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his Fig. 3 and our Fig. 1), even when the errors
in his paper are corrected. '8

The last point of comparison between theory
and experiment is in the matter of absolute
yield. " Choosing reasonable values for n and P
in Eq. (15), obtained by converting a-particle to
deuteron ranges, " one obtains for the yield at
100 kv from a thick D3P04 target about 3 X10 '.
The absolute experimental yield from such a
target varies with the experimenter over a range
of about i0 ' to 10-'; thus the theoretical yield
is too large by a factor of about j,0' to 10'.

In conclusion it is well to repeat that that
' Dolch, Zeits. f. Physik 104, 473 (1937}.It is di%cult

to understand why Dolch's results should deviate so much
more from experiment than ours, when both calculations
are based on the Gamow factor. In any case, the symmetry
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roperties developed in the present paper, while important
or angle distribution, have a small effect on the yield

function."I am indebted to Professor Robley D. Evans for
discussion of this point.

'0 Mano, J. de phys. et rad. 5, 628 (1934).

portion of the theory which concerns itself with
the symmetry properties of the situation, leading
to Eqs. (11) and (12), is quite rigorous, while the
detailed evaluation of the quantities appearing
therein is very crude, and serves as little more
than an indication of the general nature of the
results to be expected. Again, the excellent agree-
ment of relative yields (see Figs. 1 and 2) is due
primarily to the Gamow factor, and not to the
rest of the theory. Experimental data on absolute
cross section as a function of energy, and on
angular distribution for higher energies, both
obtained with gas targets (to eliminate the eHect
of penetration into the target), would be very
useful at this time.

I wish to express my deep appreciation to
Professor Philip M. Morse for his constant en-
couragement and for his help at many points of
the theory. I also wish to thank Professor J. H.
Van Vleck for criticizing the manuscript.
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The simplest nuclear Hamiltonian satisfying all present
requirements includes a Majorana-Heisenberg interaction

f (1—g}P+gPQ I V(r) between unlike particles and an
attractive singlet interaction between like particles which
is equal to that for unlike particles. The experimental
mass defects of H» and H' together with the cross section
o for slow neutron-proton scattering will determine the
range b and depth B of the triplet wel) and the proportion

g of Heisenberg force (we use throughout the potential
Be~"I ). An exact analytic expression relating ~, b, 8 and g
is derived for this potential and g is found to be very in-

sensitive to o. An exact solution of H» gives the relation
between B and b. The final relation which fixes the
parameters is furnished by a Ritz-Hylleraas variational
treatment of Hs with the above Hamiltonian and the wave
function:

/=2 &ai(ass —aP»}pi+6 &(ai{aaPs+asP») —2Pia»as)4»

where pi and p» each represents an exponential times a
power series in the interparticle distances of proper
symmetry (p» is brought in by the Heisenberg term; the
Breit-Feenberg operator is used for the small triplet like-
particle interaction). The convergence of energies ob-
tained from successive improvements in P is rapid and the
eigenvalue may be closely estimated. After a relativistic
correction is made we obtain: b = 1.73)(10 's cm;
8=242 esc» and g=0.215. The binding energy of He' is
obtained by the same method and the O' —He' difference
is found to be 1.48 mc», agreeing well with experiment.
The proton-proton scattering depth is checked to within
1 percent. When applied to He', our potential gives approxi-
mately 20 percent too much binding energy. Parallel
calculations with the Gaussian and Morse curves lead to
essentially the same result. No reasonable modification of
the experimental data can explain more than a small
fraction of the discrepancy.

*The contents of this paper form part of a thesis sub-
mitted by William Rarita to the Faculty of Pure Science

at Columbia University in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.
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THE NUCLEAR HAMILTONIAN

N OWLEDGE of the nature and magnitude
of nuclear forces has undergone rapid de-

velopment within the past few years. Recent
articles by Feenberg and Knipp, ' Bethe and
Bacher' and Feenberg and Share' have extended
our conception of the nuc1ear Hamiltonian to
make it consistent with all the known facts de-
rived from two particle scattering experiments
and the binding energies of the hydrogen and
helium isotopes. These calculations were of an
approximate character, as was justified by the
novelty and unreliability of some of the experi-
mental results, and the tentative stage of the
theory. However, the agreement between the
calculations and experiment was well within the
uncertainty of the former. Since a fairly definite
formulation of the nuclear Hamiltonian has been
arrived at (with the exception that the exact
analytic character of the potential functions is
not known, but only their general form), the
question arises whether the experimenta1 data
are now sufficiently accurate to justify a more
refined theoretical treatment of these problems.
An affirmative answer is given for two reasons:
(1) By curiously fortunate circumstances both
magnitude and range of the nuclear forces are
very insensitive to uncertainties in the experi-
mental data to be used, (2) there exist just
enough problems that can be treated in an exact
or nearly exact fashion to determine all the
essential constants that appear in the Hamil-
tonian and to verify most of the fundamental
assumptions. Taking a definite form for the nu-
'clear Hamiltonian, we have carried out this pro-
gram and determined the constants in such a way
that the probable error arising from both experi-
mental and theoretical uncertainties is of the
order of one percent.

