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Paramagnetism at Radiofrequencies

With the heterodyne beat method small changes in the
inductivity of a coil at radiofrequencies can be detected
with good accuracy. This has been used in order to study
the magnetic susceptibility at radiofrequencies of a para-
magnetic specimen inserted into the coil ~ It has been found
that this susceptibility in some cases decreases considerably
if simultaneously a strong constant magnetic field is

applied in the direction of the alternating field.
Preliminary experiments have been performed with

several paramagnetic alums at temperatures of 77'K, with
frequencies of about 2 megacycles and constant magnetic
fields up to 4 kilo-oersteds. The magnetic susceptibility of
iron alum for the high frequency field decreases in strong
fields to about 25 percent of its normal value. Chromic
alum shows a similar behavior. Vanadium alum on the
contrary retains at least 80 percent of its normal suscepti-
bility. These figures are in a first approximation inde-

pendent of the frequency.
The explanation of this phenomenon is not difficult.

In previous experiments' the relaxation time of the mag-
netic moment in these alums has been shown to be of the
order of 10 " seconds in the absence of a constant field.
According to the theory' this relaxation time is determined

primarily by the interaction energy AE between the
magnetic ions, which is of course of the order of (h/27r) 10 ' .
If, however, the Zeeman separations introduced by the
constant magnetic field are larger than AB, changes in the
distribution over the Zeeman levels cannot be "paid" out
of the interaction energy. Such changes only can result
from the feeble coupling between the magnetic moments
and the heat motion of the crystal lattice. The experiments
thus demonstrate that this coupling involves a relaxation
time of more than 10 seconds.

The different behavior of V alum indicates that the
main part of its susceptibility is due to nondiagonal
elements of the magnetic moment, 4 which is connected
with the fact that the number of electrons is even.

Further experimental data as well as a theoretical
discussion will appear in Physica.
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Approximately Relativistic Equations for Nuclear Particles.
Addendum. Proof of Approximate Invariance

Possible forms of approximate relativistic equations have
been discussed in a recent paper. ' The following points
should be noted in connection with the proof of approxi-
mate invariance of Eq. (16.1) with Q given by Eq. (16.3).

Variational integrals (Eq. (15)j are used. The time t is
the same for every particle. The integral in X extends over
a region of space time corresponding to t; &l, &ty. This region
differs from any similar region t, '&t'&t~' in Z'. In order

to avoid dealing with different regions, the published cal-
culation was made by keeping fixed the portion of space
time corresponding to particle 1. The points x2', y2', s2',
t'=8 covered in the integral used in X' are contained
between t and ty'. The region of space time covered by
them does not coincide with the region covered by the
points A which were used for the integration in X. It is
thus natural to expect the difference of the integrals in E
and X' to be an unsymmetrical expression in 1 and 2, as
is seen in the second line of Eq. (16.7).

The variational integral can be used by supposing p to
be known and varying p. This is analogous to fixing the
motion of 2 and looking for the equations of motion of 1

in the classical theory. The integrals over V2 are just like
potentials determining the forces acting on 1. The region
of integration for 1 is not contained between two planes
corresponding to fixed values of t. This does not prevent
one from using the variational integral in determining p
because for a single particle the variational integral can
be used for any portion of space time. For Dirac's electron
subjected to external forces the integral is invariant.

The calculation leading to Eq. (16.5) shows that in the
present case the integral is not invariant. The extra term
is equivalent to the addition of a four potential to the
field acting on 1. To within a constant factor, which is of
no interest, the four potential, in Dirac's notation, is

8(rJ), 8(rJ)
Ao= —f(q*e2q) d V2, A= J'(p*q) d V2.
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This can be expressed as:
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G= —f(q*y)—d V; E=fJ(r)rdr.
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Being derivable from the gauge G, it can be removed by a
suitable transformation of P. The extra term may be thus
disregarded and the last line of Eq. (16.7) follows. It would
have been better to use a new letter instead of p in the
last line in order to indicate the function obtained by the
gauge transformation. The need of it in this argument is
analogous to the presence of a term in dnrv) Jj/dt $Eq.
(13")j in the classical Lagrangian. The formal analogy is
more striking if the transformation is performed in the
configuration space of the two particles by setting

P =SP('& S= 1+ivxJ/(2c'5).
The addition to 2 required by the transformation is then

2 &'& —2 =S '( ZS—SZ) —ZS—S2
and this compensates the extra term. The transformation
S leaves the density, current expressions invariant. The
physical conditions are clearer, however, using G. This
discussion does not prove that the equation is invariant
for arbitrarily large J. It only shows that there is no need
of terms linear in J in addition to those included.
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