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The present calculation of the density of energy levels of
a heavy nucleus is based on the statistical model of Van
Vleck. As in Bethe's calculation, the particles are assumed
to move in a simple potential hole, but the depth of the hole
varies with the velocity of the particle. If exchange forces
act, the interaction energy of a given particle with the
remainder of the nucleus decreases as the velocity of the
particle increases. This results in a lower density of states
of the individual particles at the top of the Fermi distri-
bution. Bethe's formula for the density of excited levels of

the nucleus as a whole may be applied to the present situa-
tion if this change in the density of the individual particle
states is taken into account. The spacing between the levels
is over a hundred times larger than that found by Bethe,
and, if one uses the Gamow value for the radius of a radio-
active nucleus ( 9X10 '3 cm), is much too large to be
reconciled with the frequent occurrence of resonance levels
for the capture of slow neutrons. If one uses the new value
for the radius suggested by Bethe (~13)&10 " cm), the
present theory gives more reasonable values.

i. INTRODUCTION

N estimate of the average spacing between
the energy levels of heavy nuclei is of inter-

est in explaining the frequency of occurrence of
resonance levels for the capture of slow neutrons. '
Bethe' has recently made an approximate calcu-
lation which is based, on a statistical model in
which the particles are assumed to move freely
in a simple potential hole (constant potential in-
side the nucleus). If the interaction between
nuclear particles is of the exchange type, the in-
teraction energy between a given particle and the
remainder of the nucleus depends on the velocity
of the particle, and decreases as the velocity of
the particle increases. This effect, which is
neglected, by Bethe, is here roughly taken into
account by using the statistical model of Van
Vleck. ' The particles are again assumed to move
in a simple potential hole, but the depth of the
hole varies with the velocity of the particle. This
causes a lower density of states of the individual
particles, and a much lower density of states of
the nucleus as a whole.

* Presented at the American Physical Society, Atlantic
City meeting, December 30, 1936.

f Society of Fellows.
'The theory of the resonance capture of slow neutrons

has been given by Breit and Wigner, Phys. Rev. 49, 516
(1936). For experimental material, see Goldsmith and
Rasetti, Phys. Rev. 50, 328 (1936); Amaldi and Fermi,
Phys. Rev. 50, 899 (1936) where further references to the
literature may be found.

'H. A. Bethe, Phys. Rev. 50, 332 (1936).The equations
of Bethe mentioned in the text refer to this paper.' J. H. Van Vleck, Phys. Rev. 48, 367 (1935).This work
is based on that of P, A. M. Dirac, Proc. Camb. Phil. Soc.
26, 376 (1930).
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Let us suppose that a slow neutron is absorbed
by a nucleus of mass number A —1 and angular
momentum Ip. The resonance level' of the
nucleus of mass number A into which the
neutron is captured lies at an energy Q above the
ground state. Since the neutron will have no
orbital angular momentum (I=0), the angular
momentum of the excited nucleus will be Ip~-,'
(the —,

' arising from the spin of the neutron). We
are therefore interested in computing the number
of excited levels p(Q, I)dQ, of given angular mo-
mentum I, which have energies between Q and
Q+dQ.

The lowest state of the nucleus as a whole is
that in which all the lowest states of the in-
dividual particles are filled, up to some maximum
energy, e, the remaining states being empty.
The excited states are those in which particles
are taken from the filled levels into some of the
previously unoccupied .levels, leaving behind
unoccupied states or "holes" in the filled band.
The energy required to take a particle from one
level to another is equal to the difference in the
individual particle energies of the corresponding
levels. These energies will depend to some extent
on the excitation of the nucleus as a whole; but
since this effect is small, we wi11 neglect it in our
work. To a first approximation, we will not dis-
tiliguish between the proton and neutron levels.
We then suppose that each level may be occupied
by four particles, two protons and. two neutrons.
The total number of particles A, and the number
of protons, Z, are fixed.