The spin-dependence and saturation properties
of the neutron-proton forces have been taken as
evidence for the mixed Majorana-Heisenberg
type of interaction. The existence of an interac-
tion between like particles in the singlet state is
established by the experiments on proton-proton
scattering4 and by the failure of neutron-proton

' Feenberg and Knipp, Phys, Rev. 48, 906 (1935).
'Bethe and Bacher, Rev. Mod. Phys. 8, 82 (1936).
3 Feenberg and &hare, Phys. Rev. 50, 253 (1936).
4 Breit, Condon and Present, Phys. Rev. 50, 825 (1936).

forces alone to account for the binding energies of
light nuclei. It is consistent with all the experi-
mental evidence to suppose that the non-Coulomb
proton-proton forces are identical with the
neutron-neutron forces. Breit, Condon and Pres-
ent have shown that the singlet interaction be-
tween two protons, as determined from the
experiments of Tuve, Heydenburg and Hafstad, '
agrees to within one percent with the singlet
interaction between neutron and proton as de-
termined from the experiments of Fermi and
Amaldi, ~ if the Coulomb force is taken to act at
all distances. This reduces the number of arbi-
trary constants in the nuclear Hamiltonian to
four: the radius of interaction and singlet state
depth of the potential well for all pairs of par-
ticles, the triplet state depth for neutron-proton
interaction and the triplet depth for like-particle
interaction. Of these constants, only the first
three enter effectively into any of the problems
under consideration. ' The triplet depth for like-
particle interaction has a small effect on the
three and four body calculations which will be
discussed later. Two possible forms for this inter-
action have been proposed, respectively, by Uan
Uleck~ and by Breit and Feenberg. "An elegant
formulation of the nuclear Hamiltonian which is
consistent with the facts mentioned above, has
been given by Breit and Feenberg. They include
the possibility that an ordinary force and a spin
exchange force, both small in comparison with

unity, may appear in the Hamiltonian. There
appears to be oo necessity for introducing these
modifications at present and in any case they
would give rise only to negligible third-order
effects in our calculations. "

' Present, Phys. Rev. 50, 635 (1936).
'Tuve, Heydenburg and Hafstad, Phys. Rev. 50, . 806

(1936).
~ Amaldi and Fermi, Phys. Rev. 50, 899 (1936).See this

paper for complete references to the Italian journals.
'The triplet like-particle interaction enters only into

the partial waves of odd angular momentum l in the proton-
proton scattering, but for the experimental range of ener-
gies only the l=0 wave is distorted. The ground states of
H', He' and He4 are all singlet states in the like-particle
interaction, if second-order mixing effects due to the Heisen-
berg operator are neglected.' Van Vleck, Phys. Rev. 48, 367 (1935).' Breit and Feenberg, Phys. Rev. 50, 850 (1936).

"For the 'S and 'S states of H', the operator P reduces
to unity, whereas in H' and He4 Majorana and ordinary
forces give results differing only slightly (because of in-
complete saturation of the forces and near symmetry of
the Hamiltonian). It is thus a good approximation to
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We write the nuclear Hamiltonian in the sim-

plified Breit-Feenberg form using nuclear units
(mc' for energy, k(DID):c—'=8.97)&10 "cm for

length):

+ Z (1)
ip&2'y fi@j„

I';; is a permutation operator exchanging the
space coordinates of particles f and j; Q;; ex-

changes spin coordinates; g is an arbitrary
parameter; J(r) is .a potential function of the
familiar "well" type; and f(: is the constant
(hc) 'e'(M/I) '* =0.313. The first summation
gives the kinetic energy of all particles; the
second summation, taken over all pairs of par-
ticles, represents the specific nuclear forces; the
last summation, taken over all pairs of protons,

'

gives the Coulomb energy. Throughout the fol-

lowing, we assume that J(r) = Be '""—Previou. s
calculations, together with one to be mentioned
subsequently, show that substantially equivalent
results are to be expected from the potential
Ae ("~ )'. It is well known from the work of
Massey and Mohr, " Dolch, " and Morse, Fisk,
Schiff and Shockley'4 that the properties of the
light nuclei are very insensitive to the exact
analytic character of the potential.

We propose to determine the parameters b, 8
and g from exact treatments of the deuteron and
of the scattering of slow neutrons in hydrogen,
and by a precise variational treatment of H'.
Verification of fundamental assumptions will be
obtained by applying the potentials so deter-
mined in order to calculate the proton-proton
scattering and the Coulomb energy of He'.
Finally a crucial test is provided by the alpha-
particle.

replace the ordinary force by a Majorana force and the spin
exchange force by a Heisenberg force. More precisely, the
near symmetry of the zero-order wave functions for H'
and He4 leads to the result that both spin exchange and
ordinary forces can produce separate effects only in the
third-order approximation of the perturbation theory
(cf. reference 10).

"Massey and Mohr, Proc. Roy. Soc. A152, 693 (1935).
"Dolch, Zeits. f. Physik 100, 401 (1936).
' Morse, Fisk and Schiff, Phys. Rev. SO, 748 (1936);

Fisk, Schi6 and Shockley, Phys. Rev. 50, 1090 (1936).

NEUTRON-PROTON SCATTERING

The known binding energy of the deuteron
(4.35%0.10 mc')" determines the triplet neutron-
proton depth B in terms of the range b of the
forces. For the exponential potential Be '"~~ the
relations are: Jq[b(B)'*]=0, X2= —b'E, 8= total
energy of H' in ground state. Details may be
found elsewhere. '

The relation between b and the singlet state
depth B'= (1—2g)B may be obtained from the
scattering of either slow neutrons or fast protons
in hydrogen. We choose the former, for which a
simple exact relation may be found in the case of
the exponential potential. The experiments of
Fermi and Amaldi' have shown that the cross-

section for scattering of slow nontkermal neutrons
on protons is about 13X10 ' cm', corresponding
to a mean free path in paraAin of 1 cm. They
have also shown that the large scattering is due
to a positive logarithmic derivative of the wave
function at the boundary of the well, i.e. , that no
stable '5 level exists.

