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The relations between the root-mean-square error of an approximate ground state wave
function, the energy error, and the root-mean-square local energy deviation are exhibited and
discussed. Computations of these quantities for helium wave functions containing errors of
diferent character and magnitude are presented, and are shown to indicate that the errors in
wave functions of the Hylleraas type are of increasingly short range character as these functions
are made more flexible. The form of variational process which will give a wave function most
satisfactory for a given purpose is discussed with illustrative computations relating to the
diamagnetic susceptibility of He. It is found that the energy error associated with a wave
function may be a comparatively unsatisfactory criterion of goodness.

N this note we wish to discuss the three simplest
- - criteria for the goodness of an approximate
ground state wave function, and their relation to
the most desirable type of variational procedure
for obtaining such a function.

Let P& be the correct wave function for the
ground state of a system, and let &2, P&. . . be
the correct wave functions for the other states of
the system with the same fundamenta1 symmetry
characteristics (e.g. , in the case of He, the other
singlet S states, if spin energy is neglected). The
corresponding energies we will denote by El (E2
(E3( ~ ~ ~

Let P be the approximate normalized wave
function for the ground state, associated with
the energy E= f'/*Her The variati. onal prin-
ciple assures us that E &E&. We now define P„
a normalized function characterizing the nature
of the error in P, by

E,=fQ,*HP,dr, «, =E, E„—
~*'= J'L(H —E)Aj'dr. (6)

The significance of these quantities may be illus-
trated by supposing P to be expanded in terms
of the correct eigenfunctions:

«r 1$1++2Q 2+

and P.= ( Q a. )-l(a«&2+ +a„y.+
n=2

e, the energy error ~ =E—El

8, the root-mean-square local energy deviation

& = LJ'I (H E)WI'd—r3' (~)

All these quantities exist for trial functions of the
sort most commonly used and, of course, mpst
vanish as P~Pq, E~Eq.

We can also characterize P by means of
similar quantities:

where

6=(&—&~') '(4 —&A~)

ol = J 4'l*4'dr. Then «.= 2 & '(E —E~)/2&. '
n=2 n=2

This integral will exist provided only that P&

and P are quadratically integrable, as we have
assumed, and the resulting P, will be a well-

behaved function orthogonal to P~. Then

is an average value of E —E» weighted with the
squares of the coefficients of the higher states in
the expansion of P, while

P- ~i4 i+nA*,

g, =(1—aP)* measuring the amount of the
deviation function P appearing in P.

As practical measures of the inaccuracy of P
we take: q, the root-mean-square error in P,

~.'= Za-'(E- —E)'/E~. '
n=2 n=2

is a similarly weighted average of (E —E)'.
Since P, is orthogonal to Pq, the variation

principle assures us that

a=l:f(0-0)'d j'* (3)
860

6g~~ E2 —El.
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From f'L(H E)P—, (Z —E—)g,]2dr&~0, we find
also that

(11)8, +E,—X=6~—6.

It is obvious from Eqs. (8) and (9) that
«= 5 /(2 —2) & 1 will be larger the broader the
range of energies for which there are important
terms in the expansion (7).

Inserting into (3), (4), (5) expression (2) for
p, and assuming that f)*H)2d r = I f),*FI&dr}*,
(for a discussion of this assumption, which is
clearly less severe than the usual expansion in
series, see our preceding paper on the Hylleraas
method) we find:

g2=2 —2a2 ——2 —2(1—a,2)'*,

2e=c, e,
$2 22+@ 2($ 2 22)

(12)

(13)

Eliminating a, between (12) and (13) we get

g
——

Q =G = 2/2~ (15)

or, if p is a fairly good approximation to p2,

g' =2/2g. (16)

Eliminating a, between (13) and (14) we obtain

P = 2L2+ (6 ' — )/2]2 (17)

whence 8'/8, ':—2/2, or 5' =22,z'.

From (15) and (17) we obtain finally,

g2 ~(22/g2) 22 (19)

In a concrete problem we know p, 82 and E2,
and can compute 8, e and b. For the other
quantities we can fix limits by use of the above
equations.

(20)

As an illustration of the usefulness of this
analysis, we now present results of calculations
on three approximations to the ground state
function for the helium atom (Table I). With
r1, r2 and r12 representing the distances of electron
1 and 2 from the nucleus, and their mutual

' Equations involving the sign ~ have an approximate
validity when e is small as compared with E2 —EI.

separation, respectively, the functions are

1+
7

ps —CC
—2(ry jr2) [1+C(r& r2) 2]

Nc=e ""'+"'[cp+clr12+c2(rl r2)

+c2(r2+r2) +c4(r, +r2) '+ C2r 22'].

In making the computations B1 was taken as
the apparent limit of convergence of the non-
relativistic treatment as obtained by subtracting
the relativity correction2 from the observed term
value. The first excited singlet level of the system
is observed to be 20.51 ev higher.