Bethe' has shown that under these conditions,
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where x=~(8N(e )Q/3)'* (2)

and the number of levels of the individual par-
ticles between the energies e . and &+de is
N(e)de. This formula applies only to levels of low

angular momentum, I.
If, fnllowing Bethe, we assume that the par-

ticles move freely in a sphere of radius R, so that
we need consider only the kinetic energy of the
particles, the quantities entering (1) have the
following values. The kinetic energy, g., of a
particle at the top of the Fermi distribution is

f =e =(5'/2M)(9~A/8R')~. (3)

It should be noted that if the volume of the
nucleus is proportional to the number of par-
ticles contained in it, |is independent of A. The
density of levels, for e= e is:

No(~ ) =(MR'/h')(A/37r')&=3A/8f'. (4)

Each such level may be occupied by two protons
and two neutrons. We thus have

x =m(AQ/t')'*. ()
The mean square angular momentum is (Cf.
Bethe, Eq. (44)):

[(j+—)2j = (4/5) MR2fz 2~ = (3—4&3~1/l 0)A m (6)

Substituting these values in (1), we have

p(Q, I) =7r410&(2I+1)x 4i 'e*/216, (7)

which should be compared with Bethe's Eq. (49).
The numerical factor is slightly different from
that given by Bethe. '

4 Cf. Bethe; reference 2, Eq. (41). Bethe does not
consider explicitly the general case in which the density
of the individual particle states is given arbitrarily, but his
method may be extended to yield the result given above;

5 Bethe does not take the exclusion principle into
account in his derivation of p(M) (the probability that a
state has the Z component of angular momentum 2II),
given in Eq. (34) and following. The proper correction can
be made by dividing his n (Eq. (45)) by 2 log 2. There is an
error of a factor of v2 in passing from Eq. (45) to Eq. (46).

the density of levels of the nucleus as a whole
depends on the density of the levels of the in-
dividual particles, and on their mean square
angular momentum, [j(j+1)]A,. Both refer to
energies, ~, in the neighborhood of the top of
the Fermi distribution. His formula, with some
minor modifications, 4 may be written

p(Q, I) =9(2I+1)[j(j+1)]A„&(~'/216x'Q)e', (1)

The decrease in the potential energy of a
particle as its velocity is increased (considered in
the next section) has the effect of decreasing
N(e„) by a factor of about two. The density of
levels of the nucleus as a whole is very sensitive
to the density of levels of the individual par-
ticles, since this term enters exponentially in (1).
For reasonable values of the excitation energy

Q( 8MV), x is of the order 20 for a moderately
heavy nucleus (A 100). Thus a decrease in

N(e ) by a factor two decreases x by about 6 and

p(Q, I) by a factor (1/4)e' or a little over 100.
With the Gamow value for the radius of a radio-
active nucleus (R 9)(10 "cm), it is found that
the resulting spacing between the levels is too
large to be reconciled with the frequent occur-
renc'e of resonance levels for the capture of slow
neutrons. If, however, one uses the larger value
for the radius suggested by Bethe' ( 13X10 "
cm) more reasonable values are obtained (Cf.
Section 3).

2. DENSITY OF STATES OF THE

INDIVIDUAL PARTICLES

The correct form for the interactions between
nuclear particles is still rather uncertain. In the
present work we shall assume that the inter-
action potential between any two nuclear par-
ticles is a linear combination of the Majorana
and Heisenberg operators,

((1—g)& +gI' )~(r)

The operator I™interchanges the space coor-
dinates of the two particles; I'~ interchanges
both space and spin coordinates; and r is the
distance between the particles. The Coulomb
repulsion between the protons is neglected.

We assume that the particles have individual
wave functions, and that in the lowest level of
the nucleus as a whole, each individual state is
doubly occupied with like particles having op-
posite spins. The wave function of the nucleus
as a whole is approximated by a product of deter-
minants corresponding to the neutrons and
protons. The mean value of the energy under
these conditions has been computed by Breit and
Feenberg. ' They find:

'H. A. Bethe, Phys. Rev. 50, 977 (1936).
'I G. Breit and E. Feenberg, Phys. Rev. 50, 850 (1936).
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&= T+(1—zg)&.*""+(—-' —zg)&""
+(1—zg)&.*-+(—z

—zg)&-
+(2 —g)&- " (9)

in which V is the volume of the nucleus and k
is the propagation vector. The density of states
in k space is then

where T is the kinetic energy, and n(k)dk= (2x.)-'Udk. (13)

E p = tz Jt)I p, (x)J(x—x') pp(x')dxdx',
The density of states in energy, with which we
are concerned, is

X(»)d»= (2rr') 'Uk'(dk/d»)d» (14)

,'JI )~p. (-x, x') J(x—x') ps(x', x)dxdx',

a, P = v or rr; p.(x) = p.(x, x).

The index x refers to protons and v to neutrons.
The Dirac density matrix p (x, x') is obtained
by summing over all space states, each doubly
occupied, state occurring twice.

