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Electrons in solids, as in electron diffraction, suffer in-

elastic impacts if their energy is great enough to exceed the
resonance energy of the atoms of the crystal, resulting in

strong damping of the electron beams, with consequent
broadening of the reflected peaks about the Bragg scatter-
ing angles, and reduction of the reflection coefficient. The
problem is discussed mathematically, on the basis of the
conventional theory of electron diffraction, by introducing
an empirical damping constant in the form of a pure im-

aginary term in the potential. It is shown that such a
constant leads to damped waves of the required sort, and

the equations for energy and reflection coefficient are set up.
The results are qualitatively of the sort necessary to explain
the observations, though no marked asymmetry in the
reflected peaks is predicted. Presumably the observed
asymmetries arise, as Harding has suggested, from irregular
spacings of the atomic planes near the surface. One interest-
ing result of the theory is that the sharp distinction between
allowed energy bands and forbidden gaps, which is found in

the theory of undamped electrons in periodic lattices, is
lost, for all waves are more or less damped.

1. INTRQDUcTIoN

'HE conventional theory of solids, developed
particularly for metals, assumes as a fi.rst

approximation that the electrons move in a
periodic static potential field. The solution of
this problem yields modulated wave functions,
whose value is multiplied by a factor exp (fk. R)
in going from the neighborhood of one atom to
a corresponding point in another unit cell, if R
is the vector distance from one point to the
other, k a constant. Such solutions exist for
most energies, if the electron is in a high energy
level, though there are certain gaps in the energy,
in which only damped waves exist as solutions
of the problem, one component of the vector k
becoming pure imaginary. On account of these
modulated solutions, it is generally supposed that
electrons move freely through a crystal lattice,
unless they happen to lie in the region of the
energy gaps, in which case it is supposed that
they are reAected from the crystal, accounting
for the Bragg reflection in the problem of electron
diffraction.

This naive picture, in which electrons either
are freely transmitted or totally reflected, is, of
course, far from agreeing with the experimental
facts. The most conspicuous difference between
electron and x-ray diffraction is the great ex-
tinction of electron beams in solids. ' Further-
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more, electrons not only fail to penetrate more
than a few atomic layers, but the reflection coef-
ficient at the Bragg angle is only of the order of
one percent, instead of unity as the simple
theory predicts, and the angular range over
which there is reflection is of the order of ten
times the range predicted by the simple theory.
These are the sort of changes in reflection which
would be expected if the electron wave were
rapidly extinguished in the crystal. Such extinc-
tion is, of course, to be expected on general
grounds. An electron moving through atoms in a
gas will suffer only elastic collisions, with small
loss of energy, if it has an energy smaller than
the resonance energy of the atoms of the gas. At
higher energies, however, it will suffer inelastic
collisions, raising electrons of the gas atoms to
higher energy, and losing energy itself. This
results in a rapid extinction of beams of electrons
of high energy, of a type not met with slow elec-
trons. Of course, the electrons are not lost, only
slowed down; but if we are considering only
electrons of approximately the incident energy,
we shall consider them lost to the beam. In a
similar way, the conduction electrons in a metal
can have only elastic impacts, losing a little
energy to the lattice vibrations, but electrons
with more than a few volts energy above the
conduction levels can have inelastic impacts,
losing part of their energy, raising conduction or
x-ray electrons to excited energy levels in the
lattice. This is observed experimentally; if elec-
trons of a few hundred or more volts are shot
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into a metal, two groups of secondary electrons
are emitted: those which have lost a few volts,
and happen to have their direction changed so
that they emerge from the metal, and slow
electrons, which have been raised from conduc-
tion levels by the collisions. 'Ihe theory of such
inelastic impacts has recently been discussed by
Rudberg and the writer. '

A complete treatment of the inelastic damping
of excited electron waves, along these lines,
would be very complicated. In the present paper,
we shall be content with a simpler task. We shall
show that an empirical damping constant can
be introduced, and that solutions of the wave
mechanical problem including this damping give
exponentially damped waves, of the sort to be
expected intuitively. Furthermore, we shall set
up the conditions for electron diffraction in the
usual case, and shall show that the decreased
refiection coefficient and broadened beam which
are found experimentally are adequately de-
scribed by the theory. We sha11 also find certain
interesting consequences relating to the theory
of metals. Thus, the distinction between the
allowed and forbidden ranges of energy becomes
lost when all waves are damped, and the discon-
tinuities of energy which are such a characteristic
feature of the theory with undamped waves
become rapidly removed when even a small

damping is introduced.
The dynamical theory of electron. diffraction

has been recently discussed by Harding, ' using
an extension of Darwin's method for x-ray dif-
fraction, in which the scattering from each plane
of atoms is considered separately. He attributes
most of the broadening to irregularity of spacing
of the few planes of atoms near the surface of the
crystal, though he also considers absorption.
Such an irregularity is undoubtedly responsible
for many of the anomalies observed in electron
diffraction, in particular for the asymmetry of
beams, and Harding's method undoubtedly is
the most practicable way of handling it. The
object of the present paper is to point out,
however, that the absorption can be treated by
the conventional theory as well, with tolerably
simple results, and to suggest that perhaps it has
a more important role than Harding believes.

