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The result of Bartlett, Gibbons and Dunn, that the wave
function for He cannot be expressed as a power series in the
particle separations rI, r2, r~~, is discussed in relation to the
validity of the Hylleraas variational attack. By a simple
analogous example, it is shown that this result does not
establish the impossibility of using polynomials in these
variables to represent the function as closely as desired. It
is further shown that if a formal solution of the wave equa-

tion for He exists, then the energy given by the Hylleraas
method will converge upon the correct energy and the
function will converge in the mean upon the correct func-
tion. Even if there exists no formal solution of the wave
equation, there is a lower bound to the energy which can be
computed with any function, and upon this bound the
I-Iylleraas method will converge. In either case, therefore,
the method is justified.

N a rece,xt article by Bartlett, Gibbons and
Dunn, ' doubt is expressed whether the limit

approached by a variational attack upon the
helium pr~~wm carried out with comparison
functions of the Hylleraas type is necessarily
identical with the absolute minimum of the
energy computed with any function whatever.
Expressing the wave function as

lp Q Qlmnrl r2 r12
lmn

they apply the operator (II 8) to this ser—ies
term by term. By rearranging terms they then
express the wave equation as

(II +)O' 2 ~l rl r2 r12
Lmn

the F's being linear combinations of the as yet
undetermined c's. If the wave equation is to be
satisfied identically at every point, each of the
coefficients F must vanish. This condition, how-
ever, is found to impose relations among the c's
which cannot be satisfied by any set of finite
numbers. (It is readily shown that precisely
similar results are obtained if one takes P in
the Hylleraas form,

lr mr rrS—8(r1+r2) )
lmn

Since it is thus shown to be impossible for any
Hylleraas series to be a formal solution of the
wave equation, Bartlett, Gibbons and Dunn
conclude that other forms of trial function in the
variational process might give lower results.

' J. H. Bartlett, Jr. , J. J. Gibbons, Jr. , and C. G. Dunn,
Phys. Rev. 4l, 697 (1935).

The inadequacy of this treatment may be shown by a
simple example. Consider the equation

y'+(3 —1/x)y=e ~" 0~x (~.
If we attempt to find a solution by assuming that

y 2 ~12+g,lan

and substituting in the equation, we obtain an impossible
condition on the coeScients, namely

na +Ix"=1.
Yet it is possible to find a series of the form stated which
will approximate the desired solution at every point within
an arbitrarily small error. For, with the aid of the Laguerre
orthogonal functions

p„($)= (1/nl)e ')"L„(x)

we can find the uniformly convergent series~

x ln xe '~2=(1 —C)y0+(C —2)pI+p2/1 2+y3/2 3+
both sides of which satisfy the equation. Now, given any
small error e, we know that there is a finite number t of
terms of the series which will represent the left side every-
where within e, and these t terms can be rearranged into the
form of the exponential times a polynomial in x of degree t.
The reason why we may not regard this latter as a true
expansion is that, as t is increased to improve the accuracy,
the coefficients all increase without limit, instead of staying
constant or approaching limits. However, this would not
prevent us from determining the best t term approximation
S& by a suitable variation method, as, for example, mini-

mizing (y —S&)'dx.
0

In this case the reason why we cannot get a true expan-
sion as a power series times an exponential is clearly because
y' becomes infinite at the origin. We could, therefore, not
safely use the "improper" expansion obtained above in any
process involving differentiation. However, when we ex-
amine the helium function from the point of view suggested
by this analogy, and identify the derivatives whose be-

2 The case satisfies the conditions stated in Madelung,
Die Mathematischen Hilfsmittel der Physiker, third edition,
p. 31.
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rl =u, r2 =c+v, r12 =c+v+pu (p'~1),
thereby explicitly taking account of the limitation on the
magnitude of r2 —rl. The substitutions are made wherever
rl, r2, r12 occur explicitly, but not in the derivatives. Then
upon expanding 1/r2 and 1/r12 in positive powers of v and p
and collecting terms, we find

p =p'+ pl'u+ (p2'+ pi2')v+ 2p'1, lu'