The individual particle energies are given by:

k'
»..=)ty., (x)

~

— S ~y. ,(x)dx
2M )

+(1—-,'g)JtJ P;*(x)iP;(x')J(x—x') p (x', x)dxdx'

k = (9x.Z/4Rx) &; k„= (9x-N/4Rx) & (15)

and Z and X are the numbers of protons and
neutrons, respectively. Again, R is the radius
of the nucleus. In actual nuclei k and k„are very
nearly equal, and we will later obtain certain
simplifications by assuming that they are both
equal to:

k„= (9x.A/8R') &, (16)

if it be assumed that e depends only on the mag-
nitude of k and not on its direction. Each, such
state may be occupied by two like particles of
opposite spins. The occupied states are assumed
to fill a sphere in k space of radius k (»»= v or x),
where

+ (——', —-', g) J~)I 1f.;*(x)it.;(x)J(x—x') p.(x')dxdx'

+ (1——',g)) Jr P.;*(x)P.;(x')J(x—x') ps(x', x)dxdx'.
(11)

If a particle is excited from a state i to a state j
the excitation energy of the nucleus is given to
a first approximation by e; —c;. We neglect the
effect of the excitation of the nucleus on the
density matrices, and therefore on the individual
particle energies. The excitation energy, Q, of a
nucleus with several particles excited will then
be the sum of the energies of the excited par-
ticles minus the sum cf the energies of the holes
left behind in the filled band. In this approxima-
tion states of differen. t multiplicities will have the
same energy. However, in counting the number
of levels, the only degeneracy we assume is that
resulting from the angular momentum of the
nucleus.

For the present calculation we use the sta-
tistical modep of the nucleus; i.e. , we take the
plane wave functions

U tnrx

where A is the mass number. If the volume of the
nucleus is proportional to the mass, k will be
independent of A.

The Dirac density matrix corresponding to a
sphere of particles in k space is

p (r) = (sin k r kr cos k r)—/rr'r',
r =

~

x—x' (. (17)

Substitution in (11) gives the following expres-
sion for the energy of an individual particle in
the statistical model:

» s ——(k'/2M)k'+ (1—-', g) (1 (k, k„)—f'(k, k ))

—(-,'+ -', g) (4k s/3rr) J(r) r'dr (18)
0

The last term on the right-hand side of (18) is
independent of k, and so represents an additive
constant which may be neglected for the present
considerations.

s J. H. Van Vleck, reference 3, or E. Wigner and F.
Seitz, Phys; Rev. 43, 804 (1933).
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where (o~= (krak. )/2ul

erf co=2vr ' e 'dx.

In order to find the density of states in energy,
we need to compute de/dk. With the approxima-
tion k„=k =k, we have, for k=k,
k„(de/dk)i, =i =k'k„'/M

—(2 —g)A. (~y) 'f(y), (21)

where

and

y=k '/a

f(y) =s "(y+2)+y 2—
The first term on the right-hand side of (21)
comes from the kinetic energy, the second term
from the potential energy, of the particle. Omis-
sion of the potential energy term leads to Bethe's
formula (7) for the density of levels, p(Q, I).
This term is, however, of the same order of mag-
nitude as the kinetic energy term. It is convenient
to express our result as a ratio of the slope of the
total energy (kinetic plus potential) to the slope
of the kinetic energy at the top of the Fermi
distribution (k=k„). This ratio, which we call y
is equal to the ratio of the density of states (in
energy), No(e„), of the free particle modeii'
(kinetic energy only included) to the density of
states, N(e ), of our statistical model, as follows
from (14). We have:

v = No(~-) /N(~-)
=1—(2 —a)A. (~P) '(~y') f(y) (22)

TABLE I. Values of y = N0(e )/N(& ) for the symmetric
potential, (0.8P~+ O.ZP )A.,e ", as computed from Bq.
(ZZ).

If we use for J(r) the Gaussian function
A,e "', the integral on the right-hand side of
(19) may be evaluated. ' The result is:

I'(k, k ) =A, Ierf (&o+) —erf (co )

+(4a/irk')**(exp (—co+') —exp (—su ')) I, (20)

3. DENSITY OF LEVELS OF THE NUCI. EUS AS A

WHOLE

From the density of states of the individual
particles, one can easily obtain the density of
levels of the nucleus as a whole from Bethe's ex-
pression (1).The value of x is now:

x=~(AQ jyf. )-'* (24)

with y given by (22) or (23) and I by (3). The

TABLE II. Values of y =¹(e)/N(e ) for neutron-proton
interaction as computed from Eg. (Z3).

where A, is expressed in units of mc' and
I = (k'/3fmc')1 is Feenberg's unit of length
(8.97 && 10 "cm). Values of y for different values
of n and R, computed from (22), are given in
Table I. The value g=0.2 was used. The values
of A, for the corresponding values of o. were
estimated from the work of Feenberg and Share. "
These values bear out the statement, made
earlier, that the dependence of the potential
energy of a particle on the velocity of the particle
(or on k) reduces the density of states of the
individual particles by a factor of about two at
the top of the Fermi distribution.