The Schrodinger equation for the relative
motion

(d'/dr'+E+ Ve '""In(r) =0

is transformed into Bessel's equation by the
substitution y = b( V) ~e 'I~. For a positive incident
energy 8, the general solution is given by

A,t infinity the solution is normalized to a sine
wave of unit amplitude:

lim Ic&J,,(y)+c&J;„(y)I =sin (kr+bo).

Imposing the two boundary conditions and allow-
ing 8 to approach zero (very slow neutrons), one
obtains the relation

1 w No[b(V)l] b(U)'
—=b- —log
n 2 Jp[b( V) '] 2

(2)

"This value was communicated to us by Professor
Bethe at the Ann Arbor summer session. Cf. Feather,
Nature 136, 467 (1935).

where P = bk = b(B)&. The boundary condition at
r= 0 requires that

c&J;„[b(V)'*]+c2J;,[b(U)'] =0.
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where n=k cot 60, C=0.5772 (the Euler con-
stant), and No is the Bessel function of second
kind and of order 0 in the notation of Jahnke-
Emde. n is approximately equal to the log-
arithmic derivative of the wave function at the
boundary of the well and the sign of o. is positive
if U gives rise to a "virtual level" and negative if
V produces a stable level. "

It is interesting to compare the formula (2)
with the perturbation formula of reference 4 in
order to test the accuracy of the latter. '~ The
perturbation formula gives in this case:

V—Vo=—
ou'(~ )

j;"u'(r)e '"~'dr

2cL 1
(3)

b y '(b V*-:)+Ji2(b V*-'*)

4m 4m. 4~
fr= —sin' bo ———

8+m' n'

The complete cross section, averaged over the
two possible orientations of spin, is

0' = ir (1/n, '+3/nP),
TABLE I.

(4)

TYPE QF
TERM

NEUTRON-PROTON
POTENTIAL

NEUTRON-NEU-
TRON POTFNTIAL

(e ~e)
(e ~ @2)
(@ ~l@)

(1 —g/2) LJ(r12)P12+J(r») PI31 (1—2g) J(r»)
(1—3g/2)I J(r )P +J(r;,)P j —J(r2)*
(g43/2) I J(~12)P12 J(~18)P13j

+The triplet neutron-neutron interaction given here is that which
follows from the Breit-Feenberg form (1) of the nuclear Hamiltonian.
The Van Vleck operator would give —((1—2g)/3) J(r23) in place of—J(r23), i.e., about one-fifth as much repulsion. The arbitrariness
involved in this choice is not important since in the first place the entire
mixing effect is small and in the second place the interaction is only large
at close distances where the wave function is small due to orbital anti-
symmetry.

"The symbol n differs from that used in Bethe and
Bacher. In their notation n—= —u'(c)/u(c) "™—k cot B0 but
in our notation n=—k cot 80=u'(a)/N(a) where a is the
maximum range of the forces.

"Reference 4, formulas (10.3), no. 2.

where Vo is the depth that places a stationary
level at A=o and V* is taken in first approxima-
tion as Uo and in second approximation as U. For
constants of the proper order of magnitude for
the virtual 'S state, formulas (2) and (3) agree
within 3 percent in first and —,

' percent in second
approximation.

For very slow neutrons (8= 0, I =0), the cross
section for elastic scattering is given by:

where n, and n& are to be obtained from formula
(2) with V=B' (singlet) and V=B (triplet), re-
spectively. " We use formula (2) to obtain n&

from B and b, then formula (4) to obtain n„
finally formula (2) gives B'= (1—2g)B in terms of
b. 8' is determined with great accuracy by this
means, because the scattering is very sensitive to
the depth of the well. A ten percent variation in
o will produce a variation in 8' or g of less than
one percent.

THEQRY oF THE THREE-80DY PRoBLEM

It has been seen that two of the three param-
eters occurring in the nuclear Hamiltonian can
be fixed by exact relations. The three-body prob-
lem furnishes the third relation and the desired
accuracy may be attained by the use of the Ritz-
Hylleraas method. One of the writers' has applied
this method to the H' nucleus, using a Hamil-
tonian with ordinary forces between unlike par-
ticles but with no forces between like particles.
Such a model was found to be incompatible with
the experimental facts. In the present paper we
generalize the previous calculation to take ac-
count of the nuclear Hamiltonian discussed in
section one. The generalization is threefold: (1)
Like-particle forces are included, (2) The matrix
elements for unlike particle forces are compli-
cated by the presence of the Majorana operator,
(3) The Heisenberg operator causes "mixing
effects. "

The Majorana-Heisenberg operator (1 g)P-
+gPQ reduces in first approximation to the eifec-
tive Majorana operator (1 g/2)P. The er—ror in-
troduced by neglecting the second order mixing
effect has been estimated by Breit and Feenberg"
and also by one of the writers. "The. latter esti-
mate of 0.5 mc' shows that the correction is by no
means negligible. The effect can be treated in a
rigorous manner by including in the wave func-
tion a term of the "borrowed" symmetry. The
possible configurations of the three-particle sys-
tem include one quartet and two doublet states,
and it is readily seen tha, t the operator Q connects

I It is worthy of note that a small error would be intro-
duced by using 3/e& in place of 3/nP (e& =4.35 mc'). For our
final choice of constants 3/e~ ——0.69 and 3/nP=1. 19, and
the error in the derived value of n,2 is 11 percent. However,
this would cause an error of only 1 percent in 8'.