' E, Rudberg and J. C. Slater, Phys. Rev, 50, 150 (1936).' J. W. Harding, Phil. Mag. 23, 271 (1937).

Harding's statement, in particular, that absorp'-

tion actually decreases the breadth of the beams,
seems very questionable; the present theory
indicates just the sort of broadening which we
should expect on the basis of other types of
damped waves with which we are familiar.

2. DAMPED WAvEs IN A REGIoN oF
CONSTANT POTENTIAL

A damping constant can be formally intro-
duced into Schrodinger's equation by the device
of adding a pure imaginary term to the potential
energy, just as in optics a pure imaginary term
in the refractive index results in damping. In this
section we shall ask how to handle such a term
in a region of constant potential. That is, we shall'

consider the modified Schrodinger equation

where U is the real potential, —i V the damping
term, both constants. The sign of the damping
term is chosen so that it will result in disappear-
ance rather than appearance of charge. The
units in (1) are atomic units; that is, distances
are measured in terms of the radius of the first
Bohr orbit of hydrogen, energies in terms of the
Rydberg energy, frequencies in terms of 27r times
the Rydberg frequency. First we shall show that
(1) really leads to a continuous disappearance of
charge. To do this, we compute the time rate of
change of the charge density P*P, plus the di-

vergence of the current density, which in these
units is i(P grad P~ —P~ grad P), and we shall
show that the result is negative, rather than zero
as it would be if the equation of continuity held.
When we compute this quantity, we substitute
from Eq. (1), and from the similar equation for
the complex conjugate P*, in which we note that
the term i V must appear with positive rather
than negative sign, and we find in an entirely
conventional way

(8/Bt) (P*P)+div i(P grad f*—P* grad f)
(2)

That is, the density represented by p*p is

destroyed at a rate given by —2V times the
density itself. We should emphasize again, of
course, that as we use the equation we shall be
working only with electrons of a given energy,
and by their destruction we mean merely their
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inelastic scattering to another energy, so that
they are removed from the particular energy
beam we are considering.

Two types of solution of (1) are particularly
important. In the first place, we can find solu-
tions sinusoidal in space, but damped in time.
Thus by substitution we see at once that

. &=exp (—Vt iEt+—ik r) (3)

is a solution of the equation, where k is an
arbitrary real vector, r the radius vector, pro-
vided

8=k'+ U, (4)
which in these units equals the kinetic energy
(k', where k is essentially the momentum) plus
the potential energy U. For this type of solution,
the divergence of the current in (2) is zero, but
if we form /*it we have exp (—2 Vt), which ob-
viously satisfies Eq. (2). The quantity 1j2 V
then plays the part of the relaxation time for the
charge density, 1/V the relaxation time for the
wave function. Such a solution would be appro-
priate, for instance, in a hypothetical problem in
which electrons were raised to an excited state
all through the interior of the volume by some
sudden action, such as a sudden burst of x-rays
or other radiation capable of penetrating the
volume, and then were allowed to die down. We
note that in such a case the damping constant
does not affect the function of space at a11, but
only the time variation of the function.

The second type of solution is the one which
concerns us in electron diffraction and similar
problems. Here there is a steady state as far as
time is concerned. Electrons are being fed into
the crystal from the outside at a rate fast enough
to balance their loss by inelastic impact, plus
their reflection to the outside. We must then
look for a solution which is purely exponential
in time, but damped in space. Thus

/=exp ( iEt nr+ik—r), — (5)
where 0., k are arbitrary vectors, is a solution of
(1), provided

E=k'+ U u'+2i(e —k) i V, —(6)
with a real Z. Eq. (6) really involves two state-
ments:

Eq. (6b) determines the component of the
damping vector 0, in the direction of the propa-
gation vector k, but leaves its component at
right angles undetermined, and (6a) determines
the energy in terms of e and k. In any problem
where a beam of electrons is entering a region
over a plane surface, and is being damped inside,
the direction of e must of course be chosen
normal to the surface, so that the boundary con-
ditions with a beam of constant intensity outside
can be satisfied. Equality of energy between the
inside and outside beams must also be main-
tained, as well as equality of the tangential com-
ponent of k. These provide enough. conditions to
fix the vectors k and 0. within the damping
medium. It is to be noticed that even in a non-
absorbing medium, V= 0, we can still have
damped waves, as we know by the optical
analogy of total reHection, but (6b) tells us that
the damping must be at right angles to the
propagation. vector. Such waves have not been
useful in electron theory, because electrons are
bent toward the normal on entering a crystal,
so that there is no total reHection at the surface
between the crystal and air.

