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It is investigated how the Fermi theory of P-decay has to
be formulated for a complex nucleus containing many
particles. By symmetrizing the problem in all particles
(neutrons and protons) a general prescription is obtained
which would allow one to calculate the transition prob-
abilities when the wave functions for the nucleus in its
initial and final state are known. The discussion of the
heavy particle matrix element which is involved shows that

a considerable decrease of the transition probability with
the complexity of the nucleus is to be expected. A new
reduction of the empirical data shows that the influence of
the Coulomb field on the P-disintegration probability is
larger than heretofore assumed. The difference obtained in
reduced lifetimes of light and heavy nuclei (of the order of
a factor 50 to 100) is of the same order of magnitude as
estimated from the theoretical considerations.

investigated, therefore, whether one can make
any statements concerning this matrix element
from theoretical considerations. The first ques-
tion is then, how one can take into account the
fact that we have many particles in the nucleus
which virtually can make the neutron-proton
transition. It seems to us that a unique formula-
tion of the Fermi theory for this case can be
obtained which would make it possible to calcu-
late the matrix element if the correct wave func-
tions were known. From the form of this matrix
element one would expect rather large individual
deviations and it seems to be a natural conse-
quence that the matrix element becomes smaller
with increasing complexity of the nucleus.

1. INTRODUCTION

N the Fermi theory of P-decay the probability
- - for a definite disintegration process contains
besides other factors a matrix element depending
on the wave functions of the heavy particle which
goes over from a neutron to a proton state or vice

versa. Hitherto one has assumed that this matrix
element, whose square enters in the total transi-
tion probability, should be of the order unity for
the so-called allowed transitions. ' This was sug-
gested by the fact that the lifetimes of different
elements with approximately the same maximum

energy are of the same order of magnitude. (See
Table. I.) However, a more careful consideration
of the theory shows that this apparent equality in
the lifetimes for heavy and light nuclei actually
means a considerable variation of the matrix
element. This is due to the large influence of the
Coulomb field on the electronic density near the
nucleus. ' We have made a new calculation of this
effect (see f2) and we have found it considerably
larger than heretofore assumed. In fact, the re-
duced lifetimes between light and heavy elements
differ by a factor of the order of 100.

The only possible explanation for this effect
seems to be that it is due to the above mentioned
matrix element of the heavy particles. We have

2. EFFEcT oF THE CQULoMB FIELD

In the Fermi theory of P-decay the probability
that an electron is emitted by a nucleus with total
energy between e and a+de (in units mc') is

wde = F(Z, e) (~o —e)'"(e' —1)~ede, (1)
jo

if the mass of the neutrino is taken to be zero. In
(1) E'p is the upper limit of the energy. The ex-
ponent n depends on the basic assumption re-
garding the interaction, n being 1 for Fermi's
original form and 2 for the one used by Kono-
pinski and Uhlenbeck, ' which gives a better
agreement with the experimental distribution
curves. v o is a universal constant of the dimension

' We say that a transition is an allowed one when the
corresponding element belongs to the group which shows
the shortest reduced life times among all elements of com-
parable atomic weight.

'The influence of the Coulomb field has already been
included in Fermi's original treatment (Zeits. f. Physik 88,
161 (1934)) and'H. A. Bethe and R. F. Bacher, Rev. Mod.
Phys. 8, 82 (1936)give an estimate similar to ours, but they
obtain much smaller differences between heavy and ligh
nuclei.

t ' E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 48,
7 (193S).
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TABLE I. Lifetimes, maximum energies and comparative values for the heavy particle matrix elements for P radioactive nuclei,

Nucleus

C11
Nls
O15

g
F17

12Mg"
14Si'7
4,Rh1o5

Aggos

4gIn
4gIn
s1ACC«2O7
s1ThC' 2os

s2ThB-"
s2RaB"4
g1UX22'4

1,200
660
150
70

620
150
44
22
13

3,240
410
275

55,000
2,300

94

(ep —1) (mcm)

2.5
2,8
3.9
4,9

(3,9)
3.9
5.5
5.5
6.3
2 ' 5
2.7
3.6
0.7
1.3
4.5

11
17
63

170
110
54

1600
1700
3200

83
750

2200
8.2

54
7100

fKU

29
57

360
1,400

620
300

18,000
19,000
46,000

230
2,700

12,000
2.4

48
57,000

(.20)
(.11)
(.05)
(.33)
( 11)

106 )(1/rf p

8.0
8.9

11
8.6
1.5

12
1.5
2.7
2.4
.37
.33
.17
.22
.81
.15

106 && 1/~fKU

29
26
19
9.9
2.6

22
1.3
2.4
1.7
1.3

(.44)
(.18)

7.7 (.79)
(2.3)

.19 (.12)

of a time which determines the absolute magni-
tude of the interaction.