"Present, Phys. Rev. 50, 870 (1936).
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the ground state (doublet with antiparallel neu-
tron spins) only with the other doublet having
parallel neutron spins. In terms of the proper spin
functions for a total spin angular momentum of -',

in the positive s direction, the complete wave
function P may be written as (the subscript 1

refers to the proton)

0=2 *~1(~2P3—~3P2)4(+
6 *((21((22P3+423P2) 2P1422(23)@2,

where p~ is a function to be specified later which
is symmetrical in the space coordinates of the
two neutrons, and &2 is similarly antisymmetri-
cal. The only formal complication arising from
the presence of @2 occurs in the potential energy
terms which are spin-dependent. The results
obtained from summing over spins, are given in
Table I.

The nuclear Hamiltonian (1) for H' is written
in variational form in terms of the elliptic co-
ordinates s=r~2+r~3, t=r~2 —r~3, p=r23. The pro-
cedure and the notation are the same as in the
previous paper by one of us. ' The. functions p&

and p2 are each taken to be an exponential in s
multiplied by a power series in s, t, p of proper
symmetry.

y1 —e—21(8/ & p e( & „Sntqp
y, r, even q

y —e
—33(8/2& p e(2& Sut2p

p, r3odd q

For convenience we take ki ——k2 ——k and adjust k

to make the most important terms of p~ as good
as possible. The summations are to be extended
over aj 1 positive values of the indices, subject to
the above restrictions, and as many terms taken
as result in an appreciable lowering of the total
energy. It is convenient to make the transforma-
tions s'=ks, t'=kt, p'=kp (and drop the primes
for the remainder of this section). Then the
energy matrix element between any terms nz and
n in the double series is given by:

H„„=k (2P„„+Q„„)+1.(k).
The kinetic energy integrals P, Q and the
unity matrix element N „are different from zero
only if m and n are in the same series and in this
case they are given by the formulas of reference 5.
The matrix elements of potential energy I. „are
obtained from the following formulas (Latin sub-
scripts refer to terms in e&,Greeksubscripts to q 2).

I.„„=—(1 g/2)Bl +—(1 —2g) Bl—„„*,
I.„„=—(1 3g/2) Bl„„+—+Bl„„*,
I-= —((gv'3)/2)Bl-. —,

where
CO e &P

l;,~= ds dp ~ dtp(s' t )e "s"ft2'p—"'Ie ~'+3&P &8 s(' "P,Ie '&'s»'t3(p"(-
0 0 ' 0

CO 8 p

l;;*= ds
~

dp ~ dtp(s' t')e 's&'+» t2'—+2(p"+"(e '(»'it=1/bk.
0 0 ~0

It is readily shown that I;;~= l;;~. Using the relations

s (s+t)/2+ p

P12 t - = (s+t)/2 —p

p (s —t)/2

we may evaluate the integrals l, ;~ in terms of

s (s t)/2+ p—
P t = —(s t)/2+ p-

.p. . (s+t)/2

and /;;* in terms of

(12) CO 8 Pacb
dse (s+"4&'s~ l dpe 3"p' dte+(s+'"&'t'

(u) ~0

CO y8 P

K*~cg—— dse —'s d pe
—'» p' dtt'

0 0 0

(6)

Details of evaluation of the K's are reserved for the appendix, Using the optimum value of P, tables
of X's are calculated for a wide range of the indices. Variation Of the constants c„„determines the
lowest energy obtainable from a given combination of the terms in (5) (Ritz-Hylleraas method).
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TABLE II. Coegcients of the II' and IIe' wave functions
normahsed to unity.

Terms

j 000j
001j
002j
003j
100j
010j

H~(B = —15.880)

0.450 422—0.142 982
0.013 9300—0.000 49357
0.012 1361—0.006 0689

He'(B = —14.43 1)

0.433 685—0.135 8180
0.012 9308—0.000 45451
0.012 9370—0.006 29724

The previous work by Feenberg and Knipp
and by Bethe and Bacher indicated a radius for
the Gaussian potential of 2.25 && 10 "cm. (0.2508
nuclear unit). Our first calculation, made at this
radius (b=0.2508), gave excellent convergence
with six terms in P& to an energy of —12.32 mc'.
Clearly a smaller b was required. Repeating this
calculation for b=0.200, we obtained —15.33
from an eight term function. Before attempting
an accurate estimation of b, it was necessary to
obtain an approximate idea of the corrections due
to the relativistic and mixing effects. We have
estimated the former according to the method of

DETAILS OF H' CALCULATIONS

The range b of the forces must be found which
will give the observed binding energy of H'
(16.55&0.25 mc'). '5 In preliminary calculations
to determine this range approximately we have
neglected the second-order mixing effects and
also the relativistic correction. Suitable values
for k and P must be selected at the outset and this
is done by computing the energy. given by the
single (and most important) term y& ——e "&'"'.

For a radius b=0.25 nuclear unit the best values are
k =6.5 P =0.61. At b =0.20 the lowest energy of —5.39 mcus

is obtained for k = 7.4; with P =0.61 we would have
k=8.2 and 8= —5.13. Since the optimum k increases as
b decreases it is satisfactory to use the same P for several
nearby radii. If P =0.61 is used then the energy for b =0.20
misses its best value by only 0.26 mc' and it is clear that
other terms in the wave function will automatically make
up for this deficiency. Since the optimum value of k under-
goes modification as successive terms in p are added, the
use of a fixed P is probably within the uncertainty of this
method of estimating k. As has been pointed out previously,
the use of an unsuitable k or P will not affect the final

energy to be obtained from this type of calculation, but
may result in a poor convergence of the energy contribu-
tions of successive terms. The advantage of a fixed P is
that only one set of potential energy integrals need be
calculated. The value of P =0.61 was chosen for the initial
computation at b=0.2508 and used for subsequent calcu-
lations at b =0.200 and 0.193~

Feenberg, " for a range of the forces approxi-
mately determined from the preceding calcula-
tions. A brief calculation, mentioned in the ap-
pendix, gives —0.47 mc for the relativistic cor-
rection to the kinetic energy. According to one
of the writers" the mixing effect contributes
about —0.5 inc' to the energy. Then the proper
range of the forces, determined from a calculation
with @1 alone, should lead to an energy. of —15.6
mc' approximately. It was found that for b =0.193
the &1 series gave energies converging to —15.7.

