
the average error is here 0.5.

From the value of I at 28 or 30, one can calcu-
late the actual distance of the broken lines for the
elements 4k and 4k ~1.The result is 2 nsc' (with
L =3.15 nIc') or 3 nIc' (with the original values,

"E. Pollard and C. J. Brasefield, Phys. Rev. 51, 8
(1937);F. W. Aston, Nature 138, 1094 (1936)."I am much indebted to Professor H. A. Bethe for
communicating to ne his results before publication.

20—

IQ-

l7 g& 24 28 36

Fro. 4. The difference between n times one-sixteenth of
the mass of oxygen and the mass of the stable element with
n particles, given in units of the electronic mass. Experi-
ments of Aston and Pollard and Brasefield. '7

(7) DIFFERENCES BETWEEN MASSES OF

IsoBARs

The previous section yielded values for the
quantity L which should enable us to calculate
the differences between isobaric masses from
about n=12 to n=40. The value of I obtained
in the previous section decreases a little less
strongly than with the inverse first power of n.
This is indeed what would be expected as soon as
the nuclear dimension exceeds the range of
forces.

For elements of the form 4k, the (STY) symbol
for the lowest state with isotopic spin 1 is (110).
The difference in potential energy between this
state and the lowest state of the element with
isotopic spin zero [(STY)=(000)] is 4L. The

L=3.5 mc'). This is in fair agreement with the
"observed" 3 mc' (corrected masses) and 2 nIc'
(original values).

The increase of isotopic number with nuclear
mass will be discussed in more detail later. How-
ever, the change from -', at n=35 to -', at n=37
may be treated here. The condition for the
stability of ~~C1" against electron emission is

35L/8 —C(n ——',)/4+ 50/(2n) +0.7
(59L/8 —C(n —5/2) /(-', )+ (50/n) /(5/2) +2.1,

which gives L/C)3 4for n.=35 The .condition
that CP' be stable against the capture of an extra-
nuclear electron is the opposite of this inequality.
This gives L/C(3. 8.

A knowledge of the masses of S", A", K"
would be very valuable for a further comparison.
The values of L obtained in this section are
plotted in Fig. 5.
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Fio. 5. L/C and L as function of the number of particles.
The experimental points (with mean errors for the light
elements) all refer to L/C. The higher point at n = 29 refers
to the original measurements, " the lower one to the cor-
rected ones."
difference between the mass defects is, therefore,
in units of the electronic mass

(8) STABLE ISOBARS

The first important change in the isotopic
number occurs, as we saw, at Cl" where it be-
comes ~. We know, however, that K" has T~ ——-',

again. This can be attributed only to the closing
of a shell, since the Coulomb energy is certainly
even more effective in 19K" than in 17C1' . The
instability of,sA'~ can be explained by assuming
that one of its 21 neutrons is outside a closed shell

and its transformation into a proton which can
be inside the shell represents a large energy de-
crease. One is thus led to the assumption that a
shell is closed with 20 neutrons, or 10 orbital
states. This agrees with the calculations of
Margenau" with the potential well picture.

It is possible to determine the magnitude of the
increase X in kinetic energy of a particle lifted
from the 3d2s shell into the next one from the

"H. Margenau, Phys. Rev. 46, 613 (1934); H. A. Bethe
and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936), f 32.

4L C(ri 2—)/2+ 100—/n+ 1'4.

The expression for the mass difference for odd
elements with isotopic spin -', and -', is

3L C(m —3)/—2+100/n+ 1'4.

The theoretical and experimental values are
collected in Table II. Except for F", the agree-
ment is quite satisfactory. For F"one may infer
the existence of y-radiation. The disintegrations
in which a neutron outside the 3d2s shell is
transformed into a proton within this shell, are
excluded from this comparison (Cl", A", K").

12
20
24
27
28
31
32
36

calc.

