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connected with motion normal to the surface)
as a function of the component of the k vector
normal to the surface, in the neighborhood of
Bragg reflection. We see that as soon as the
damping is introduced, the discontinuity in

energy disappears, and is replaced by a gradual
transition from one branch of the curve to the
other, very rapidly approaching a smooth curve
as V/W becomes large. The reason why the
energy perturbations become small is clear: they
arise from interactions between the incident and
diffracted beams, which are of equal magnitude
at the Bragg angle in the undamped case. In the
damped case, the diffracted beam is of much
smaller intensity, and has much less effect on the
energy. It is also plain why there is no discon-
tinuity: there is damping for every value of the
energy, and the wave functions are no longer
separated into two different groups, the damped
and the undamped ones. This becomes clear in

Fig. 2, where we plot the damping constant n
as a function of 8 sin'0, for various values of
V/W. For the case V=O, the damping constant
goes to zero at the edges of the energy gap, but
for V&0 the damping merely decreases to a
somewhat smaller value as we depart from the

conditions for Bragg refiection. Finally in Fig. 3
we plot the refiection coefficient, as a function
of E sin'8, for diferent values of V/W. It will

be noted that increasing V, for a given W, always
decreases the reHection, but the decrease is so
much greater in the middle of the range than at
the edges that the effect is to broaderj the range.
This is entirely analogous to the

effect

o damping
on absorption bands in optics.

In closing, it should be pointed out that
damped solutions of the type we have described,
while they are appropriate for problems of
electron diffraction and other problems in which
electrons enter a crystal from outside, would not
be suitable for discussing such problems as x-ray
absorption, where the electrons are produced
within the crystal. In particular, Kronig' has
discussed the fine structure of x-ray absorption
edges in terms of the energy gaps between bands.
The present argument does not affect that use
of the theory of energy gaps, and it should not
be thought that the fact that we find that the
gaps disappear indicates a difficulty with
Kronig's theory.

4 R. DeI..Kronig, Zeits. f. Physik 70, 317 (1931);15, 191
(1932); 75, 468 (1932).

MA V 15, 1937 PH YS ICAL RE V I E W VOLUM E S 1

Wave Functions in a Periodic Potential

J. C. SLATER* .

Institute for Advanced Study, Princeton, New Jersey

(Received March 24, 1937)

A new method for approximating the solutions of the
problem of the motion of an electron in a periodic potential,
as a crystal lattice, is suggested. The potential is supposed
to be spherically symmetrical within spheres surrounding
the atoms, constant outside. The wave function is expanded
in spherical harmonics and radial solutions of the wave
equation within the spheres, and in plane waves outside the
spheres, joining continuously at the surface. A single un-

perturbed function consists of a single plane wave outside
the spheres, together with the necessary spherical functions

within the spheres. The matrix components of energy are
set up between these unperturbed functions, and the
secular equation set up. This equation involves the energy
explicitly, and also implicitly through the ratio of the slope
of the various radial functions to the functions themselves
at the surfaces of the spheres, and must be solved numer-
ically. It is hoped that the method will be useful for com-
paratively low energy excited electrons, for which the usual
method of expansion in plane waves converges too slowly.

INTRQDUcTIQN

HE first step in the solution of the wave
mechanical problem of the motions of

electrons in a crystal is to replace the other

*On leave from the Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts.

electrons by a static distribution of charge, and
to treat the motion of one electron in. this static,
periodic potential field. The potential is of a
particular sort: Near each nucleus, it approaches
the potential near the corresponding atom as it
would be if isolated from its neighbors, the
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potential energy of an electron becoming nega-
tively infinite as the nucleus is approached.
The potential is spherically symmetrical around
a nucleus. Between atoms, the potential varies
much less rapidly, making a continuous joining
with the potentials near the various nuclei. It in-
volves no great inaccuracy to idealize this
potential in the following way: we assume
spheres surrounding the various nuclei, the
sphere around the nth nucleus having a radius
R„(these radii will naturally be.. equal if the
atoms are all alike). We suppose that within
each sphere, the potential is spherically sym-
metrical, so that within the nth sphere it may
be taken to be U„(

~

r r„~ ),—where r is the radius
vector to an arbitrary point, r the radius
vector to the nth nucleus. Outside all the spheres,
we suppose the potential to be constant, and to
get continuity of the potential we assume that
each of the potentials U„reduces to this constant
value at the radius R„. In particular, to simplify
matters, we shall adjust the zero of potential so
that the constant region between atoms is at
zero potential. The present paper is devoted to
a general formulation of the solution of such a
boundary value problem, on the assumption
that the atoms are arranged in a regular crystal,
and to methods of approximating to the solution.