+ (p 1, 12+p 1, 2) uv+p12 up+ ' '

0= —(H —~)p= f4+2pl j/u+pl, 1+p2, 2+2p12, 12

+2p2, 12++p+ [p+4p2+8p12 1/2c+2pl, 12p

+pl, 12u/c —fp+4p2+8 pi 2 j/2c'v+

Upon inserting into the last equation the expansions of p
and its derivatives, and again collecting terms, we obtain
an expression which can vanish identically only if the co-
eS.cient of each combination of powers of u, v, p, vanishes
separately. Thus, the term in u ' gives p'+2pl'=0, while
that in P gives P12 +4P 1, 12=0. There is no difficulty in
finding finite values of p and its derivatives which satisfy
all the relations found in this way. If, now, we investigate
the edge r12 ——0, rl ——r2, and remember that the function
must be symmetrical with respect to rl and r2, we obtain,
among other relations, P' —8P'12 =0 and Pl' —8P'1, 12 =0;

havior is responsible for the failure of the expansion in a
power series, we find that none of the derivatives which
occur in the energy integral need be infinite at any point,
but that two of them must have finite discontinuities at the
origin. There seems to be nothing in this situation which
need interfere with the setting up of "improper" expansions
which can be used to calculate the integral as closely as
desired.

To obtain the result just stated, we assume that an ac-
ceptable solution of the wave equation exists, and express
it as a function of the variables rl, r2, r12. The domain of
these variables is bounded in part by three edges, along
each of which one of the variables vanishes while the other
two are equal to each other. The physical situation at such
an edge is similar to that at the origin in the problem of two
particles, and the wave function should be analytic in the
vanishing coordinate, which corresponds to the radius
vector in a local set of spherical coordinates. (The other
coordinates should not give any trouble. ) We therefore try
the assumption that in the neighborhood of any point on an
edge, with the possible exception of the origin, we may
expand p in a multiple Taylor's series. Thus, if the point be
rl =0, r2 = r12 =c, and if the values at this point of P,
OP/Or 1, OP/Or», O'P/Or 1', O2P/OrlOr2 be denoted respectively
by P', Pl', P12', P'1, 1, P'1, 2, etc. , we have

+pl rl+p2 (r2 c) +p12 (r12 c) + gp 1, Irl + ' ' '

Op/Orl pl pl +p 1, lrl+p 1, 2(r2 c)
+p 1, 12(r12 c)+ gp 1, 1, lrl + ' '

The wave equation which p must satisfy is

o = —(H —&)p =pl, 1+p2, 2+2p12, 12++p+ Lp+2pi j/ri
+Lp+ 2p2$/r2+ p —p/2+4p12 j/rl2

+ t.ri r2 +r12 jPI, 12/rlr12+ Lr2 rl +r12 jP2, 12/r2r12 ~

It is advantageous to introduce the new variables defined
by the equations

and again all relations can be satisfied. When, however, we
consider the origin, where the edges intersect, we find it
impossible to satisfy both sets of relations at once. Thus,
if we assign to p a given value p' at the origin, and assume
that its first derivatives are everywhere continuous, then,
as we approach the origin along the edge rl =0, it must be
that O'P/OrlOr12 approaches the limit ——,',P', whereas if
the approach is along the edge r12=0 the limiting value is
——,',p'. Symmetry requires the same behavior of O'p/Or2Or».

Further examination shows that no other inconsistencies
relating to the second derivatives are involved, and since
the higher derivatives do not occur in Hp it is unnecessary
to determine their behavior.