24
14.4
10,7
4.6
7.7
3.2
5.1
2.7

observed

21.5
9.8
9.8
4.0
6.4
3.45
4.3

Sources for the experimental results: For n = 12 and 20: W. A. Fowler,
L. A. Delsasso and C. C. Lauritsen, Phys. Rev. 49, 561 (1936). For
n =24 E. O. Lawrence, Phys. Rev. 47, 17 (1935) and N. D. Kurie, J. R.
Richardson and H. C. Paxton, Phys. Rev. 49, 368 (1936).For n =27
M. C, Henderson, Phys. Rev. 48, 855 (1935).For n =28 E. McMillan
and E. O. Lawrence, Phys. Rev. 47, 343 (1935).For n =31and 32 Kurie,
Richardson and Paxton, reference 20, and E. M. Lyman, Phys. Rev. 51,
1 (1937).

"F.N. D. Kurie, J. R. Richardson and H. C. Paxton,
Phys. Rev. 49, 368 (1936);J.Ambrosen, Zeits. f. Physik 91,
43 (1934).

energies of the 17C1", 18A" and 19K"nuclei which
are known from P-disintegration, if one assumes
that they are not accompanied by p-rays. In both
cases a neutron outside the ds shell is transformed
into a proton inside this shell. The change in

potential and Coulomb energy can be calculated
for the disintegrations if one extrapolates the
value of L in Fig. 5, assuming that one is already
in the region where L is inversely proportional to
e and L/C to ni. For &tel" and»K" the formula
5L C(n ——4) /2+4. 50/n+ 1'4 yields 6'9 and 4 mc',

respectively; for &SA4' 4L C(n —5/2—)+4 50/n.

+1.4=3. The experimental values" are 9'4, 7'2

and 5'8 mc', respectively. This gives approxi-
mately X=3 mc' for the energy difference be-
tween the sd shell and the next shell. (Cf.
Section 5.)

Assuming this value, »K'9 is by 1'5 mc' more
stable than ~BA39, which explains the curious
backward movement of the isotopic spin. "It has
been pointed out before' that simultaneously with
the first change in isotopic spin for odd elements
there should be a change for the 4k elements also.
The following Table III gives for n=36, 40, 44
the calculated mass diffe ences between the
elements with isotopic number 1 and 2 on the one
hand and the element with T~ ——0 on the other
hand, in units of the electronic mass. One sees,
first of all, that all the nuclei with isotopic spin 1

(proton and neutron number both odd) are
unstable, for n=36 and 40 even against both
Tg=0 and T~ ——2. From the nuclei with equal

TABLE II. Theoretical and experimental values of the mass
dQ"erence for odd elements with isotopic spin 3/Z and 1/Z
(electroni c mass units).
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number of protons and neutrons, masses 36 and
40 are stable, 44 unstable, in agreement with
experiment. However, all three isobars 36, 40, 44
with T~——2 should be stable against the emission

of an electron. "The first one, S", is not known
(S" is, of course, unstable),

The next change in the isotopic number of odd
elements occurs at n=49, where it changes to
5/2. Using further the extrapolated value of L
along the curve I =96/n, one obtains that the
mass difference between the isobars with isotopic
spin $ and 5/2

4L C(e —5)—/2+ 200/n+1 4'
becomes just 0 at n=47, while the latter should.
be by about 1.2 mc' more stable than the former
for n=49. In fact, the element Tr 5/2 is ——the
stable one for n=49 while only T~ ——-', is stable
for n =47."

It has been pointed out before' that simul-

taneously with this jump in isotopic number, that
of the elements 4k+2 should increase by 2.
Table IV gives in units of electronic mass the
calculated mass differences between the elements
Tg=2, 3 on one hand and T~ ——1 on the other
hand, according to the formulae

SL C(n 4)/2——+200/n+1 4'
8L C(e—5)+400/n—+2'8.