We seek a solution of energy E. Within any
one of the spheres, the wave equation is one of
spherical symmetry. Then it can be solved quite
rigorously by well-known methods. We separate
variables in spherical coordinates with respect
to the nucleus. If these coordinates are ~r r„~, —
0, Q, the wave function is

l

P A ~„P~' ' (cos 0) exp (imp)n„~(~ r r„~ ).(1)—
l=o m=—l

Here n„& satisfies the equation

1 d ( dg () (I(I+1)r' I+I + U I+'&=++ . (2)
r'dr& dr 0 ( r' )

The radial function N„~ of course depends on the
energy E as a parameter, but we shall not indi-
cate that in the notation, since it is understood
throughout. There are two independent solutions
of (2) for any energy value Z. Of these, one is
regular at the origin, the other regular at
infinity, the two coinciding for the characteristic

values of B. Since in general we are not dealing
with characteristic values of E', and since we are
interested in the interior of the sphere, we
choose the functions regular at the origin. Then
any series of the form (1), with arbitrary
coefficients A&, satisfies the differential equation
within the sphere.

Of course, outside the sphere, and up to the
shortest distance ~r r~ a—t which the radius
touches the sphere of another atom, so that the
problem is still spherically symmetrical, we can
still use a solution of type (1). For larger dis-
tances than this, however, the problem ceases
to be spherically symmetrical, and (1) is no
longer a solution. We must then seek a different
type of solution which will hold in the region
between the spheres. It is known that a general
solution of the whole problem is provided by a
series of plane waves,

gv(k) exp (ik r), (3)

=Es(ko+ K,). (4)

Here, as elsewhere in this paper, it is assumed
that atomic units are used (energies measured in
units of the Rydberg energy, distances in terms
of the radius of the Bohr hydrogen orbit, so
that the energy of a free electron whose wave
function is exp (ik r) is k'). The matrix com-
ponent W(K;) is the matrix component of the
potential energy between the wave functions in
question, normalized in such a way that W(0) is
the average potential energy through the cell,

' For references to this and other points, the reader may
consult Mott and Jones, Properties of 3fetals and Alloys
(Oxford, 1936); Frohlich, Elektronentheorie der 3fetalle
(Berlin, 1936), as well as the older reviews, by Sommerfeld
and Bethe, in the IIandbuch der Pkysik, second edition,
Vol. 24 (1933), and by J. C. Slater, Rev. Mod. Phys. 6,
209 (1933). Numerous references to special papers can be
found in the books and articles mentioned above.

where only certain discrete wave vectors k are
to be used. These vectors are to be defined as
follows. We start with a certain vector ko, which
is arbitrary. Then we may add to this any one
of the infinite number of vectors K; of the
reciprocal lattice. ' The series (3) is then a solution
of the wave equation everywhere, if the v(k)'s
satisfy the difference equations

(kp+ K;) 'v(ko+ K,) +Q W(K;)v(kp+ K;+K;)
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W(K;) =—P exp (iK; r„)J" (K;),
Q n

(5)

where the summation is over the atoms of a
single cell, and where

F (K~') =
J

U (I r r„ I)—exp (iKi' I
r r

I
)—d r (6)

where the integral is over the volume of the nth
sphere. By expanding the exponential, it can be
at once shown that

sin (IK;lr)
F (K;) =4m r'U„(r) dr (7).

IK;Ir

I t has been customary to discuss electron
diffraction on the assumption that the matrix
component W(K;) was the one responsible for
the process in which a wave of wave number
ko+K; in the crystal changed over to a wave of
wave number ko+K;+K;, by Bragg reHection
from the planes normal to K;. The Eq. (5) then
expresses this quantity in a way analogous to the
x-ray structure factor, and (7) gives the form
factor of the nth atom, analogous to the x-ray
form factor. The equations (4) are then analogous
to the equations in the dynamical theory of
x-ray diffraction, ' and are the ones which must
be solved if we wish to set up the whole solution
for a diffracted beam.