1 G mc'
10 "

rp (22r)2 )22

JI/I is the matrix element of the wave functions
of proton and neutron which can be factored out
under the assumption that the electron and
neutrino functions can be taken as constant over
the nucleus (allowed transitions).

with Z being the nuclear charge, u = 1/137,
y = nZ, s = (1—y2) & and R the nuclear radius. '
The quantity y is positive for electron emitters
and negative for positron emitters. For Z—+0, i.e. ,

p~0, s—+t. , we obtain I'"—+1 as it should be.
Even for the largest Z, x=s —1 —y2/2 and
y = y2(22 —1) l will be (1 (excluding the smallest
values of 2 which do not contr'ibute much to (1)).
We can therefore use the evaluation of the
complex F function

cV= "C*(x)Oe(x)dx,

where 0' and C are the wave functions for t
initial and final state and where x stands for spin
and space variables. 0 might be an operator
acting on the spin variable depending on the
special form of the interaction Hamiltonian.

F(Z, e), finally, is a factor expressing the de-
pendence on the Coulomb field of the nucleus. Its
physical meaning is the change in the electronic
density I&I' at the nucleus, introduced by the
Coulomb field and obtained by summing over all
electronic s states in the interval de. The rela-
tivistic s functions, of course, diverge at the
center of the field. However, as the field in a
nucleus with finite range will not increase in-
finitely, the electronic density inside of it will not
vary rapidly and we can use for the P-decay the
value at the border of the nucleus. The expression
for F(Z, 2) already determined by Fermi' is then

which, if terms of the order x' are neglected,
reduces to

22r
I y I

(1 2x)

e y —e—~y

Approximately, therefore,

2" 22r
I p I (1+p ) (mcR)

F(Z, )=
(2$ ))2

I
1 e

—2wya(a —)) &

I
g I2

&(2(22 1)' &. —(4)

For not too small c the denominator can be
developed

We take 8=1.5X10 ' A~ (A =atomic weight). The new
slightly larger values of H. A. Bethe, Phys. Rev. 50, 977
(1936), would increase our final values for the matrix
elements by a factor 1.2 for the heaviest nuclei, which is
not important.' Compare Jahnke-Emde, second edition (Teubner,
1933), p. 87.

4 )2(22 —1)'
F(Z, 2) = mcR

Lr(1+2$)j' ( i2 )
Xe &'~"—') 1I r(S+2ye(e2 1)—&) I' (—3)

I r($+zy (2 1) ) I'=
I
r(1+x+zy)

I

2r2(X2+y2) (l X)2+y2
he

sin' 2rx+sinh2 2ry (1+x)'+y'
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I
1 —e

—2~~'&"—'& ~
I

(5)li-e-2-~l le"~-1I 22'
'

and (4) and (5) can be used for the whole range
of y, i.e., Z.

(4) is easily seen to give a factor 50 between
heavy and light elements, as, e.g. , for Z 90, the
factors become

2" 22ry(1+y ) (meRq "
-s.

(2s!)' I1—e "7I ( h j
With the help of (4) and (5) one can integrate

(1) over the energy to obtain the average lifetime

1 'o IMI2
2ed2 = f(pp),

T 1 Tp
(6)

where

Replacing the slowly varying factor (22 —1)' '
by (22 —1)' ' where p is the mean value of 2, we
obtain for the integral in (7) for n=1 (Fermi)

(22 1)s—1
6p fp Ep 1

30 3 2 5

I
e"&—1I

(.,—1)2-
(8a)

and for n = 2 (Konopinski-Uhlenbeck)

op~ ep4 . 6 2 1
(p' —1)'-' ——+ pp' ——pp'+ —

pp ——
105 3 5 3 7

22r
I y I

(pp —1)'

Ie' & —1I 10
(8b)

As Tp is assumed to be constant, the product
1/rf( )ppis proportional to the square of the
matrix element. In Table I we give the relevant
data for all the elements with allowed transitions,

2 ' 22r IVI (1+y') t'mcRg " '
(pp) =

I I x
(2s!)' I1 —e—2~&l E. fi )

2~le
(pp p)2"(22 —1)'-'ppdp. (7)

I
e2~& —1

I
222

for the Fermi as well as for the Konopinski-
Uhlenbeck case. The last two columns give rela-
tive values for M' for the different elements.

