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Certain symmetry properties of the two deuteron-
deuteron reactions are developed in a rigorous manner, and
are shown to require a distribution of the reaction products
for moderate incident deuteron energies of the form
A(1+8 cos'6l) in the coordinate system in which the center
of mass is at rest. This is shown to be in qualitative agree-
ment with recent experimental data. The quantities A and
8 are evaluated approximately using a modification of

Born's method and neglecting polarization of the deuterons;
the quantitative discrepancies between theory and experi-
ment are discussed. The theoretical relative yield from a
"thick" deuterium target agrees well with the results of
several experimenters; this quantity is influenced mainly
by the Gamow factor, and is relatively independent of the
details of the theory. The theoretical absolute yield is too
large to agree with experiment.

INTRoDUcTIQN

HE calculation of the transmutation func-
tion and angular distribution of the

products of the reactions

H'+ H' —+He'+ n,

H'+H'~H'+ p

is of interest because of the recent experimental
work' available for comparison with the pre-
dictions of the theory. The computations in this
paper will be carried through using a potential
between all pairs of particles of the form' '

U(r) = J(r)L(1 g)P +gI'"7—
=~(r)& L1 —2g+2g~~ ~27, (1)

in addition to the Coulomb repulsion between
protons. We shall write all quantities in nuclear
units of energy (506,000 ev) and of length
(8 97X10 " cm). A suitable value for ro which
gives good agreement with experiment in com-
puting a number of nuclear quantities4 ' is
0.3 (2.7X10 " cm). Together with the value
4.35 (2.2 Mev) for the binding energy of the
deuteron, ' this fixes D at 71.2. A,ssuming that
there is no bound singlet state of the deuteron,
the elastic cross section 15 (12X10 ' cm ) of
protons for thermal neutrons 6xes the depth of
the singlet unlike particle interaction at 28.9;
so that g=0.3.

SYMMETRY PROPERTIES

J(r)=De 4~&« —2De ~~~« (2)
In this section we shall present in a rigorous

manner certain symmetry properties of the
* Preliminary report presented at the Cambridge meeting

of the New England section of the American Physical
Society, February 6, 1937.' Kempton, Browne and Maasdorp, Proc. Roy. Soc.
A157', 386 (1936); referred to here as KBM.' Morse, Fisk and Schiff, Phys. Rev. 50, 748 (1936).

3 Breit and Feenberg, Phys. Rev. 50, 850 (1936).

'Fisk, Schiff and Shockley, Phys. Rev. 50, 1090 and
1191 (1936).

'Breit, Condon and Present, Phys. Rev. 50, 825 (1936);
Fisk and Morse, Phys. Rev. 51, 54 (1937); Morse, Fisk and
Schiff, Phys. Rev. 51, 706 (1937).

'Feenberg and Share, Phys. Rev. 50, 253 (1936).
7 Amaldi and Fermi, Phys. Rev. 50, 899 (1936).
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problem that are important in predicting the
angular distribution of the products. All equa-
tions refer to the coordinate system in which the
center of mass is at rest (rest coordinate system).

Since the interactions areof thespin-dependent
type, the initial state of reactions (A) and (B)
describing two deuterons far apart must be an
eigenstate of the operator p~. pq in order to
remove degeneracy. Here p&

——o&++2, p2 ——03+o4,
where e~ and e2 are the spin operators of the two
particles of deuteron 1, and e3 and e4 are the
spin operators of the two particles of deuteron 2;
particles 1 and 3, and particles 2 and 4, are alike.
Since the deuterons are normally in triplet
states, the spin parts of the eigenfunctions of

p& p2 divide into singlet, triplet and quintet
states which we denote by S„S&and S„respec-
tively. We shall mean by (+——+) for ex-

ample, that spin state in which the components
of the spins of particles 1 and 4 have eigenvalues

+ ~ along some arbitrary axis, and those of par-
ticles 2 and 3 have eigenvalues —-', along the
same axis. Then

S,=(1/g3)[(++--)--;(+-+-)
—2(+ ——+)—2(—++—)

—k( —+ —+)+(——++)]
Si' = l [(+++—)+(++—+)

—(+—++)—(—+++)],
S '= (1/v2) [(++——) —(——++)],
S,'=-,'[(+———)+(—+ ——)