The final calculation with the complete wave
function P including g2, was made at b=0 193.
Let us designate by [abc] a single term s"t,"p" in
the &1 or p2 series. Then the most important
terms in p~ are the following [000], [001],[002],
[003], [100] which give in combination an
energy of —15.56. When combined with this
basic function, the terms [200], [300]and [004]
contribute, respectively, 0.05, 0.06, and 0.02 mc'.
All other terms examined including [400], [020],
[101]contribute less than 0.01 mc', from which
it may be concluded that the lowest energy ob-
tainable from a function with the symmetry of
&1 may be less than —15.70 by only a few
hundredths of 1 @ac'. This follows from the satis-
factory convergence of energy contributions and
the completeness of the function system. '" The
energy is still further decreased by the mixing
effect when terms in @2 are included. The terms
investigated were [010],[011],[110]and [012],
of which the first two lowered the energy by 0.43
mc' when inserted with the eight most important
terms of &1 and the last two were altogether
negligible. Then the ground state eigenvalue for
the nuclear Hamiltonian (1) with b=0.193 may
be said to occur at —.16.15 mc', the difference
between this value and the experimental one of
—16.55+0.25 mc' being accounted for by the
relativistic correction.

This determination of the nuclear force con-
stants yields the following results: b=0.193 nu-

clear unit (about 1.73&(10—"cm), 8=241.8 mc'

(triplet, neutron-proton depth), B' = 137.6 mc'

"Feenberg, Phys. Rev. 50, 674 (1936).'"The completeness of the Hylleraas function system
for the general three-body problem and the convergence
of the successive approximations to the energy upon the
lowest characteristic value of the differential equation
have been proven by H. M. James and A. S. Coolidge in a
paper to be published soon.
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(singlet depth)" and g=0.215. The reliability of
these results in the light of possible modifications
of the experimental data will now be discussed.
The cross section for scattering of slow non-
thermal neutrons on protons seems to have been
determined within a probable error of 10 per-
cent. ' The uncertainty in B' is then slightly less
than 1 percent and this will produce an uncer-
tainty in the calculated H' energy of 0.15 mc'.
The H' binding energy appears to be subject to
an uncertainty of 3 percent and the H' binding
energy, calculated from the deuteron-deuteron
transmutation, has a corresponding uncertainty
of 1.5 percent. Now an increase of e in the meas-
ured H' binding energy would cause an increase
of 2~ in the experimental H' binding energy and
an increase of approximately 2e in the calculated
value. Hence no reasonable modification of the
value 4.35 mc' will affect the values of b and B'
given above and B will 'vary by 0.6 percent for a
3 percent modification. In the neighborhood of
b =0.193 the H' binding energy increases by
roughly 0.10 mc' for a decrease in b of 0.001
nuclear unit.

The wave function for H' is readily calculated
from the secular deter'minant evaluated at the
energy for which it vanishes. "Because of theo-
retical uncertainties in the nuclear model, there
would be no point to evaluating the coefficients

c„,„ for the best 10 term function, which gives an
energy of —16.12 mc'. However, there exists a
simple six-term combination giving only 1.5 per-
cent less binding energy. Coefficients for this
function, normalized in the coordinates s', t', p'

may be found in Table II."
FURTHER APPLICATIONS

Having completed the calculations for H', it
was a relatively simple matter to work out the
binding energy of He'. This was done directly by
computing the matrix elements of the Coulomb
energy, adding them to the H' matrix elements,

"For these values of b and B' the "virtual level" comes
at 128 kv.

"Cf.James and Coolidge, J. Chem. Phys. 1, 825 {1933)."It is worthy of note that the coefficients of the succes-
sive powers of p' alternate in sign and diminish rapidly
in size. They diminish much more rapidly than would be
expected from the exponential function e p'" or from any
simple exponential. From this we may infer that the con-
vergence would not have been much improved by using a
symmetrical exponential e k~"+» in y (Eqs. 5).

and solving the secular equations. The He'
energy matrix element II „includes the Coulomb
term C „where

H„=k'(P +Q )+kC +L (k),
C = ~LJ(200) —J(020)j.

Here ~ is the constant of Eq. (1) and J(abc) is the
integral defined in reference 5 ~ The matrix ele-
ments C „vanish between m and I of different
symmetry. Those ten terms were included in the
He' wave function which had been found most
important for H'. Their relative weight was the
same as before and the convergence of energies
was slightly better. Coefficients for the same
six-term wave function used with H' are to be
found in Table II. The ten term function for He'
gives 14.645 mc' for the binding energy as com-
pared with 16.124 mc' for H' with the same ten
terms (with slightly different coefficients of
course). The difference of 1.48 mc' represents the
Coulomb energy of He' with great accuracy;
since the corrections for convergence, relativistic
effect, inaccuracy in experimental data, and un-
certainty in the analytic character of the poten-
tial would all act as small perturbations affecting
the two problems in nearly equal fashion. This
value for the Coulomb energy is then somewhat
better than the theory behind it. The difference
between our value and that obtained by Share'4
(1.37 mc') is principally due to the use of quite
different radii of interaction for the forces. For
the Gaussian analog to our radius (about 0.217
n. u. , see below), Share's method would give 1.45
mc'. As first pointed out by Goldsmith and fully
discussed in Bethe and Bacher, the difference in
binding energies of H' and He' is directly measur-
able as the difference in reaction energies of the
two deuteron-deuteron transmutations. Bethe
and Bacher give the value 1.49~0.27 mc'; a later
estimate by Bethe, quoted by Share is 1.58~0.18
mc'. It is seen that our calculated value lies well
within the range of error of both estimates;
hence we may conclude that the fundamental
assumption of the equality of neutron-neutron
and non-Coulomb proton-proton forces is verified
quantitatively by experiment.