While this argument removes the objection
raised against the Hylleraas method by Bartlett,
Gibbons and Dunn, it does not, of course,
establish the validity of that method. We shall
now prove that if P is any piece-wise continuous
single-valued function of ri, r2, and ri2 such that

CO CO ~ tl+t2

J
I p'dy=82r' dyi dy2 dy)2y&y2y)2$'=1,

0 '
l rl—r21

and if S& is a sum of t terms in the form

P g y iy my nS—2(rl+r2)

lmn

then, given any small positive number, e, we
can find a finite number t, and a set of finite
coefficients a~ „, such that

Furthermore, if the Hermitian condition is
satisfied (J'QHfdy= J'fHgdr for each term f in

, the Hylleraas series), then

J'()fHQ $2HS2) d y (—e.

If a formal solution of the wave equation exists,
it will (as we shall show) satisfy the Hermitian
condition, and the Hylleraas process is therefore
justified. We shall finally discuss the significance
of the fact that we have no proof of the existence
of such a formal solution.

In the simplest form of multiple expansion
theory, we have a function ti)(x, y, s) such that

dsQ)
ag gy ez

the domains G„G„, G„being independent of
each other. We can then get a root-mean-square
expansion of m in products of the functions of
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any three sets which are, respectively, complete
normal orthogonal sets in x, y, and s, over the
given domains. The problem of expanding f in

a Hylleraas series is complicated by three
circumstances —the terms in the series are neither
normal nor orthogonal, the domains of the
variables are not independent, and the normal-
izing condition contains an additional factor
r&r2r». The first two considerations are easily
handled, but the third is more troublesome.

If the form of the problem were not already fixed by the
fact that we wish to justify a process which has been actu-
ally used, we might seek to avoid this difficulty by absorb-
ing the troublesome factor in the function itself, just as we
treat the one-electron problem by considering the radial
function to be rP instead of P. However, if we attempt to
expand P(r&r2r»)& in a Hylleraas series and then find P by
dividing out the radical, we obtain an expression which will

not permit term-by-term evaluation of the energy integral,
because the integrals of the separate terms diverge.

We may surmount the difficulty by using the
following theorem: Let y„be the general example
of a set of functions (of one or more variables)
which are complete, normal, and orthogonal
with respect to the integration J'dr And let .p be
some function, defined within the domain of the
y's, which is nowhere negative and which has an
upper bound R. Then, with respect to the
integration J'pdr the set of (p's is complete,
though neither normal nor orthogonal. That is
to say, given any piece-wise continuous function
P such that fPpdr converges, and given any
small positive number e, it is possible to set up 5,
a linear combination of a finite number of y's,
SuCh that J'(p —S)2pdr(2.

To prove this, we choose some number g, such
that 0 &g &R, and divide the domain into two
regions 6 and H, such that within 6, 0~p~g,
while within II, g & p~R. Construct the function
P(g), which is equal to P in II, and to zero in G.
Then

p(w) &( f4'&(-
G+H H

must converge, and P(g) can be expanded in the
y'8. That is, we can always find a finite number

p(g) such that

u(9)
" L4(n) —E(2.(~)~.3'dr «/4~

G+H n=0

and the a's will be the Fourier coefficients. We

abbreviate the sum to P(g). Then

pdv

LZ(rl) j'pdr+ 8' —Z(rI)]'pd«2/4,
G H

and this limit holds for each of the two integrals
separately. Now, in order to obtain the integral

I(g)=f [&&
—p(g)]'p&(,

G+H

we have to add the terms

0Z(n) pd
G t G

By taking p small enough, but still not zero, we
can always secure that the first of these terms
will be less than 2/4 (since J'g+1Ip pd r is assumed
to converge). By the Schwartz inequality, the
absolute value of the second term cannot ex-
ceed 2/2. Therefore I(g) (2, which is the desired
proof of completeness of the rp's with respect to
J'pdr. Note, however, that they are neither
normal nor orthogonal for this integration, and
the coefficients a (g) are not the new Fourier
coefficients. As the approximation is improved
by taking q smaller and increasing the number of
terms, the (2„(21) will all change, and may even
tend to infinity. This behavior can, of course,
be rectified by transforming to the normal
orthogonal combinations of the p„'s, which can
always be set up.