—(——+ —) —( ———+)],
S,'= (++++),
S,'= -', [(y+y —)+(++—+)

+(+—++)+ (—+++)],
S.'= (1/v'6) [(++——)+(+—+ —)

+ (+——+)+( —++—)
+(—+—+)+(——++)],

S.'= 5[(--+-)+(-—-+)
+(+———)+(—+ ——)]

Sa'=( ————).
The final configuration in which we are inter-

ested will consist of a three-body system and a
single particle (number 4, say) moving away
from each other. Making the reasonable assump-
tion that the three-body system (He' or H') is
formed in its normal 'S state, we can conveni-
ently divide the final spin states when the reac-
tion products are far apart into singlets and
triplets. Denoting these by R, and R&, we obtain

R. = 2[(++——) —(—++—)-(+--+)+(--++)],
Ri' =1/~&[(++ —+)—(—+++)],
«'= 2[(++——) —( —++—)

+(+——+)—(——++)],
R '=1/~2[(+ ———) —( ——+ —)].
The transition from initial to final state occurs
under the inHuence of a perturbing energy whose
most general form is

3f=A 0+800'y ' EFg+ Coo'y ' 0'3+Dpo'y ' 94

++0&2 ' &3+F0+2 ' +4+ GO&8
' ir4 (5)

where Ao, Bo, Go may be permuting functions
of the space coordinates of the various particles.
It is readily seen by direct expansion that all
matrix elements of the form RES vanish except

R,MS, = Q3/2 [A p
——,

' (Cp+ Fo)
+4(Bp+Cp Dp Fo)]-, —

R&3IISi = 1/V2[A 0
—

4 Co
(6)

+ 4 (+o+ Fo+Co —Do —Ro)],

where the R and S functions are any of those
with the same subscript given in (3) and (4).
Thus only singlet-singlet and triplet-triplet
transitions can occur.

Now the Pauli principle requires that the
wave function be antisymmetric in the inter-
change 1—&3 and in the interchange 2~4. We
therefore choose for our initial state wave func-
tion P;(1234), and our final state wave function
Pi(1234), forms that are symmetric in the
interchange of the pair (12) with the pair (34).
Then if we later make these antisymmetric in

2 and 4, say, we will have satisfied the Pauli
principle. P, always has the asymptotic form

f;(1234)—~$0(r i 2) p o(r34)

X +xi(p)Pi(cos 0')Si(1234). (7)

Here, g is the coordinate joining the centers of
mass of the two deuterons, 8' is the angle
between the initial momentum vector ko and y,
and &0 is the wave function for the (symmetric)
normal state of the deuteron. Likewise, Pf has
the asymptotic forms

fq(1234)—~go(123) QFi(r4)Pi(cos 84)Ri(1234)
TACO

(8)—~$0(134)QGi(r~)Pi(cos 02)Ri(1432).
TQ~QQ l
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Here, r4 is the coordinate joining the center of
mass of (123) with 4, r& the coordinate joining
the center of mass of (143) with 2, 04 and 8~ are
the angles between r4 and ko and between r2
and ko, respectively, and Po is the wave function
for the (symmetric) normal state of the three-
body system. In (7), the symmetry requirement
Li.e. , that P; be symmetric in the interchange of
the pair (12) with the pair (34)$ and (3) show
that S~=S~ for odd 1, and that S~ is a linear
combination of 5, and S, for even I (except for
l =0, when $0——S, ; this is because the Pauli
principle excludes a spherically symmetric quintet
state). Again in (8), the symmetry requirement
and (4) show that Fi(r) = —Gi(r) for all L Since
(7) and (8) are symmetric in the interchange of
the pair (12) with the pair (34), the final wave
function which satisfies the Pauli principle has
the asymptotic form for large r4

pf(1234) &pi'(1432) 2po(123)

Io(8) =A (1+8cos' ll),
A =—(8k/kp) fo'(kp, k),
B=fi2(ko, k)/fo'(ko, k)

The total cross section then becomes

(12)

laboratory coordinate system, and lV& is the
energy given up in the reaction; the factor 3/2
comes from a consideration of the reduced
masses involved in the final state. The best
values for lV~ appear to be' 6.26 for reaction
(A), and 7.82 for reaction (B). The coefficient
(2k/ko) in (11) is the ratio of the final neutron
(or proton) velocity to the incident deuteron
velocity. Because of the orthogonality of the 8&'s

for even I and the Ri's for odd I, (11) has the
symmetry about 90' required by the general
physical picture. If we' restrict ourselves to
incident deuteron energies small enough so that
the contribution of the terms for 1 2 can be
neglected, (11) takes on the particularly simple
form