The situation is very similar to that of Table III.
Again, all odd-odd elements are unstable, ~~Sc"
even against disintegration into both ~OCa" and
~~Ti". The elements n =42, 46, 50 with T~ ——1 are
stable, in agreement with experiment. From the
elements with isotopic spin 3, the mass number 42
should be unstable, the rest stable against trans-

TABLE III. Calculated mass differences between elements
with isotopic number I and 2 and the element with Tg=0
(electronic mass units).

formation into the element with isotopic spin 2.
Again, one of the elements which should be
stable, goCa", is not known. In additon to this,
the element with mass 54 and Tg ——1 is stable,
Probably, L is somewhat larger than the extra-
polated curve (Fig. 5) would indicate.

It is hardly necessary to mention that the
somewhat surprising agreements between the
rather rough theory given in this paper and the
experimental findings must be partly fortuitous. "
Approximation 1 is certainly very crude around
n=50 and it would be desirable to take into ac-
count the Heisenberg force at least in first ap-
proximation and, what is probably even more
important, the second approximation for the
Coulomb force. Also, the shells become probably
even less important for higher masses and the
factor 50 should be somewhat increased in (17).
All these factors work for a decrease of the iso-

topic spin and, indeed, they seem to be noticeable
already in the region of Table IV.

For very large nuclei, the probabilities g, (x)
and g, (x) of a distance x between two particles
will be inversely proportional to the volume of the
nucleus as long as x is small compared with the
nuclear diameter. This follows from the assump-
tion that the g(x) approach limiting functions
with increasing number of particles. " In the
region in which this is true, L and L' will be
inversely proportional to the total number n of
the particles, since V(x) will extend over a region
which is small compared with the nuclear di-

ameter. For nuclei with about 30 or 40 particles,
this limiting case will not yet be reached, because
the surface effects are still appreciable. Their
gradual disappearance will cause L to decrease
more slowly than indicated in Fig. 5. This point

36
40
44

2.3
0+X—2.2

Tg 2

0—4.1+2X—8 Tt 2 Tf 3

TABLE IV. Mass differences between elements with Tt. =2, 3
and with Tg=1 (electronic mass units).

"M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935) has
shown that this means an enormously long lifetime even
if the nucleus is unstable against the emission of two
electrons or positrons."The stability or instability of a nucleus depends often
on mass differences of less than the electronic mass. Cer-
tainly none of the formulas of this paper is accurate to
that amount.

42
46
50
54

4.4
2
0.1—2

5
0.7—3.6—6.9

"In metals, where the situation is very similar from the
mathematical point of view, the existence of such a limiting
function is quite obvious.
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has been fully discussed by Weizsacker" into
whose well-known quasiempiric formula (18)
should go over for high n.

Since for heavy nuclei ™/is proportional to T~',
and I to 1/n, the term 'I. is proportional to
50 Trs/n. As far as the experimental values for
heavy nuclei are concerned, the factor of Trs/n
could be changed if the magnitude of L is changed

also to compensate for it. For light nuclei, the
other terms in ™/are important also and keep the
possibility of a change of the numerical value of
L within certain limits.

It is a pleasure to remember the interesting

conversations I had on the subject of this paper

with Drs. Breit, Feenberg and Wheeler.

APPENDIX

Formula (15) is of course, an immediate consequence of
the character formulas of Frobenius, "There seems to be a
general desire, however, for a derivation which does not
make use of the whole theory of representations of the
symmetric permutation group. The derivation to be given
here is a generalization of that given by Dirac" for the
theory without isotopic spin which is used in atomic and
molecular problems.

Instead of considering the positional part of the wave
function, one may consider the spin function alone. Since
the corresponding representations are adjoint, the respec-
tive values of n(n —1)x(T)/(2f) have opposite signs.

There are several sets of spin functions for every repre-
sentation which may be distinguished, e.g. , by the total
S„Tg, and Yt. The value of - depends, however, only on
the representation which is specified by S, T, Y. It is thus
immaterial which S„Tt., Yg one takes, and the highest set
will be taken here: S,=S, Tg= T, Yg= Y.