Returning to the He problem, we introduce
new coordinates

x = (1(r,+r, —r„),
y= &(r2+r12 rl)
s = ~(r12+r1 r2) ~

The normalizing condition satisfied by P is then

fp'dr = (2r'/4l') I ~ p'(x+y)
0 ~0 0

X (y+s)(s+x)dxdyds

X (x+y) (y+s) (s+x)s 'r('*+((+*&dxdyds = 1.
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The conditions for applying our theorem are now
satisfied if we take 0(p &-,' and identify p with
(x+y)(y+z)(z+x)e '&('~+'+' and we can ob-
tain a root-mean-square expansion of pe&('*+p+')

in terms of any system of functions which
are complete with respect to the integration
fp fp Jp dxdydz. Now, such a set can be
constructed in the form $„„.= ()p p(2x(1 —2 y) )
pp p(y(1 —2y)) pp, (z(1 —2y)), the (p's being Laguerre
orthogonal functions. Hence

f
CO ~ CO CO

[fey(pz+p+z) pe f. ]p
~ p p p p

X (x+y) (y+z) (z+x)e-'&('*+"+')dxdydz

[p —Q Ip „xfy gzpe (2g+—p+ =) /2] 2

p p p

X (x+y) (y+z) (z+x)dxdydz (p,

where all the coefficients are finite and the sums
are all over a finite number of terms. On going
back to the coordinates r&, r&, r», we obtain just
the desired completeness relation for the func-
tions of the Hylleraas approximation.

Upon introducing the normal orthogonal com-
binations of these functions, f (where n stands
for a set of three numbers), we can proceed to a
discussion of the energy integral along familiar
lines. For any two quadratically integrable
functions f and g, with expansion coefficients f,
and g, we have the usual form of the complete-
ness relation:

CO

~"fgdr= &f.a- f.=J'ff.dr a-=~ al-d'
n=p

Letting f= P, g =II/, H„=f i „Hi dr, we easily
obtain the result

J
I /I'd r = Q Q Q„Q„II„„,

m, n=p

provided that f i If&dr= f)Ii)„dr.
This condition will certainly be satisfied for the whole

operator H, if it is satisfied by each Laplacian separately.
Let us consider electron 2 fixed, and designate by drl
integration over all positions of electron 1. Then, by
Green's theorem,

+1 2'
J'pf„vl p —pvl g„jd7.1= lim d cos 01 dpi

r~P -1
1

0

+1 21r
Xrl'$g, 0p/Brl —&BED„/Br,j= lim d cos 0], d'pl

r~p1
0

X Plg ~(rig)/rl —r14~(rig )/~

Now, if p be taken as the "unperturbed" function Po
=e 2("&+"», each term in the integrand is found to vanish,
for rlpo and rlgn tend to zero with rl and their derivatives
remain bounded. To get the true function p we must alter
tt o in such a way as to reduce as much as possible the con-
tribution which the electronic repulsion makes to the
energy integral, while producing the minimum disturbance
in po, which already minimizes the remaining contributions.
Clearly this will be accomplished by reducing the value of
po in those parts of configuration space where r12 is small,
while normalization is preserved by a compensating in-
crease in regions where r» is large. Consequently, for a
given small value of r2, the value of p will be less than that
of tit o in the region of small rl, and no matter how peculiar
the behavior of p may be near the origin, rip will tend to
zero and its derivative remain bounded. For large r2 it may
be that P)po, but in this case the essential nature of the
singularity cannot be affected. The integrand thus remains
zero, and in the final integral f[f„Hp—AH[ ]d~ the con-
tribution from the Laplacian of each electron vanishes upon
integration over the coordinates of that electron alone.