The most striking characteristic of these
results is the slow. decrease of 8 as the function
is improved, compared with that of 2. Eq. (19)
shows that this must occur in general if the
"improvement" of the function involves a reduc-
tion of the root-mean-square error. ' A.ssociated
with this is the increase in If: e, which is easily
understood as follows: The error in the wave
functions may be roughly divided into two parts;
long range errors arising from the use of poor
effective shielding constants in the construction
of the function (as in the case of Pg) or of com-
paratively inflexible functions of any sort, and
short range errors associated with the singular-
ities in the energy when the particles are close
together. In the neighborhood of these singular-
ities the curvature of the correct wave function
will be large and change rapidly. Unless the
approximate functions are especially designed to
be good in these regions, an increase in flexibility
by the introduction of parameters such as appear
in P, will only slowly reduce the error here. Thus
as the function is improved P, will become more

TABLE I. Approximations to the ground state function for the
heh'um atom.

Func-
tion e, ev 8, ev 2re~, ev 2c B~, ev

A 4.2 28.4' 190. &3.1 61.& 0.15 &q &0.47
B 0.72 14.2' 280. &3.7 76. & 0.051 &q &0.19
C 0.019 3.52 660. &5.7 116.& 0.0054'&q &0.031

1 From data of D. H. Weinstein, Phys. Rev. 41, 839 (1932).
2 J. H. Bartlett, Jr., J. J. Gibbons,

' Jr., and C. G. Dunn. Phys. Rev.
47, 679 (1935).

' H. Bethe, IIandbuch der Physik, Vol. 24, p. 384.' Possible decreases in sc which might lead to a contrary
behavior are limited by the inequality rc &1, and are in any
case unlikely to occur, as is indicated by the argument to
follow immediately.
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and more concentrated in the small regions
where the particles are close together, By analogy
with the Fourier expansion in one dimension of a
function which vanishes except in a small region,
we can see how the expansion as in Eq. (7) of P
will be modified as this process goes on. Thus we
will expect that the most important terms will
tend to be those of higher and higher energy, so
that e will rise, while at the same time the
range in energy of the important high energy
terms will increase, giving larger I~: and 8,. Long
range errors are clearly important in Pz and Ps,
and should be fairly well eliminated from P, .

According to Eq. (20) we have g'( e/(E2 —K),
a relation given by Eckart. 4 Thus we can place
on g an upper limit which decreases with ge;
that g is actually considerably smaller than this
limit and decreases more rapidly with decreasing
e is indicated by the considerations of the pre-
ceding paragraph concerning the behavior of 8„
which we have replaced by B2 in deriving this
equation. A check on optimism in this respect is
provided, however, by our lower limit for q.

Through 8 may be interpreted as the root-
mean-square value of a "local energy error, " its
value must not be confused with the error in
the computed energy, which is necessarily a
much smaller quantity if P is at all a good func-
tion (cf. Eqs. (18), (19)).

From the foregoing analysis we can draw some
conclusions concerning the form of variational
process which will give a wave function most
satisfactory for a given purpose. In the com-
putation of such properties of an atom as radial
charge density or diamagnetic susceptibility
what we have termed long range errors will be
very important, while short range errors will
tend to cancel out. On the other hand, in the
computation of hyperfine structure constants
long range errors will be of little importance if
only the wave function is correct when the
electrons are near the nucleus. Thus it may be
advantageous to adjust the parameters in a
function of given form in different ways, depend-
ing on the use to which this wave function is to
be put. Now e, 8', e'+'x'/8', etc. , are all positive
quantities which approach zero as P approaches
P~,'thus minimization of each one will give a
variational procedure yielding a function useful

4 C. Eckart, Phys. Rev. 36, 878 (1930).

TABLE II.Results obtained for the helium atom by minimising
$2 g q /$2

a
e, eV
6, ev
Ir2ez, eV
Q
(r1~)Av+(r p) Av

Minimize 6' Minimize e Minimize e/P

1.804 1.6875 1.647
1.88 1.52 1.56

24.7 25.6 26.3
320. 430. 450.

0.076 &q &0.30 0.060 &q &0.28 0.059 &q &0.28
1.84 2.11 2.21

for a given purpose. ~ Eq. (18) shows that mini-
mization of 8' tends to give a function with small
values of e, and ~, in preference to a value of e

which is as small as possible. This process then
picks out a function which has a comparatively
large root-mean-square error, (Eq. (16)), but one
in which the short range errors are reduced at
the expense of an increase in long range errors.
Such a function should thus be particularly
suitable for computations of hyperfine structures.
On the other hand, minimization of e'+'x'/5' is
a process tending to give particularly large values
of e, and thus small long range errors.