It might be asked, since (3) gives a complete
solution

'

of our present problem, why is it
necessary to go further? The answer is that the
series (3) converges very slowly. The wave
function in the neighborhood of a nucleus
corresponds to a rapidly moving electron, and it
changes phase in very short distances, corre-
sponding to short wave-lengths. Thus in the
series (3), we must have appreciable coefficients
of the terms even of very high k values, such

' See for instance M. von Laue, Ergeb. d. Exakt.
Naturwiss. 10, 133 (1931); also D~'e Interferensen von
Rontgen- und ZlektronenstraMen (Berlin, 1935),

or through the crystal. That is, W(K;) is the
integral of the potential energy, times

exp (i(—ko —K, +ko+K+ K,) r) .= exp (iK; r),

throughout the cell, divided by the volume of
the cell. If the volume of the cell is 0, we then
have

that k' for these terms is comparable with the
energy of the x-ray terms of the atom. Attempts
to solve the difference Eq. (4) directly, made by
the writer and Dr. Millman, as well as similar
attempts made by others, have convinced us
that the use of this series is impractical for ob-
taining wave functions and energy levels of low

energy electrons, valuable though it is for the
proof of general theorems and for high energy
electrons. In spite of the objections to the use of

(3) for practical purposes, still the whole wave
function can be expanded in such a series of
plane waves, and in particular the part of the
function outside the atomic spheres can be so
expanded. We shall then assume that the wave
function is expanded in series (3) outside the
spheres, and in the series (1) inside the spheres.
We shall do this in the following way. We set up
separate unperturbed functions, each equal to a
plane wave outside the spheres, and, to a series
of type (1) inside the spheres, joining con-
tinuously on the surface of the spheres. Then we

~ write the whole solution as a linear combination
of such unperturbed functions, determining the
coefficients essentially by perturbation theory.
But now we may hope that the series repre-
sented by this linear combination will converge
much more rapidly than the series (3). For the
lack of convergence of (3), as we have mentioned,
arises from the difficulty of expanding the wave
function near the nucleus in plane waves. In our
method, the wave function near the nucleus is

automatically taken care of, and only the outer
part, which really does not depart much from a
plane wave anyway, is left to be expanded.
Each of our functions can be regarded as an

expansion in terms of plane waves, containing all

the terms necessary to describe the function near
the nucleus, but with correct phase relations so
that it reduces to a single plane wave outside the
spheres. We shall now proceed with the mathe-
matical formulation of these waves, and shall

set up the matrix components of energy between
them and the resulting secular equation for
determining the energy.

MATHEMATICAL FORMULATION OF THE PROBLEM

Let P; be a function which equals exp (ik; r)
outside the various spheres, and which joins
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continuously at the surface of each sphere onto a
solution of the central field problem, corre-
sponding to the energy 8, within that sphere.
By a well-known expansion, the exponential
exp (ik, r) can be expanded in spherical coordi-
nates about any point. In particular we expand
about the nucleus of the nth atom, at r„. Then
we have

exp (ik; r) =exp (ik; r„)P P (23+1)F
l=o m= —l

They are finite or zero at the origin, and are so
normalized that

lim j~(s) =
1 3 5 (2l+1)

(10)

By comparing terms, we can then at once de-
termine the coefficients A~ of the expansion
(1) of the function inside the sphere, so as to
make the function continuous at the surface of
the sphere. We at once find that inside the
sphere we have

co j,(k;R„)
P;=exp (ik;"r )P P (2l+1)i'

l=o m,=—l u„i(R„)

(f Iml)!—
&&u„,(fr r„l)—Pi&"'& (cos 8)

(f+ lml) '

&&P, ~ t(cos 8,) exp im(P —P;). (11)

The value (11) inside the sphere at r„, together
with the expression exp (ik; r) outside all the
spheres, determines the function l8; completely

3 For a collection of formulas and tables regarding these
functions, see P. M. Morse, Uibration and Sound (New
York, 1936), pp. 246, 247, 335.

(f Iml) -.

x j(J'I —.I) Pg&"'& (cos 8)
(f+ lml)!