The existence of a satisfactory series in the g's

having been established (a.lways assuming that
the function itself exists), we must show that the
variation method will actually converge upon
this series. It is quite possible that, when a
finite number of terms is taken, the variation
method will produce a set of coefficients giving
a lower energy integral than if the same number
of true expansion coefficients had been used. It
cannot lead to a higher result, since it must
find the lowest result possible. But no such
result can be lower than the correct energy 8,
which is an absolute minimum for all normalized
functions. The variation result is therefore con-
strained to lie between 8 and a quantity which
converges upon Z as the approximation is im-
proved, and must itself converge upon E. This
conclusion also holds when the Hylleraas func-
tions are used directly, for only operations with
finite numbers of terms are considered in the
analysis. Now, the ground state function, being
nondegenerate, uniquely determines a set of
expansion coefficients in the g's, and these must
be the coefficients upon which the variation
process converges, since no others could give a
result converging upon E. However, the coeffi-
cients of the nonorthogonal Hylleraas terms need
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not converge upon any finite limits (as was
brought out in discussing the analogy of
x ln xe *i2). There is thus no inconsistency be-
tween the present treatment and that of Bart-
lett, Gibbons and Dunn. Indeed, the behavior of
the coefficients obtained in actual computations
is in complete harmony with this analysis.

It is important to notice, however, that we
may not conclude that the value of the wave
function at any point can be computed with
arbitrary accuracy by evaluating a finite number
of terms of the series. There may be points at
which the sum of the series (if it exists) differs
from the function by an amount which is not
zero, but which contributes nothing to the
integrals. In particular, the regions where two
particles coincide might be such points. There-
fore, we should regard with suspicion such
attempts as were made in a previous paper' to
draw conclusions about the nature of the
function at the singularities. Such questions are,
however, of no physical significance. Physical
properties' correspond to integrals over wave
functions (or, at least, over finite portions of
them), and to the physicist a discussion about a
point in configuration-space which contributes
nothing to the integrals is as impertinent as the
traditional theological discussion about the point
of a pin.

Indeed, from this point of view, it is not even
pertinent to enquire whether there exists any
function which satisfies the wave equation at
every point. Suppose we know only that there
must exist some number 8 such that fQIIPdr
can never be less than B for any normalized
function P which satisfies the proper boundary

3 H. M. James and A. S. Coolidge, J. Chem. Phys. 1,
825 (1933).The H2 problem is similar to the He problem in
this respect.

and continuity conditions, but that permissible
comparison Functions can be constructed such as
to make the integral exceed E by as small an
amount as desired. (Such a number Z must
exist unless the integral can decrease without
limit. ) If, now, we have a trial series of a form
which can give an arbitrarily good root-mean-
square approximation to every such permissible
comparison function, and to its energy integral,
it is shown by Courant and Hilbert4 that the
Ritz method, applied to such trial series, must
converge upon E. We have shown that the
Hylleraas trial series meets these requirements.
(The argument about the Hermitian condition
can evidently be applied to any suitable com-
parison function. ) That some limit Z exists is
certain, since the energy integral cannot be as
low as the known lowest solution of the problem
obtained by omitting the electronic repulsion.
Therefore, the Hylleraas method must be
capable of giving the correct energy.

Some further discussion of the significance of
the coefficients in this case appears to be needed.
It should be possible to show, without assuming
the existence of an actual minimizing function,
that where the state is not degenerate a unique
set of coefficients will emerge from the variation
process (using, of course, the orthogonalized
trial functions), and that for all physical purposes
these coefficients are all that is required. The
difficulty is in formulating and proving non-
degeneracy without referring to the actual wave
function. We hope to discuss this matter in a
later communication.

We wish to express our gratitude to Professor
Edwin C. Kemble for much helpful discussion of
this problem.

4 R. Courant and D. Hilbert, 3fethoden der 3Iathe-
matiscken Phy. sik I, p. 157.