Consider the operators is„ isJ, is„i7.g, i r„, i 7-p and the
nine products s rg, s,v„, etc. , acting on the spin vari-
ables of one particle. These 15 matrices, taken with both +
signs, together with the unit matrix, taken again with both
signs, form a group of the order h =32. It is the same irre-
ducible group which is generated by Dirac's n matrices.
These n have the important property which will be re-
peatedly used later that the trace of every element is zero,
except that of +i. This follows from the fact that they can
be transformed into their negative values.

The interchange R12 of the spin coordinates six. 1 and s2r2
is identical with the following sum over the whole group.

Ri, =(2ii) &Qa;in;, ',

where n;1 acts on the spin of the first, o.;2 on the spin of the
second particle. Eq. (I) will be proved by showing that
R12'=1 and then that R12ak1R12 '=~k2. This proves that
R12 is to within a sign the interchange of the spin 1 with
spin 2. The sign can be obtained by considering the trace of
R12, which, according to (I), is positive. If R12 were the

24 C. F. v. Weizsacker, Zeits. f. Physik 96, 431 (1935).
2' G. Frobenius, Berl. Ber. (1900) p. 516. F. Hund

(ref. 1) has derived the very simple formula for
"- = —,'P„(x,—1)+x,(x,-3)+X,(x,—5)+.
(x,~z,~x,~.".)"P. A. M. Dirac, The I'rincip/es of Quantum Mechanics,

second edition (Oxford 1935), $ 61.

negative of an interchange, its trace would be negative,
since the number of symmetric linearly independent spin

functions is greater than the number of antisyrnmetric spin

functions. We have

+1 = (2&) p&il~i2 ~j loii2
ij

Setting n, 2n;2=a)2, 0.;1a,1=a«we have a;2 'a;2 '=o.f2 'and
similarly n.;1——n;1 'n&1,

Rig=(2k) 'Quii 'u(, n;inii '
jl

Now Pn, & 'niia;i, commutes with all nq& and is, hence, a

multiple of the unit matrix. Since its trace is h times the
trace of a« it is different from zero only for cx« = +i. Idence

R12'=(2h) 'I h 1+(—h) (—1)]=1. (II)

Furthermore we have to show that

R12~klR12 R12O klR12 ~k2 ~

We have
+12al 1+12 (2&) g~iliii2 aklail~i2

sj

Setting again o.;2m;2=a12, o.;1o.,1=a~1, we have

+12+kl+12 Q(j~) ~jl ll~klajlal2a
jl

The sum over jis again different from zero only if a«ak1 ——~1
' in which case it is &h. Hence

R12ak1R12 = (2h) I h~k2+ ( h) ( ~k2) I k2.

This proves Eq. (I). Dirac's equation for ordinary spin

Q12 2(1+sslsg2+sylsy2+s 1sz2) is a special case hereof, for
h= 8.

We shall consider now the operators for the "total spin. "

Since the a are unitary,

We shall calculate now the sum of all n(n —1)//2 inter-
change operators R„p. We shall denote this sum by ™
because it will turn out that, if applied to a function I&'

belonging to a definite multiplet system, it merely multi-

plies this F with n(n —1)x(T)j(2f) where x(T) is the trace
of the matrix D(R) in (1) corresponding to a transposition.
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5,= —.,'-i A»2., Tt ———,'~A 34, then Fg = —2A»234.