In order to see how the ratio depends on the
type of interactions assumed, the corresponding
calculations have been carried out with the omis-
sion of like-particle interactions. The analysis
shows that in this case

v=1 —(1—lg)A-( I') '( y') 'f(y) (23)

The values of y as computed from (23) are given
in Table II. The strength of the interaction, A „,
is somewhat larger than the strength for the
symmetric potential, A„ in order to obtain the
proper binding energies for the light particles.
It is ~een that the values of p are not extremely
sensitive to the type of interaction involved.
The value of p would, however, be greatly re-
duced if the interactions were not of the exchange
type

a &(cm)

2.8X10 "
-2.0 X10-»
1.6X10 "

—53—81—105

9X10»

2.34
2.07
1.76

Y

11X10 "
2.40
1.94
1,60

13 X10»

2.35
1.78
1.45

a &(cm)

2.8X10-"
2.0X10 "
1.6X10-»

—71—108—140

9X10»

1.89
1.71
1.51

v
11X10»

1.93
1.63
1.40

13X10»

1.90
1.52
1.30

C. H. Fay, Phys. Rev. 50, 560 (1936).
"Given by Eq. (4). "E. Feenberg and S.S.Share, Phys. Rev. 50, 253 (1936).
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TABLE III. Average spacing, * 60, between nuclear levels of sero angular momentum, for y =Z.

R (cm) for
A =230 200 400 600

do

800 1000 1200 1400

9X10 "
11X10 "
3 1

+ Units of L4 are ev.

21.5

14.4

10.3

6.7X10' 1.8X10' 4.3X10'

2.4X10' . 3.2X10' 4.5X10'

7.5 X 10' 5.3 X 10' 5000

9000 152

660 109 3.3

1.3 X 10' 5.7 X 104 1.38 X 104 5250

2100 5200

mean value of (j+-,')' will again be given by (4).
We thus have:

p(Q, I) =1 Ol+4(2I +1) x4(yf) 'e*/216 (2. 5)

The mean spacing between the levels is now:

(26)

with 6,=216&(10 4 4yfx'e * . (27)

Values of Do computed from Eq. (27) are given in
Table III for y=2, and for different assumed
values of the nuclear radius, .R. The values of the
nuclear radius listed are for a nucleus of mass
number A =230; it is assumed that the volumes
of all nuclei are proportional to A. The Gamow
value is R =9)& 10 "cm, while the value recently
suggested by Bethe is 13)&10—"cm. This table
should be compared with Bethe's Table I.

The energy Q set free in the capture of a slow
neutron is of the order 7 —10 MV. The relevant
values of QA thus range from about 800 MV for
A 100 to about 1400 MV for very heavy nuclei
(A 200). From the table, one sees that the mean
spacing of levels of zero angular momentum
(I=0) ranges from 150,000 to 5000 volts if
R=9)&10 " cm and from 1000 to 4 volts if
R = 13&(10 " cm. An average spacing of some
tens of thousands of volts seems to be much too
large to be reconciled with the frequent occur-
rence of resonance levels; an average spacing of

some hundreds of volts would be more reasonable.
The results of the present calculation thus give
evidence in favor of the larger radius. A radius as
large as 13)&10 "cm is not required, however, as
the values of 60 listed io Table III for this radius
are probably somewhat too small, and they would
be even smaller if we had taken into account the
decrease of y with R which is given in Table I.

It is questionable how much one can rely on a
calculation of the density of nuclear levels which
is based on a statistical model. Actually very few
particles are excited. Thc total number of excited
particles and holes is

which, for AQ=1000 MV, )=20 MV and y=2 is
only 6 or 7. The number is increased to 9 if

)=10 MV (corresponding to R=13&&10 " cm)
for the same values of A Q and y. The fluctuations
in the density of levels amoog the individual
nuclei are probably quite large. The calculation
almost certainly leads to a too high density of
levels of high angular momenta. . If the computed
value of the density of levels of low angular
momenta is also too high, the conclusion that
the frequency of occurrence of resonance levels
indicates a larger radius than the Gamow value
would not be invalidated.