QFi(r4)Pi(cos 84)Ri(1234). (9)
o =4irA (1+B/3). (13)

To determine the R~'s, we note that the reac-
tions (A) and (B) are generally thought to be
radiationless; any radiation that is given off
must be so weak that it seems very unlikely that
the emission of photons can play an important
part in the transitions. Therefore we can assume
that tota1 angular momentum is conserved;
since total spin is conserved, it follows that
orbital angular momentum (I value) is also
conserved. The allowed transitions are then
'S—&'S, 'P—&'P 'D—&'D, 'J —&'F, etc. Thus in
the final states given by (9), Ri=R, for even I,
and 8)——8] for odd l.

In (9) we can always put

I
&i(r4)

I
=fi(ko, k)/r4, (1o)

giving for the differential cross section in the rest
coordinate system

10(8) =(2k/ko)[2+fi(ko, k)Pi(cos 0)Ri(1234)]',

k'=3(W+ Wi)/2, k02=2W= Wo,

where k is the final momentum vector, and 0 is
the angle between k and ko. g is the kinetic
energy of the incident deutepons in the rest
coordinate system, 5'0 this kinetic energy in the

There will be an extra factor of 3 appearing in 8
which is due to the relative statistical weights of
the I' and S parts of the initial wave.

RESULTS

The accurate evaluation of the various quan-
tities appearing in (12) is very difficult. A modi-
fication of the Born approximation method has
been used here; the details of the calculations
will be omitted. Ke shall consider first under
what circumstances we should expect the results
to be'reliable. The method is that outlined by
Mott and Massey, using for the approximate
initial wave function that appears inside the
integral, variational deuteron functions4 times
the solution in the Coulomb field, " rather than
the simple plane wave as in Born's method. This
neglects in the zero-order solution both the
effect of the nonelectric field and the polarization
of the deuterons at short distances. There is no
doubt that both of these effects will be important
in a quantitative evaluation of A and 8, except
perhaps at very high energies. But unless both
can be accounted for, and it is not clear how this

' Mott and Massey, Theory of Atomic Collisions, p. 110.
Reference 8, pp. 33 and 39.
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can be done simply, the additional effort required
by using a better initial state function connecting
the two deuterons, without considering polariza-
tion, hardly seems worthwhile. Moreover, it
seems possible that at low energies, the Coulomb
repulsions might tend to keep the deuterons far
enough apart so that the other shorter range
effects would not play an important part.

The experimental results of KBM' (see their
Figs. 6 and 11, which refer to the rest coordinate
system) appear to be of the form (12). This is
consistent with the theory presented here, since
an estimate of the 1 2 terms indicates that they
should not come in strongly before about 2 Mev,
giving a considerable factor of safety above the
maximum of 0.2 Mev used by these experi-
menters. However, a theoretical evaluation of
the quantity B in (12) shows that it is much too
small: 0.03 from the theory as compared with
0.5 required by the KBM experiments. One
might say that this discrepancy was due to the
inaccuracy of the calculations, were it not for the
following considerations. When one assumes that
the departure from spherical symmetry in the
final distribution is due to the I=1 part of the
initial wave, it seems reasonable that such
asymmetry should depend strongly on incident
deuteron energy, and should be small until the
classical distance of closest approach 1/ko for
angular momentum k/2z is of the order of mag-
nitude of the dimensions of the deuterons. The
experiments, on the other hand, show, a very
marked asymmetry as low as 0.1 Mev, where
1/ko is about ten times the deuteron "radius, "
and show practically no change in shape of the
distribution when the energy is doubled. There
is some possibility that more accurate calculation
of 8 ancl its dependence on initial deuteron
energy will remove these difhculties. If not, we
may have to look for some way in which an
appreciable final state / =1 wave can arise from
an initial state l=0 wave, apparently without
radiation; this would be necessary to make the
magnitude of the final I' wave independent of
incident particle energy. Such a transition
appears to be inexplicable, using nuclear inter-
actions such as are in vogue at the present time.