For the maximum energies 6p we have taken the
values extrapolated from Konopinski-Uhlenbeck
plots, as far as they are known. Though it seems
to be agreed now that the Konopinski-Uhlenbeck
plots give too high values for ep it seems still to be
reasonable to use this method of reduction as
otherwise the form of the electronic distribution
agrees so well with the Konopinski-Uhlenbeck
formulae. A possible error introduced by this
choice of ep would also enter similarly for all
elements.

For the heavy radioactive elements, on the
other hand, only Sargent's values which have
been obtained by inspection are available. This
means probably that the ep used for the heavy
elements are systematically too low compared
with those for the lighter elements. To see the
possible influence of this effect we have given in
brackets other reduced values which are obtained
when one increases Sargent's ep arbitrarily by
0.2 MV 0.4 mc' which is of the order of the
observed difference between the Konopinski-
Uhlenbeck and the inspection values. From the
table we see, besides individual fluctuations,
chiefly a systematic decrease of the matrix ele-
ments with increasing mass number. M' de-
creases from the group of the light positron
emitters of the type 6C" to the elements with
medium weight as In and Ag by a factor 10 and
to the heavy elements by a factor 50 to 100.

Only the two heavy elements with very low
maximum energy, Th B and Ra B fall somewhat
out of line with the rest but owing to the much
smaller ep they are not directly comparable with
the others. ' The empirical corrections, introduced
above, already reduce the matrix elements
sufficiently to remove the anomaly. A further
interesting remark is, that the values for 3P
straggle decidedly less if the Fermi coupling is
taken instead of the Konopinski-Uhlenbeck one.
This might suggest that the latter gives too
strong a dependence of the life times on the
maximum energy which again would explain the
anomalous behavior of Th B and Ra B.

6 The integral in (7) has been more accurately evaluated
for these elements than in (8a) and (8b).
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3. GENERAL FORMULATION OF THE FERMI
THEoRY

The matrix element (2) is defined only for a
single particle which makes the proton-neutron
transition. We have to investigate how M is to be
generalized for a nucleus with many particles.

JI}ccording to our present knowledge, a nucleus
containing k neutrons and l protons can be
described by a wave function

e({x, x~}{x~+, x,+,})
which has to be antisymmetrical in the protons
and neutrons separately as indicated by bracket-
ing the corresponding variables. (x represent-
ing again space and spin variables). Similarly,
after a P transformation, the nucleus in its final
state can be described by a function

4'(yz' ' 'yl —z, yl ' ' pz+t')

in which we have one neutron less and one proton
more. The problem is to find the matrix element
for the Fermi theory, when these two functions
are known. It is clear that the theory has to be
formulated so that one cannot distinguish the
particle which makes the neutron-proton transi-
tion. For this reason we can give no elementary
correlation between the variables x and y, and it
is therefore not possible to take over the matrix
element (2) simply summing it over the initial
neutrons.

Considering that it has no meaning to ascribe
the neutron or proton property to a definite
group of particles as soon as there are processes
involved in which a particle changes its character,
it is evident that the theory has to be formulated
completely symmetrical in all particles. Such a
symmetrization~ can be carried out most con-
veniently by introducing a new fifth coordinate
for each particle. This coordinate determines the
neutron or proton characteristics of the particle
to which it refers. We designate the proper func-
tions in the neutron or proton states by n and p,
respectively. With this the totally antisym-
metrized wave function (which is necessary to
fulfill the Pauli principle) can be written as

0!lt -&

Q@({xz xg} {xz+z xg+)})gz
(k+l)!