&&P~~
"~ (cos 8;) exp im(Q @;)—

Here (lr —r„l), 8, &j& are polar coordinates about
r„as a pole, and 0, , p; are polar coordinates giving
the direction of the wave normal k;. The func-
tions j&(kr) are spherical Bessel functions, satis-
fying the differential equation

1 d ( dj&y l(1+1)I+-
r'dr E. dr) r'

Having formulated our various unperturbed
wave functions, we must set up the perturbation
problem between them. We assume that the
exact solution of our problem is expressed as a
series

(12)

where the v, 's are constants. Then by the general
methods of quantum mechanics the series (12)
will be a solution of the problem if the equations

g(II E);;v, =—0 (13)

are satisfied for all values of i. Here II is the
energy operator, E the characteristic energy, and

(II E);;=~~—P;+(II E)P;dr, —

the matrix component of the operator II—E
between the two states in question. In order to
satisfy the Eq. (13), we must as usual have
the determinant of coefficients (II—E),; equal to
zero. We now compute these matrix components.

We must notice one point at the outset.
Though our function P; is everywhere con-
tinuous, its first derivative is in general not
continuous at the surfaces of the various spheres,

. where the functions join. We may regard the
object of our perturbation problem to be the
setting up of a combination of functions which
not only is continuous but has a continuous
slope. But now the kinetic energy operator
demands special treatment for a function with
discontinuous slope. Two forms of integral are
often seen for computing the kinetic energy. The
more common one is J'P;*( 7')P;dr, but —the
other and more fundamental one is J' grad P;"

grad P;dr. Ordinarily one can show by integra-
tion by parts that one equals the other, but if
the function has anywhere a discontinuous slope,
they are no longer equal, but differ by a surface
integral over the surface of discontinuity. In this
case the second, more fundamental form is the
correct one, as it is the one which directly enters
the variation principle from which Schrodinger's
equation is derived. If there is any doubt about
this question, it can be easily shown that using
the first formula we must add a surface integral,
for a discontinuous first derivative amounts to
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an infinite second derivative on the surface, and
integrates to a finite contribution over the sur-
face. This contribution. can be found by a
limiting process in which the change of slope
occurs in smaller and smaller ranges of variable.
We shall use the opposite treatment, however, as
being more fundamental, starting with the
second integral, but eventually reducing part of
our result to a surface integral over the surface of
discontinuity.

If U is the potential energy, equal to U„
within the nth sphere, and zero outside the
spheres, we then have

(EI E);;= J—t(grad P;* grad P;

+(U—E)0*"0;)«' (15)

We shall carry out the integration in two
parts: first over the region outside the spheres,
then over the spheres. Outside the spheres,
P, =exp i(k,"r), U=O. Then grad P;"' grad f,
=(k; k,) exp i(k; —k,) r. To find the integral
outside the spheres, we integrate over the whole
space, and subtract the integral over the spheres.
It is easily shown that the integral over each
cell will be equal, so that we shall carry out all
our integrations just over a single cell, which is
assumed to be of volume Q. Furthermore, to get
agreement with (5), we shall divide our integrals
by 0, so that they will represent averages over
the volume. Now the relation between the
vectors k; and k; is such that exp i(k; —k,) r
integrates to zero over the cell unless i =j.
Thus we have

1
(grad P;* P; Eil',*il';)dr-

cell
=(k; k; —E)b;;, (16)

The terms (17) are to be subtracted from (16)
to get the whole contribution to (EI L')—;; from
the region outside the spheres.

Next we must find the contributions to
(II E);;—from the interiors of the spheres.
In this case it is more convenient to integrate
(15) by. parts according to Green's theorem,
obtaining for the nth sphere

~f,*( q'+ —U E)P;d—r
n~

+)I tl;*(r7$~/Bu)dS, (18)

where n is the outer normal in the surface
integral. The volume integral vanishes on
account of (2). For the surface integral, we use
the form (11) for the functions, differentiate the
radial part of P; with respect to r, and integrate
over the angles, obtaining

4mB„'
exp i(k; k;) —r„Q (2l+1)Pi(cos 0;,)

Q l=o

X ji(k R )ji(k;R„)u„i'(R„)/u„i(R ). (19)

We must now combine (16), (17), and (19),
obtaining

(II E);;=(k; k; —E)—b;;