Lct Us consider now' thc fUnctlons F wh. lch belong to a
certain multiplet system (5TY) and let us assume that they
have de6nite "'magnetic quantum numbers" 5, Tp, Fy.
This ls RlwRys posslblc slncc $A»2, '$A34) —A»g34 commute.
Since is a sum over all elements of a class, it follows from
the general theory that it is a constant within the multiplet.
One can convince oneself also directly with the help of (V)
and the commutation relations that it commutes with all
A and thus, if applied to the functions F of an (5TY)
ITlUltlplet, lt 1Ticrely multiplies thclTl with thc 83ITic AUITlbcl .
This number is, according to (IV), n(n —1)j2 times the
mean value of the diagonal elements of' the interchange
operator A', y. Since the latter quantity is g(T) jf it was
justi6ed to denote the sum in (IV) by -.

In order to And another expression for the value of ",

so fRr, thc 6rst Index of A I cfcrlcd ln RA RrbltrRI'y %'Ry to
the elements of the group generated by Dirac's n matrices.
In the following, however, we shall use single indices for
Dll"Rc 8 oliginal four matrices o.», eq, o'3, o4 only„all wl ltc
0'»2=»g~ ~»23=o'.»&2%3, ctc. Thc QotRtlon fol thc A will bc
changed in a similar way. The A with one or four ind. ices
will be Hermitean, those with two or three indices skew'-

Herrnitean. Hence (IV) will read (in the summation in (IV),
A, occurred with both signs; k=32)
"= —2e+ (1/8) I n'+AP+AP+AP+AP

—A»P —A»32 —A»4' —A232-Ag42 —A3P
A»23 A»24 A»34 %34 +A»234 I (V)

The Sg, Tg Rrc, RpRrt f

lorn

a trlvlal fRctOI, two comnlut"
lng A s. PcrhRps thc most synl. IBctl IC cholcc ls

we apply it to the F with the highest set of magnetic quan-
turn numbers 5,=5, Tg= T, Yg= F. For this Fsry we have

sA»2F8ry =25F8rl" sA34FBI I.=2TFhI I
—A»~34F8rr = 2 ~F8rl (VI)

RcpcRtcd Usc will riow' bc made of thc fRct that foI' every
equation giving the commutator of two a, there is a similar
equation for the A. Thus

fng, amj=2a)2, L'A(, A2j =2+m&,u.,=2An.

From I iA», Al —iA2$=2(A» —iA2) it follows that

iA»2(A» —iA2) Fpry'=2(5+1) (Al —F2)Fqrl,

so thRt thc 5g of (Al —$A2)F8I I ls 5+1.Slncc Qo F exists
with a higher 5, than 5, this must be zero. In this way we
obtain the equations

(A» —iA..)F8rv =0, (A»3 —~A33) Fsrl =0,
(A»4 —SA24) Fsry =0, (A»34 —IA234) Fgry =0. (VI I)

A3 —'bA4 conlfnutcs %'lth $A»2 Rnd lt docs not change thUs
the value of 5,. HOWever, LiA34, A3 —iA4j=2(A3 —iA4)
so that the Tg of (A3 —iA4)FBrl. is T+1. Therefore
(A3 —iA4) Fgry must be zero, since the highest Tg for all the
F with 5,=5 is T. In this way one obtains

(A3 —&A4) Fsrl. =0, (A»u —&A»24) Farl =0. (VII I)
We can rewrite now (V)

—2m+ (1/8) In'+ (A»+iA&) (A» —~A2) +(A3+iA4)
X (A3 —~A4) —A»22 —(A»3+iA23) (A»3 —iA23)
—(A»4+ jAg4) (A»4 —jA~4) —A3 '—(A»23+iA»24)

X (A»~3 —»»24) —(A»34+~A234) (A»34 —~A234)

+A»23421+ (1j8) 12iA».„+2iA34+2iA»2+2~2»g
12~'A34+ 2~A»2 f.

This gives with (VI), (VII) and (VIII)

~F8rl = I
—2e+(1j8)(n +45~

+4T'+O'Y'+165+8T) I Furr (X)
for the - of the representation of the spin functions. Tak-
ing Into account thc chRnge of sign ln pRsslng to spRcc
functions this proves (15) of the text.