The other explicit assumption used in this work
is that the singlet neutron-proton and proton-

'4 Share, Phys. Rev. SO, 488 (1936).
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proton interactions are identical. Confirmation of
this assumption is provided by using the proton-
proton scattering data of Tuve, Heydenburg and
Hafstad to determine the potential depth cor-
responding to the radius of b =0.193 for the simple
exponential function. In accordance with the
methods described in reference 4, this depth was
found to be 135.8 mc' as compared with the value
of 137.6 mc' determined from the neutron-proton
scattering. Both figures have a probable error of 1

percent, arising from the uncertainties in their
experimental determination. As pointed out in

reference 4, the excellence of the agreement is
seriously impaired if the Coulomb force is taken
to act only outside the well. This result is con-
sistent with the agreement of our calculated
Coulomb energy for He' with experiment, since it
was there assumed that the Coulomb potential
extended all the way to the origin.

THE ALPHA-PARTICLE

The triplet neutron-proton. potential, deter-
mined by our calculation to be Be '""(B=242
mc', b= 0.193 n.u.), appears to diRer considerably
from 2 e & "~'&' (2 = 71.5 rrlc2, a = 0.250 n.u.), which
is the final potential obtained by Feenberg and
Share in agreement with Bethe and Bacher who
use the same method. Some calculations men-
tioned in reference 5 indicated a correspondence
of the simple and Gaussian exponentials for
a =b. The large difference in depths is then partly
to be explained by the steeper decline of the
simple exponential and partly by a genuine dis-

crepancy in the radii. "Feenberg and Share have
used nearly the same values of the experimental
data as ourselves, except for the 'S level of the
deuteron which they assume to lie at E=O. They
have made their calculations on H' and He4 with
the equivalent two-body method, which is known
to give an upper limit to the binding energy and
for which they have computed a first-order cor-
rection. Both of these facts would tend to explain
their greater value for the range of the forces;
however, neither is the principal reason for the

"An experimental determination of the range of nuclear
forces can be made by measuring the proton-proton scatter-
ing at the lowest energy for which an anomalous scattering
is observable (about 100—200 kv) and again at the highest
energy. available. The energy dependence of the phase shift
will determine the proper radius of interaction of the forces.

discrepancy, which is due essentially to the de-
termination of the forces from two different sets
of problems. Whereas they have used H'('S),
H'('5), H' and He4 to establish the range of the
forces, the triplet neutron-proton depth and
the singlet neutron-proton and neutron-neutron
depths, we have used H'('5), H'('5) and H' ex-
plicitly and the proton-proton scattering im-

plicitly (through equality of the singlet inter-
actions) in our determination. Therefore the
essentially different results appear to imply in-

compatibility of the three binding energies and
two scattering cross sections with the nuclear
Hamiltonian in its present form. We consider this
possibility further.

The like-particle depth calculated by Feenberg
and Share is 41 mc' which is to be compared with
the value of approximately 36.6 mc' determined
from the proton-proton scattering for the same
radius (a=0.250) of the Gaussian potential. This
comparison has been taken to indicate satis-
factory agreement and general confirmation of
the nuclear model. As a matter of fact 41 mc' lies
far outside the range of error of the scattering
depth which is determined to within 1 percent by
the present experimental data. Considering the
approximations made in the treatments of H' and
He4, the discrepancy may be justified.

In order to determine whether the theory
agrees with experiment within the limits of error
of experiment, we have applied the potential de-
termined in the preceding sections to a calcula-
tion of the binding energy of the alpha-particle.
A simple variational method gives significant
results. If the wave function is assumed as

x =X exp [—(v/2) (r, m +rf3 +r$4 +r23'

+ra4'+ra4') ]
then the variational energy to be minimized with
respect to v is given by

E=9v —(4B*+2B')F(a), .

(7)
F(o)= I[2a'+1][1—y(a)]e."—2a/m~I,

where a = 1/(b(2v) &), p(a) denotes the error func-
tion integral (tabulated in Peirce) and B~ and B'
represent the effective neutron-proton depth
B(1—g/2) and the singlet like-particle depth
B(1—2g), respectively. Minimization of E gives
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an energy for He' of —56.5 mc'. The exact energy
must certainly lie below this. The experimental
value is —55.2 mc' which is subject to three cor-
rections before comparison with the calculated
value. The Coulomb energy of 1.7 mc' approxi-
mately, the mixing effect correction of the order
of —0.5 mc', and the relativistic correction of the
order of —1.5 mc' will produce a mutual cancella-
tion, leaving —55 mc' as the value to be compared
with theory. It is seen that the simple wave
function x already gives too much binding.

The wave function may be improved by taking
a linear combination of functions g with different
values of the parameter v."The matrix elements
are:

H;, = 9v, —(4B*+2B')F(o;), E;,= 1,

IX,;= 18v, v;X;;/( v;+ v;) —(4B*+2B')X;;F(o;;),

E,;=16V2( vv;) /(v;+v;) ~, 0;;=1/(b(v, +v,)l).