3. DAMPED WAvEs IN A PERIQDIc
POTENTIAL FIELD

We now set up the problem of damped waves
in a periodic potential field. We assume the same
Schrodinger Eq. (1) as before, only now we
assume that

U=PW(K) exp i(K r—), (7)

where the vectors K are the vectors in the recip-
rocal l attice corresponding to the crystal in
question, and the W's are the Fourier coefficients
of the potential. We continue to regard the
damping term V as constant; but the results
which we find hold without essential change if
V is also a periodic function. Now we ask for a
solution of (1) with the potential (7), in the form
of a sinusoidal function of time, multiplied by a
damped modulated function of position. That is,
we try to find a solution

E=k'+ U —a',

2(e k) =- V.

(6a)

(6b)

/=exp ( iZt 0. r+ik r)—u(r), —

where u(r), a periodic function of position, can
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be expanded as

zz(r) = +Ax exp i(K r).
K

(9)

where

C(EE') = ((k+K)' —n'+2i(n (k+K))
i U 2—)8x,—x +W(K' —K). (11)

We can satisfy Eq. (10) by making the last
summation equal to zero:

When the function (8) is substituted in the dif-
ferential equation, we find the condition

exp (—iEt —n r+zk r)

P exp (iK r) PC(EE')AK 0, ——(10)

equation and the additional requirement that Z
be real. Or if, as in the electron diffraction case,
the energy, the two components of k parallel to
the surface of the crystal, and the direction of e
are determined, we have the normal component
of k and the magnitude of 0. at our disposal. In
practice, the calculation seems to be simplest
when k and the direction of e are fixed, and g
and the magnitude of n are found by the equa-
tions.

We shall now consider the solution of the
secular Eq. (13) in simple special cases. As in the
conventional theory of electron diffraction, we
shall assume that far from a Bragg reflection one
term of the summation (9) is sufficient, and that
near such a reflection two terms must be used.
If only one term is to be used, the condition

PC(EE')Ax' ——0, for each value of K. (12) becomes at once

In order to satisfy this infinite set of simul-
taneous homogeneous linear equations, it is
necessary as usual to make the determinant of
coefficients C(EE') equal to zero:

6
i
C(EE')

i
= 0. (13)

Eq. (13) provides a secula, r equation for E, to
be solved subject to the condition that E is real.
Just as in the case of constant potential, we have
enough constants at our disposal to satisfy both
conditions. Thus if k is determined, and the
direction of the damping vector e is fixed, we
have two constants, the energy Z and the mag-
nitude of 0., with which to satisfy the secular

(k+K)' —n'+W(0)+2i(n (k+K)) zV——Z=O,

exactly like Eq. (6) for the case of constant
potential, which we have already discussed. We
shall then concentrate on the case where two
waves are to be used. To fix our attention on a
definite problem, we shall take the reflecting
planes parallel to the surface of the crystal, the
case of regular reflection, though the treatment
is carried out in an entirely analogous way in
other cases. Then K is normal to the surface,
pointing out of the crystal, and e must be
assumed normal, and pointing into the crystal.
If k„ is the normal component of k, pointing into
the crystal, the secular equation then becomes

k' —n'+ W(0)+2ink„—i V—8
W(K)

W(K) =0, (14)k' —u'+ W(0) +2znk —z U —8—2k
(
K

(
+E'—2in

~

K [

where we have assumed the incident propagation
vector to be k, the reflected one k+K. We shall
have Bragg reflection when k„—

~

K ~/2=0. Let
us then let

in terms of the glancing angle of incidence 0.
Then if k& is the tangential component of k,
which by the boundary conditions must be equal
inside and outside the crystal, we must have

& cos2 0 =kP. (17)
where b is a small quantity vanishing in the
Bragg case. Expanding the determinant (14),
and solving the quadratic, we then have

Z = k' —
~

K
~

8+ W(0) —n'+2inb. —i V
~[Wz(K) —nzEz+Ezg+2znEzg]i (16)