As an illustration of the varying results given
by these processes we consider again the helium
atom. The assumed wave function is of the simple
type constructed from hydrogenic orbitals with
adjustable effective shielding, the space part
being, for the ground state,

(&3/~) s n(r 1+72)—
Elementary computations give

8= (2n' —643a.)Rk,
6' = (8n' —30n'+ (29+5/48) n') (Rk)'.

The results obtained by minimizing iP, e, e/5
are summarized in Table II. (Minimization of
e/h' cannot be shown in general to lead one
toward the ground state function, but with the
particular type of variation available here it is
a method of getting a larger value of 6 with little
increase in e, as is clear from Table II.) Included
in the table are computed values of (rP) A, + (r&') Ay,

which enters the computation of the diamagnetic
' When a quantity other than e is to be minimized caution

must be used. Thus 6' approaches zero also if P~p2., a
wave function of inappropriate form might give, on
minimization of B~ a function approximately that for some
other state than the one to be treated. The corresponding
value of e must thus be computed as a check on which state
is described by the function. Minimization of 61+'~~/8'
requires the use of a value for the correct energy, pre-
sumably obtained from experiment; it is thus a procedure
interesting only in connection with the determination of
wave functions.
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susceptibility. The value computed for this
quantity using Hylleraas' function, gc, ' is 2.46,
a value which may be accepted as nearly correct.
Since in computing this quantity it is desired to
minimize long range errors the most reliable
results should be obtained, according to our
argument, by minimizing «/8', the least reliable

by minimizing P. Actually the deviations from
the correct answer have the corresponding order.

'The radial charge distribution corresponding to this
function is given by Bethe, Zeits. f. Physik SS, 431 (1929).

It is interesting to compare these results with
those for Ps. The low value of ~'«, given by Ps
indicates that the low value of e compared to
the values given in Table II, is due to reduction
of short range errors. (Ps takes some account of
the relative positions of the electrons, whereas

P~ and the above functions do not. ) Despite the
smaller energy error, therefore, this is not a
favorable function for the computation of
(rl)Ay+(r2')A, '

, actually, it gives the value 1.76,
lower than any other computed.
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The magnetic susceptibility of evaporated bismuth films

ranging in thickness from 0.1p to 4p has been measured by
a compensated Gouy method in conjunction with a Sar-
torius microbalance. Films above 0.5p are found to have a
susceptibility, independent of film thickness, whose value
agrees well with that of a single crystal with trigonal axis
parallel to the field. Below 0.5p the susceptibility decreases
as the film thickness is reduced. It is suggested that films
below 0.5p possess a microcrystalline fiber structure which
merges into a phase of macrocrystalline structure above
this thickness. If films less than 0.5p, were aged for long
periods in vacuum an increase in the susceptibility was
noted, whereas no such effect was observed when thicker
films were similarly treated, the effect being ascribed to a
recrystallization process. The susceptibility of thick films

(&0.5p) was found to be identical when deposited, re-

spectively, on glass, Au, Cu and Sn. The nature of the
crystalline aggregate, as determined from the susceptibility,
was found to be dependent on the amount of residual gas
present in the apparatus when the films were deposited. As
the gas pressure, during deposition, was increased from
about 10 ' mm of Hg the susceptibility measured with the
field parallel to the film normal was greater than the same
quantity measured in films produced in high vacuum. The
susceptibility measured when the field was perpendicular to
the film normal, on the other hand, remained approxi-
mately the same in the two cases. At relatively large gas
pressures (ca.10 ' mm) the resulting films possessed a sus-

ceptibility which was independent of the angle between the
film normal and the magnetic field. The bearing of these
results on the structure of the deposits is briefly discussed.

INTRQDUcTIQN

'HE question as to whether metallic conden-
sates possess crystalline structure or are

amorphous aggregates of atoms has, for some
years, been a matter of considerable controversy.
Such layers as are produced, for instance, by
evaporating metal onto a cold surface in vacuum
possess a number of abnormal properties as com-
pared with bulk metal. Among these may be
mentioned their very high specific resistance,
and the fact that it has often been difficult or
impossible to obtain from them sharply defined
x-ray patterns.

In recent years such layers have been the ob-

ject of renewed investigation by electron diffrac-
tion. ' A number of such investigations have
shown that evaporated films possess a crystalline
structure, even down to thicknesses of a few
atomic layers, the lattice spacing being identical
with that of the bulk material. Kirschner found
that such layers often possessed preferred orien-
tation and that the films appeared to be composed
of individual crystallites with linear dimensions,
for very thin films, of the order of 10A, , the par-
ticle size increasing as the thickness of the layer
increased. Heating the films tended to sharpen up
the diffraction lines, that is to say, the crystal

F. Kirschner, Zeits. f. Physik '76, 576 (1932).