With three terms included the energy is low-
ered to —62.2 mc'. In order to estimate the
approximate location of the eigenvalue, we apply
Feenberg's equivalent two-body method to this
problem (see appendix for' application of two-
body method to H' and He4 with an arbitrary
potential function). The resulting energy is
—71.7 mc' which may be taken as a lower bound.
Now Feenberg and Share have shown that if the
potential is a function of only even powers of the
distance, then a correction can be computed to
the two-body method which is approximately
twice as large for He4 as for O'. It is reasonable to
suppose that nearly the same relation will hold
for our potential as well, since its general'form
can be approximated by even power functions.
The two-body method gives —18.2 mc' for H'
which is to be compared with —15.7 mc', the
value obtained previously by the Hylleraas
method ignoring mixing effects. Hence the cor-
rected He4 will have an energy of —66.7 mc'. If
we take this value as the true theoretical energy
for He4 with out potential, the discrepancy is
11.7 mc' or 20 percent of the experimental value.
No sensible modification of the experimental data
will su%ce. to explain so large a difference, since
an increase in the range b of 0.001 n.u. causes a
decrease in the He4 binding energy of only 0.25

"This was suggested to us by Dr. Feenberg.

mc' and the uncertainty in the other problems
will not justify a much greater increase in b. To
explain the binding energy of He4, it is clear that
we should have to go to nearly as wide a radius as
that found by Feenberg and Share.

Does this mean that the simple exponential
well is not an acceptable analytic form for the
nuclear potentials? First it is well to see if the
same discrepancies would be encountered with
other analytic forms. This will be.done in an ap-
proximate manner for the Gaussian and Morse
potentials. We proceed to fit the experimental
data in the same order as previously done with
the simple exponential function, using the cor-
rected equivalent two-body method for H' and
He4. Neutron-proton scattering, the 'S level of
H' and the binding energy of H' determine the
constants for the Gaussian potential Ae
with the following values 2' a =0.217 n.u.
(1.945&(10 "cm), A = 88.2 mc' (triplet neutron-
proton depth), A' =49.4 mc' (singlet depth),
g=0.220. When these potentials are applied to
He4, the variational method with the function y
gives —5].5 mc' and the corrected equivalent
method —63.2 mc'. The discrepancy is 15 percent
of the experimental value.

The Morse potential V(r) = 2Ce '—&" '»'—
+Ce " '1)~', discussed in reference 14, was taken
to have an inner repulsive region defined by
c& ——c/2. It might be expected that the presence
of the repulsive region would tend to minimize
the discrepancy, since this region would be of
more importance for He' than for H' because of
the narrower dimensions of the former nucleus.
The neutron-proton scattering and the binding
of H' are treated by exact relations given in
reference 14; the equivalent two-body method
(see appendix) is used for H' with a correction
intermediate between those found for Be '""and
Ae "''. This results in the following values for
the constants: c=0.150 n.u. , c~ ——0.075 n.u. ,

C=100.8 mc' (triplet neutron-proton), C'=56.7
mc' (singlet) and g=0.218. The inner repulsive
region for the triplet interaction rises to a height
of +197 mc'. A treatment of He4 with these po-
tentials by the corrected equivalent method gives

'7 Since the numerical integrations needed in the deriva-
tion of A' from the Fermi-Amaldi data are somewhat tedious,
we observe that the following relation holds approximately
for values of a investigated: a'A'=2. 33.
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about —65 mc', representing an excess binding of
18 percent.

Although the calculations for the Gaussian and
Morse potentials involve an uncertain approxi-
mation in the treatment of H', nevertheless the
results are qualitatively significant and indicate
that no simple potential well is likely to explain
the discrepancy. A potential function falling off
more steeply than the simple exponential is
almost certainly excluded; on the other hand a
function with a large inner repulsive region, giv-
ing rise to a predominantly repulsive proton-
proton interaction, is excluded by the proton-
proton scattering experiments. Although very
shallow long-range forces would have an inap-
preciable effect on the binding, they would lead
to phase shifts of higher order in the proton-
proton scattering which might destroy the agree-
ment of the singlet interactions and invalidate
the calculations of this paper. It is also possible,
without contradicting the proton-proton scatter-
ing experiments, that an additional force of
intermediate range ((3e'/mc') or a momentum-
dependence unobservable for low energies ((1
Mev) may occur to explain the discrepancy. An-

other possibility is that the singlet and triplet
interactions have different ranges; this would

imply that g is a simple function of the distance. "
Also the binding energy of He4 may be reduced
relative to that of H' by the introduction of
repulsive many-body forces such as those which
would occur in the proposed theory of Gamow
and Teller."

As previously mentioned the introduction of
small spin exchange and ordinary forces would
have only a third-order effect on these calcula-
tions and as long as the operator is predominantly
Majorana the form of interaction used by us is
justified. The success of Feenberg and Wigner, "
Wigner, " and Rose and Bethe " in explaining
properties of intermediate nuclei, using the
Majorana type of interaction, is good evidence
for the essential correctness of the latter. Direct

"The potential function would have the form:
B+B'e (~~)» B—B'e (~~)r

P+ -- PQ e ~".
2 2

"Gamow and Teller, Phys. Rev. 51, 289 (1937). This
theory appears to be inconsistent with the observed proton-
proton scattering at small angles.