Further experimental data. on angle distribu-
tion have been obtained very recently by Neuert. "

"Neuert, Physik. Zeits. 38, 122 (1937).

His results are in agreement with those of KBM
over the range covered by the latter (0' to 90').
However, when his data are transformed to the
rest coordinate system, the resulting distribution
is not symmetrical about 90' within the indicated
experimental error. That such symmetry exist is
required by aey reasonable theory (since there
should be no distinction between incident and
target deuterons in the rest coordinate system);
indeed, this symmetry was used by KBM as one
criterion for the validity of their results.

There seems to be no experimental evidence
on the variation of total cross section with energy;
such evidence would require the use of a very
thin unbacked solid target or of a gas target,
However, several experimenters have measured
the yield from "thick" targets. The yield Y in
neutrons (or protons) per incident deuteron is
given by

SP

Y= n(x) a LE(x) jdx.
0

(14)

5-

3 0

2

00

FIG. 1. Relative theoretical yield from infinitely thick
target, with experimental points of reference 11. Low
energy range, ordinate scale arbitrary.
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FiG. 2. Relative theoretical yield from infinitely thick
target (solid line), with experimental points of references
12 and 13. Higher energy range, ordinate scale same as in
Fig. 2. Dotted lines are for finite target thicknesses; I

' corresponds to thinnest target and III to thickest target.
See reference 14.

Here, n(x) is the number of deuterons per cc of
target at the depth x below its surface, go is the
target thickness, and E(x) is the energy of a
deuteron of initial energy TV0 after it has pene-
trated a distance x into the target. (14) assumes
quite reasonably that no deuterons are destroyed
as the beam penetrates into the target (since
deuterons, like protons and o,-particles, have
range properties), and that no emitted neutrons
(or protons) are lost in coming out of the target.
For definiteness in evaluating (14) we assume
that rs(x) has the constant value n and that
E(x) = Wo —Px. The linear relation between
range and energy is a fairly good approximation
for moderately small initial energies, by analogy
with the range energy data for protons and
n-particles. For a target thick enough to stop
all the deuterons, (14) then becomes

W'0

Y= (n/p) a(E)dE. (15)
0

I/p may be treated as an adjustable parameter,
as far as relative yields are concerned. In Fig. 1,
the computed curve of V is plotted in arbitrary
units, together with the low energy data of
Oliphant, Harteck and Rutherford, " the points

"Oliphant, Harteck and Rutherford, Proc. Roy. Soc.
A144, 692 (1934).

and the curve being fitted at 130 kv. The agree-
ment is excellent. In Fig. 2 the data of Ladenburg
and Roberts" and of Bonner and Brubaker" for
higher energies, are plotted to the same ordinate
scale as Fig. 1, both being fitted to the curve
at the lowest energy. When this is done, the
theoretical yield at higher energies is too large
in both cases. It seems plausible that the low

energy deuterons (Fig. 1) are completely stopped
in the thin layer of deuterium salt that consti-
tutes the target, while the higher energy deu-
terons (Fig. 2) penetrate into the backing
material where the only deuterium present is
that driven in by the beam. The effect of this can
be estimated by assigning a thickness xo to the
deuterium salt layer, and performing the inte-
gration in (15) from (Wo —Pxo) to Wo. The
dotted curves in Fig. 2 correspond to pxp=0. 15
Mev for I, Pxo ——0.30 Mev for II, and Pxo ——0.55
Mev for III.The data of Ladenburg and Roberts
fit well on I (thin target layer), while the data of
Bonner and Brubaker fit well'4 on III (relatively
thick target layer). In addition to the above,
Burhop" h as given data for extremely low
energies ((20 kv) which would be unobservable
on Fig. 1, while Dispel" has investigated the
range of 5 to 150 kv. Over the range in which
Dopel's results overlap those of Oliphant, Har-
teck and Rutherford, they are proportional to
the latter, and a factor of about 10 ' smaller. For
the lower energies, an analytic evaluation of (15)
agrees well with both Burhop's and Dopel's
results.