Xn(1) n(k) P(k+ 1) P(k+ I),
G. Breit and E. Feenberg, Phys. Rev. 50, 850 (1936);

B. Cassen and E. U. Condon, Phys. Rev. 50, 846 (1936).

= (&+I) tC z*(FI,@;$dx, dxz+), (9)

where the sum is- to be extended over all particles.
The transformation operator Ii signifies that in
4; n(m) has to be replaced by p(m). (The terms
of 4', which already contain p(m) give auto-
matically no contribution to M). All terms in the
sum over m give the same contribution due to the
complete symmetrization so that one obtains the
above final form. In this we attribute the n~p
transition to the definite particle k and multiply
then by the total number k+l of all the particles,
The summation over the character coordinates
can be carried out with the help of the ortho-
gonality and normalization relations

pn~(m) = pp2(m) = 1,

pp(m)n(m) =0 (10)

Introducing now the full expressions 0'; and Cf in

(9) we see with the help of (10):Firstly, all inter-
permutations in Iq+; which involve the particle
k are orthogonal to Cg as the number of protons is
different. Secondly, all interpermutations in Cf
which involve the particle k are orthogonal to
Fz+; as they contain n(k). Therefore all inter-
permutations which involve k drop out. The
remaining interpermutations are then the same
for both wave functions and only corresponding
terms give a contribution owing to (10).As these
terms differ only by the designation of the inte-
gration variables, all the integrals are identical,
their total number being the number of inter-

(k —1)!(1+1)!&
Qc'({xz xL—z}{xs x~+i})

(k+3) !

Xgzn(1) n(k —1)P(k) P(k+I).

The sums are extended over all interpermutations
I between the neutrons and protons, qq ——~i de-
pending whether the permutation is even or odd.
We can use now in both functions the same
variables x. The radicals serve for normalization,
i.e. , the functions +;, Cf are normalized provided
the original + and C were.

The natural generalization of the matrix ele-
ment (2) will then be
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X)I C "C'dxg dxy+)

= [k(l+1)]l)t C*({x~ xg, }{xg x)+)})

XO„%'({x) xl, }{x,+, x~+(})dx, dxg+(, (11)

where + and 4 are the original wave functions for
the initial and final state for the total nucleus
which do not contain the character variables. In
the final form we have reintroduced an operator
Op which might act on the spin or space variable
of the particle k in case it is assumed to do so in
the original interaction.

Na'ively one would perhaps have expected
the result (11) only with the numerical factor
k(=number of initial neutrons) instead of the
factor [k(l+1)]l which is symmetric in the num-
ber of neutrons in the initial and protons in the
final state.

4. DISCUSSION OF THE MATRIX ELEMENT

To get an idea of the meaning of our prescrip-
tion (11), especially the factor [k(l+1)]'*, we
evaluate 3f under the assumption that + and 4
are Hartree-Fock wave functions, i.e. , can be
written as determinants of individual particle
wave functions. We develop these functions in
the minors of the particle assumed to make the
transition, i.e.,

gg. ,(xg)R;„,
(k) i

(12)

where P and C „are the individual particle wave
functions for the initial neutrons and final protons
and R„and R„, respectively, the normalized
wave functions of the rest nuclei.

Inserting (12) into (11) we get simply

M= I Q &jh„*(k)(O $„„(k))R„;R„"d. (13)
&s Pf

permutations with the exception of k, i.e.,

(k+1—1)!/(k—1)!L!,and we obtain finally

(k+/ —1)! k!I! '* (k —1)!(3+1)!'-*

3E= (k+1)
(k —1) !t! (k+3) ! (A+I) !

We obtain therefore as a prescription for the case
of Hartree-Fock wave functions the following
one: Take an arbitrary initial neutron state and
final proton state, assign them to the particle
which makes the transition, multiply them with
normalized wave functions for the rest nucleus,
sum over all possible combinations and integrate.
The numerical factor is then exactly unity.

If we assume furthermore that the individual
particle wave functions are practically the same
for neutrons and protons and in both nuclei, and
that they form an orthogonal set, (13) will give
unity for M if we have in the initial and final
nucleus just one corresponding neutron proton
state with the rest nuclei identical. In all other
cases we would obtain zero. According to this
oversimplified picture we would get the result
that M would be 1 for the radioactive nuclei of
the type 6C" in which just one surplus neutron or
proton would be present which could then go
over into the corresponding state of opposite
character. In all other cases M would be very
small.