1
+—P exp i(k; —k;) r„F„;;,

Q n

where

ji(~k; —k, ~R.)
F„;;=47rR„' —(k; k; —E)

ik; —k, i

+P(2l+1)P&(cos 0;;)j i(k;R )j i(k;R )
L=O

where 8;,=1 if i =j, 0 if i&j. Within the nth
sphere, we have the contribution

Xu„i'(R„)/u„,(R„) . (20)

1
—(k; k; —E) exp i(k; —k„) r„
0

expi k; —k; r —r„dr
sphere

= (k,"k; —E) exp i(k; —k;) r„
47rR„' g, ( i k; —k;

i
R„)

X
0 /k; —kf

(17)

The resemblance to Eqs. (5) and (6) is plain;
F„;;plays the part of a form factor in the present
theory, in place of the expression F„(X;) of (6)
and (7).

Having set up the matrix components (H —E);;
in (20), we must next solve the secular equation
6

~
(H —E);;

~

= 0. Of course, we cannot solve this
exactly, and we must look for methods of
approximation. It is a more difficult secular
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equation than one usually meets. In the first
place, the functions are not orthogonal, so that
as we see from (20) the energy 2 appears
explicitly in the nondiagonal terms. But worse
than this, the energy appears implicitly in the
expressions u &'(R )/u ~(R ), which depend on
the energy, and which appear both in diagonal
and in nondiagonal terms. The only practical
method of handling the determinant under the
circumstances would seem to be to compute and

plot it as a function of E, and find the inter-
sections with the axis graphically. Rather than
using the determinant as it stands, it would be
more convenient to use a well-known device,
and divide all elements of the ith row by the
diagonal term (H B);;. The—n the diagonal
terms of the new determinant are unity, and the
nondiagonal elements are very large for those
particular rows for which (H 8);; is very—small,
while they are small in other cases. To a first
approximation, then, we can consider only the
particular rows for which (IE 8);, is smal—l, and
the expansion of the determinant becomes very
simple. Further approximations can be made by
expanding in power series in the small terms.
This method amounts to applying a perturbation
theory in which we treat the few states whose
unperturbed energy is near the energy we are
interested in by the perturbation method for
degenerate systems, and treat more distant
states by the power series method. It should
make it possible to get a satisfactory approxima-
tion to the whole shape of the curve, and to
find its zeros, to a fair approximation, though
with considerable labor. The determinant plotted
as a function of Z will have many intersections
with the axis, and may be expected to have
roughly the form of a tangent curve, but of
course with many local variations. A separate
calculation, of course, must be made for each
value of the momentum ko (that is, at each
point of the first or reduced Brillouin zone in
k space). At certain points in this zone there
will be symmetry properties which will allow us
at once to factor the determinant, so that as

with other methods of approximation it will be
easier to get the solution in directions having
simple symmetry properties than in arbitrary
directions.

In conclusion, we may suggest the cases where
this method is likely to be particularly useful.
These will obviously be the cases where one term
of our series is itself a fairly good approximation,
so that the correction terms are small. That is,
they are the cases where the real wave function
outside the spheres is very close to a single plane
wave. Such cases are known to exist for the
conduction levels of the alkali metals. 4 The
method of Wigner and Seitz, as applied by the
author to this case, is satisfactory for the con-
duction levels themselves, but has been shown

by Shockley' to become very bad for levels even
a few volts above the occupied levels. This is

natural, for that method assumes an expansion
throughout the whole cell irj a very few spherical
harmonics. But as we see from (8), a whole

series of spherical harmonics is needed to expand
a plane wave, and the higher terms become im-

portant for rather low energies, so that if we
break off the series after a few terms, as the
earlier method does, the results will be very
inaccurate except for very low energies. The
present method, however, with its infinite series
of spherical harmonics, would not have this
difhculty. It is not unlikely that if it were applied
to the case of the alkalies, it would show that
the excited levels for some distance up are much
more like free electrons than the calculations
mentioned in reference 4 would indicate, so that
it would form a good approximation for this
case. It is to be hoped, however, that the present
method of approximation will have a wider

range of application than this, for it should in

principle su%ce for finding any energy levels,
and the reasons we have suggested in proposing
it lead one to hope that it wijl be practical in its
actual application.

4 For application to sodium, see J. C. Slater, Phys. Rev.
4S, 794 (1934).' W. Shockley, Phys. Rev. 51, 379 (1937).