In practice, it is more convenient to express this

We then subtract 8 cos' 8 from each side of (16),
leaving E sin' 8 on the left, and for the first two
terms on the right kz —~K~& —&p=p ' —~K~&
= (K/2) +8'. Eq. (16), with these changes, then
becomes an equation for E sin'0. We still must
impose the condition that 8 must be real. The
radical in (16) is complex. Its imaginary term
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FrG. 1. B sin' 0, component of energy normal to surface,
as function of 8, component of momentum normal to
surface, both in atomic units, for different values of
V/W, the ratio of the damping constant to the energy
perturbation between incident and reflected beams.

must cancel the other imaginary terms in the
equation, and its real term alone is left to con-
tribute to B. Thus we have

~ I w2(K) n'K'+—K282+ 2ieK25 j&

2i n p+i V+—f, (18)

where f is the real part of the radical. We square
both sides of (18), and equate real and imaginary
parts separately. From the imaginary part we
And

f= nK28/(V 2nfi)— (19)

The real part gives a quadratic for e. Its solution
1s

e. One of these is in general positive and the
other negative, and to get a wave which is
damped as we go into the crystal we must take
the positive root. This determines a single value
for f, so that the double valued solution appearing
in (16) is not really of physical signiflcance.
When we have found the appropriate value of f,
we then find for the energy, from (16) and the
changes made in that equation,

E sin' 8 = (K/2)'+ 52+ W(0) n'+f—. (21)

Having found the energy, we can now use
Eqs. (12) to flnd the reflection coefficient. Thus
if Ao is the incident amplitude, A K the reflected
amplitude, we have

A p W(K) +A K(k2 —n'+ W(0) +2iek
—i V—Z —2k

I
K

I

+K' —2ze
I
K

I ) =0. (22)

When we substitute for 8, this becomes

~ 2 TV(K) —~ K(l K
I 6+f

+z(V+nlKI —2nb)) =0. (23)

From (23) we can then find the ratio Ax/Ap of
reflected to incident amplitude, and squaring the
magnitude of this we have the reHection coef-
ficient

&= ~'(K)/((I K
I
&+f)'

+(V+e I
K

I

—2nb)2). (24)

When V is of the same order of magnitude as
TV, numerical calculations must be made by the
method we have sketched. If V' is large com-
pared with t/t/', however, g' can be neglected
in the radical in (18), and the expressions sim-
plify greatly. Eq. (18) then becomes

-lV2+ V2+K2g2 f2 2g V' 2-

+
X2 —4&2 E' —4S'

(20) & IK I
(5+in) = —2in+iV+f,

from which
We could eliminate f between (19) and (20) to
get an equation for the damping constant n, but
the resulting equation is of the fourth degree
and cannot be conveniently solved. It is much
more practicable to solve Eqs. (19) and (20)
simultaneously for f and e by successive approxi-
mations, putting a trial value of e in (19), com-
puting a corrected e from this f by (20), and
repeating the process until the final value equals
the initial one. With a little practice, this calcu-
lation proves to be very simple.

We note that Eq. (20) gives two solutions for

f=~IKIS, n= V/(~IKI+2S). (23)

Eqs. (25) correspond to (19) and (20) in the
general case. Since IKI is a large quantity, 6

small, we see that to have n positive we must
choose the upper signs. Then the expression for
the energy becomes

8 sin' 8= (I K I/2+ii)'+ W(0) n', (2—6)
2

and the reflection coe%cient is

R=(W/2)2/((Kb)2+(VK/(K+2'))2) (27)
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For all ordinary cases, the line is narrow enough
so that the ratio K/(K+28) can be replaced by
unity. Then finally we have

R = (W/2)'/((Kb)'+ V'). (28)
80 Fo

The expression (28) is a typical resonance form
of curve. The reflection coefficient at the maxi-
mum, 8=0, is

R . = ( W/2 V)', (29)

and the half-breadth, the difference of the two
values of 8 for which R has half its maximum
value, is

60%

bu —5&
——2 V/K. (30)

It is more interesting to compare the breadth
with the breadth which the totally reflecting
region would have in the theory without damp-
ing. To do this, we must use E sin' 0 rather than
0 as independent variable. We find at once that

40 fo

(8 sin' 8) 2
—(8 sin' 0) ~

= 2 V. (3&)
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FIG. 2. Total damping constant n, arising from both
inelastic and elastic impacts, as function of 8 sin 8.