It must be emphasized that the excellent agree-
ment between theoretical and- experimental
relative yields is due primarily to the effect of
the Gamow factor, arising fro~ the Coulomb
repulsion between incident deuterons, and has
very little to do with the details of the remainder
of the calculation. Similar calculations of yield
have been performed by Dolch. '~ His. calculated
absolute yields agree well with ours (see below),
although his relative yields are in much poorer
agreement with experiment than ours (compare

"Ladenburg and Roberts, Phys. Rev. 50, 1190 (1936).
"Bonner and Brubaker, Phys. Rev. 49, 19 (1936).
"Fig. 1 of reference 13 is printed to such a small scale

that the inaccuracy in measuring it is larger than the size
of the open circles in our Fig. 2.

"Burhop, Proc. Camb. Phil. Soc. 32, 643 (1936).' Dopel, Ann. d. Physik 28, 87 (1937).
'~ Dolch, Zeits. f. Physik 100, 401 (1936).
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his Fig. 3 and our Fig. 1), even when the errors
in his paper are corrected. '8

The last point of comparison between theory
and experiment is in the matter of absolute
yield. " Choosing reasonable values for n and P
in Eq. (15), obtained by converting a-particle to
deuteron ranges, " one obtains for the yield at
100 kv from a thick D3P04 target about 3 X10 '.
The absolute experimental yield from such a
target varies with the experimenter over a range
of about i0 ' to 10-'; thus the theoretical yield
is too large by a factor of about j,0' to 10'.

In conclusion it is well to repeat that that
' Dolch, Zeits. f. Physik 104, 473 (1937}.It is di%cult

to understand why Dolch's results should deviate so much
more from experiment than ours, when both calculations
are based on the Gamow factor. In any case, the symmetry

~

~

~ ~ ~

~

roperties developed in the present paper, while important
or angle distribution, have a small effect on the yield

function."I am indebted to Professor Robley D. Evans for
discussion of this point.

'0 Mano, J. de phys. et rad. 5, 628 (1934).

portion of the theory which concerns itself with
the symmetry properties of the situation, leading
to Eqs. (11) and (12), is quite rigorous, while the
detailed evaluation of the quantities appearing
therein is very crude, and serves as little more
than an indication of the general nature of the
results to be expected. Again, the excellent agree-
ment of relative yields (see Figs. 1 and 2) is due
primarily to the Gamow factor, and not to the
rest of the theory. Experimental data on absolute
cross section as a function of energy, and on
angular distribution for higher energies, both
obtained with gas targets (to eliminate the eHect
of penetration into the target), would be very
useful at this time.

I wish to express my deep appreciation to
Professor Philip M. Morse for his constant en-
couragement and for his help at many points of
the theory. I also wish to thank Professor J. H.
Van Vleck for criticizing the manuscript.
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The simplest nuclear Hamiltonian satisfying all present
requirements includes a Majorana-Heisenberg interaction

f (1—g}P+gPQ I V(r) between unlike particles and an
attractive singlet interaction between like particles which
is equal to that for unlike particles. The experimental
mass defects of H» and H' together with the cross section
o for slow neutron-proton scattering will determine the
range b and depth B of the triplet wel) and the proportion

g of Heisenberg force (we use throughout the potential
Be~"I ). An exact analytic expression relating ~, b, 8 and g
is derived for this potential and g is found to be very in-

sensitive to o. An exact solution of H» gives the relation
between B and b. The final relation which fixes the
parameters is furnished by a Ritz-Hylleraas variational
treatment of Hs with the above Hamiltonian and the wave
function:

/=2 &ai(ass —aP»}pi+6 &(ai{aaPs+asP») —2Pia»as)4»

where pi and p» each represents an exponential times a
power series in the interparticle distances of proper
symmetry (p» is brought in by the Heisenberg term; the
Breit-Feenberg operator is used for the small triplet like-
particle interaction). The convergence of energies ob-
tained from successive improvements in P is rapid and the
eigenvalue may be closely estimated. After a relativistic
correction is made we obtain: b = 1.73)(10 's cm;
8=242 esc» and g=0.215. The binding energy of He' is
obtained by the same method and the O' —He' difference
is found to be 1.48 mc», agreeing well with experiment.
The proton-proton scattering depth is checked to within
1 percent. When applied to He', our potential gives approxi-
mately 20 percent too much binding energy. Parallel
calculations with the Gaussian and Morse curves lead to
essentially the same result. No reasonable modification of
the experimental data can explain more than a small
fraction of the discrepancy.

*The contents of this paper form part of a thesis sub-
mitted by William Rarita to the Faculty of Pure Science

at Columbia University in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.