"Feenberg and signer, Phys. Rev. 51, 95 (1937).
"signer, Phys. Rev. 51, 106 (1937).
"Rose and Bethe, Phys. Rev. 51, 205 (1937).

but somewhat uncertain evidence for a pre-
dominantly Majorana type of interaction be-
tween like particles is afforded by the proton-
proton scattering experiments which seem to
require for their interpretation at small angles a
negative phase shift in the p wave and a conse-
quent repulsive triplet interaction. 4 Finally it is
possible that either or both of the fundamental
assumptions that were verified in these calcula-
tions (cf. Section 5) may be partly incorrect. The
proton-proton forces may not be identical with
the neutron-neutron forces, as was assumed to be
true in the H' calculation and verified for He'.
Also the agreement between the singlet proton-
proton and proton-neutron potentials may be a
coincidence; in reality they may have slightly
different ranges and depths.

We conclude that it is possible to fit accurately
only five out of the six experimental data by
means of three constants and two assumptions,
Since it is possible to fit all six with a fair degree
of approximation, " the nuclear model, though
incorrect in its present form, may still be of great
usefulness. From this point of views our tabula-
tion of H' and He' wave functions is to be
justified.

It is a pleasant obligation to acknowledge the
hospitality of the physics department at Ann
Arbor, where this work was begun last summer.

APPENDIx I

Evaluation of the K integrals
00 s P

Let X~. f,
" I' "= dse "'s' dpe»p' dte "'t.

0 0 0

Then

X ... ('2)=X, .b"" "(X=p+3/4, p, =i/2, =p+1/4),
X~ ., f,

&" =E:~ . f, " " () =p+3/4, p= 1/2, v= —(p+1/4)),J... *=E....f,
" f' ' (X=1, IM, =2P, =0).

The integrals X,, P " " may be evaluated by means of
two recursion formulas:

x, p, v Ig x+p, v+~g x p vI
1

(vahd for a=0), (1)
"For certain purposes, e.g. , approximate calculations on

intermediate and heavy nuclei, it may prove useful to have
approximate values for the range and depth of the forces.
In this case one may distribute the errors of the model more
evenly by taking a radius of interaction for the Gaussian
potential intermediate. between the value of 1.95 X10 "cm
determined by our method and the value of 2.25X10 '3

obtained by Feenberg and Share. A suitable seC of con--
stants for Ae (" "would be: a=2.1)&10» cm, A(triplet)=78.3 mc~, A' (singlet) =42.5 mc'.
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Xpv b~ Xpv g Xp+vl
v

Xpv g )p, g Xp+vl
1

v

where

(2)

~=—IS).+/ +~+jR; 1, /,
/

I (valid forj =0), (3)

z, , , ~=-Is,.—s, +~I,
1

p
where

n, l5 ~= dse ~'s =
7n+1

A,ppExorx II
The relativistic correction for H'

Using the method of Feenberg, 2' we find for the rela-
tivistic first-order correction to the kinetic energy of the
three-body problem:

+T= 3W/SM J f+1+1$8TlJT23~

Let p = ¹-(V/2)(r&P+r» +r» ) = /pe-( /2) (2r +(3& /2))

r=r1 —(r2+r3)/2, y=r2 —r3.

In these coordinates AT is readily evaluated to be

AT = —(45m/8M) v' = —0.00305v2.

The value of v may be determined by calculating the
variational energy of H' with the trial wave function P
and minimizing with respect to v. This gives:

a=9./2, —(»*+8')~( ), =1/Lb(3 /2)~j,

where F(o.) is the function defined in Eq. (7). The value of
v obtained by minimizing 8 is 12.4 and the relativistic
correction is —0.47 mc2. This is considerably larger than
the value —0.2 mc2 estimated by Feenberg for the Gaussian
potential, the difference being due to our use of a narrower
interaction radius for the forces.

8 /,
t'= dxe ~x& dye /&y~.

Q

The integrals R;, I, / are evaluated from the recurrence
relations:

AppENDrx III
The equivalent two-body method for an arbitrary potential

Let the potential function be represented by U(r)
=By(r, b, b1) where 8=8* (effective neutron-proton
depth} or 8=8' (singlet like-particle depth) and b is the
range of the forces and b1 any other parameter. Let the
same potential function for the equivalent two-body
problem have the constants D, d and d1. Using the Gaussian
wave function ¹

~r /' the variational energy of the two-
body problem is

3&=—p —D— e ~'q (x/p, &, d, d1)x2dx.
2

The Gaussian wave functions for H'
¹

(v/2)(r»'+r»'+r»'),

and for He', ¹

('/')(r» +"»'+r&4 +r»'+r&4 +r&4'), give the follow-

ing energy expressions:

B(O3}
9 4 oo=—v- (28*+8')— e ~'y(x/{3v/2)&, b, b1)x2dx, (2)

~k o

Z(He')
0O

=9v —(48*+28')— e 'q(x/(2v)&, b b1)x2dx. (3)
~k Q

The equivalent method energy is obtained by solving the
two-body problem exactly for the fictitious potential
D(r, d, d1), where the parameters D, d and d1 are de-
termined by identifying (1) with (2) or {3).. Thus for H'
we must have:

D =—28'+8', 3p/2 =—9v/2,

q (x/p&, d, d1}=—q (x/(3v/2) &, b, b1).

Substituting the second identity into the third and trans-
forming back to r, we obtain the correspondence relations
for H'.

D=—28*+8', y(rj(2)&, d, d1) =—q(r, b, b1).

Similarly for He'

D =—48*+28', „(r/(3}&, a, a,) =—&(r, b, b,).
As an illustration consider the relations for H' with the
Morse potential: V(r) = —28e '(r b»/b+Be '(r»/b. The
two-body constants D, d and d1 are determined by the con-
ditions D =—28~+8' and

2e2d1/de-2r/d(2) +e4d1/de —4r/d (2) — 2e2b1/be-2r/b +e4bg/be-4r/b

Hence d =b/(2), d1/8=b1/b, d1 ——b1/(2) .