The corresponding quantity for the totally re-
Hecting region is 28'. Hence the half-breadth
with damping constant U is (V/W) times the
width of this totally reflecting region. If the ob-
served half-breadth is 10 times this theoretical
totally reflecting breadth, then V is 10 times g,
we are in the region where this approximation is
valid, and the maximum reflection coefficient

8.90 4.00 4.10

FrG. 3. Reflection coefficient of diffracted beam, as
function of 8 sin' 8. 8 sin' 8=4 corresponds to the Bragg
angle, V=0 corresponds to the case of no inelastic damping.

should be (1/20)'=1/400, which is of the order
of magnitude of the observed value. One has
something of the impression, however, in com-
paring this theory with published statements of
reflection cock.cient and breadth, that for a
given reHection coe%cient the theory gives a
somewhat narrower line than is observed. .This
would fit in with Harding's' theory that part of
the broadening comes from irregularity of the
lattice rather than absorption.

To show the nature of the solution for smaller
values of V/W, for which the approximations are
not valid, numerical calculations have been
made for a special case, shown in the figures. The
values chosen were %=4 atomic units, t/t/'=0. 03
atomic units, which are of the order of magnitude
of constants actually encountered in the experi. -

ments. In Fig. 1 we plot E sin' 8 as a function of
8, for several values of V/W. This is the sort of
plot often made in the theory of metals, showing
essentially the energy (or rather the component
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connected with motion normal to the surface)
as a function of the component of the k vector
normal to the surface, in the neighborhood of
Bragg reflection. We see that as soon as the
damping is introduced, the discontinuity in

energy disappears, and is replaced by a gradual
transition from one branch of the curve to the
other, very rapidly approaching a smooth curve
as V/W becomes large. The reason why the
energy perturbations become small is clear: they
arise from interactions between the incident and
diffracted beams, which are of equal magnitude
at the Bragg angle in the undamped case. In the
damped case, the diffracted beam is of much
smaller intensity, and has much less effect on the
energy. It is also plain why there is no discon-
tinuity: there is damping for every value of the
energy, and the wave functions are no longer
separated into two different groups, the damped
and the undamped ones. This becomes clear in

Fig. 2, where we plot the damping constant n
as a function of 8 sin'0, for various values of
V/W. For the case V=O, the damping constant
goes to zero at the edges of the energy gap, but
for V&0 the damping merely decreases to a
somewhat smaller value as we depart from the

conditions for Bragg refiection. Finally in Fig. 3
we plot the refiection coefficient, as a function
of E sin'8, for diferent values of V/W. It will

be noted that increasing V, for a given W, always
decreases the reHection, but the decrease is so
much greater in the middle of the range than at
the edges that the effect is to broaderj the range.
This is entirely analogous to the

effect

o damping
on absorption bands in optics.

In closing, it should be pointed out that
damped solutions of the type we have described,
while they are appropriate for problems of
electron diffraction and other problems in which
electrons enter a crystal from outside, would not
be suitable for discussing such problems as x-ray
absorption, where the electrons are produced
within the crystal. In particular, Kronig' has
discussed the fine structure of x-ray absorption
edges in terms of the energy gaps between bands.
The present argument does not affect that use
of the theory of energy gaps, and it should not
be thought that the fact that we find that the
gaps disappear indicates a difficulty with
Kronig's theory.

4 R. DeI..Kronig, Zeits. f. Physik 70, 317 (1931);15, 191
(1932); 75, 468 (1932).
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A new method for approximating the solutions of the
problem of the motion of an electron in a periodic potential,
as a crystal lattice, is suggested. The potential is supposed
to be spherically symmetrical within spheres surrounding
the atoms, constant outside. The wave function is expanded
in spherical harmonics and radial solutions of the wave
equation within the spheres, and in plane waves outside the
spheres, joining continuously at the surface. A single un-

perturbed function consists of a single plane wave outside
the spheres, together with the necessary spherical functions

within the spheres. The matrix components of energy are
set up between these unperturbed functions, and the
secular equation set up. This equation involves the energy
explicitly, and also implicitly through the ratio of the slope
of the various radial functions to the functions themselves
at the surfaces of the spheres, and must be solved numer-
ically. It is hoped that the method will be useful for com-
paratively low energy excited electrons, for which the usual
method of expansion in plane waves converges too slowly.

INTRQDUcTIQN

HE first step in the solution of the wave
mechanical problem of the motions of

electrons in a crystal is to replace the other

*On leave from the Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts.

electrons by a static distribution of charge, and
to treat the motion of one electron in. this static,
periodic potential field. The potential is of a
particular sort: Near each nucleus, it approaches
the potential near the corresponding atom as it
would be if isolated from its neighbors, the