This result shows again that the Hartree-Fock
approximation is inadequate for heavier nuclei.
According to the considerations of Feenberg and
Wigner' and Bethe and Rose' we can, however,
expect to obtain reasonable approximations to
the true many-body wave functions by the
superposition of a number of such configurations.
In using such a development

C, =Pa„P„Pa,'=1,
Cf ——Qb,g„Qb, '= 1

the matrix element 3II will be

M= ga„b„*, (15)

where the sum is over all identical spin and space
configurations which occur both in the initial and
final nucleus. (15) will give again unity for the
light positron emitters of the group 6C", as here
initial and final nuclei are built up with the same
configurations and approximately the same co-
efficients. However, we have to expect, firstly
that the number of configurations necessary for a
good approximation increases considerably with
the complexity of the nucleus; secondly, that in

E. Feenberg and E. Wigner, Phys. Rev. Sl, 195 (1937).' H. A. Bethe and M. E. Rose, Phys. Rev. 51, 205 (1937).



STRUCTURE OF NUCLEI B E YOND OXYGE N 947

case the numbers of neutrons and protons differ
by more than 3, only a fraction of the configura-
tions will occur in both 0; and Cf with large
coefhcien ts.

We can illustrate this behavior by the following
simple consideration. Let us assume that for the
function @; a set of f configurations and for the
function Cf another set of g configurations is
important so that only part of them, in number h,
occur in both sets. In the average over all possible
distributions of the coe%cients, that means all
directions of the unit vectors + and 4 in their
respectively f and g dimensional spaces, we obtain

(iaaf')A =(& b)'=&(&*')A.(b*')A. =&/fg, (16)

where x designates an arbitrary component of the
corresponding vector.

It seems not possible at the present stage to
obtain estimates of the number of configurations
which are necessary to give a good approximation
for higher nuclei. But we think that the empirical
behavior of the matrix elements as found in f2
gives a definite indication about the nature of the
wave functions in heavy nuclei. From the crude
estimate (16) one would conclude that the num-
ber of configurations required for a fair approxi-
mation will increase more than linearly with the
mass number. A factor of the order 1/100 for the
heavy elements would be given by some such
values as f g 20 of which b 4 would coincide,
which means that a rather large number of con-
figurations would be necessary as would seem to
be required by our other knowledge of the
constitution of heavy nuclei.

JUNE 1, 1937 PH YSI CAL REVIEW VOLUM E 5 1
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An attempt is made to correlate the kinks in the mass
defect curve with the energy differences between isobars,
both as obtained from direct measurements and also from
the shift of the isotopic number to higher values with in-
creasing number of particles. Since the single-particle pic-
ture is known to be an insufficient approximation, the syrn-
metry property of the wave function, resulting from the use
of a symmetric Hamiltonian is utilized. The average inter-
action between symmetrically and antisymrnetrically
coupled particles (L+L' and L—L') is determined mainly

from the kinks in the mass defect curve and enables one to
calculate the energy differences between isobars. The
energy change at the end of the shell is obtained from
experimental data. It should enable one to get some idea of
the probabilities with which the particles are in excited
configurations. For heavier elements, the formula obtained
here should naturally be identical with Weizsacker's semi-
empirical formula aind the connection between both is
discussed.

H E extension of the calculations of E.
Feenberg and the present author' on the

spectroscopic characteristics of the normal state
and the low excited states to higher elements
encounters great computational dif6culties. With
the one-particle picture, after the 2p shell is
completed at 0", the 3d and 2s shells begin to be
built up probably simultaneously. Even the

' E. Feenberg and E. Wigner, Phys. Rev. 51, 95 (1937);
also H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,
82 (1936), and F. Hund, Zeits. f. Physik, to appear soon.

normal states of these elements will contain wave
functions from several configurations (3d",
3d" "2s, 3d" '2s' ) with about equal coeffi-
cients. But even the d" configuration alone gives
rise to a large number of terms with the lowest
partition and the explicit calculation of all the
matrix elements between these states becomes
increasingly dificult. Table I shows' the "low
terms" of the d" configurations up to d4, together

2 For the preparation of Table I, cf. E. Wigner, Phys.
Rev. Sl, 106 (1937), F. Hund, ref. 1. The terms for Table
I have been first determined by E. Feenberg (private
communication).


