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By the imposition of a regularity condition on the new field theory a new action function is
found which is unique so far as the significant lower order terms of its expansion are concerned.
The new action function leads to a theory in which the fi; field is free from singularities, from
which magnetic poles are automatically excluded, and in which the equations of motion can be
deduced from the field equations without extra dynamical assumptions. When general rela-
tivity is taken into account the field of a particle is such that space-time is everywhere regular,
and the theory leads to the identification of gravitational with electromagnetic mass.

INTRODUCTION

HE new field theory initiated by Born!

introduces in the classical equations of the
electromagnetic field a characteristic length 7,
representing the radius of the elementary par-
ticle through the relation

' to= (e/b)%y

where e is the elementary charge and b the funda-
mental field strength entering the Lagrangian
function.

The considerations of Heisenberg, Euler, and
Kockel> on the scattering of light by light
according to the theory of the positron, and
Heisenberg's recent theory of cosmic-ray showers?
indicate the importance of the introduction of a
characteristic length in the early stages of the
theory, i.e., in classical physics. ‘

The question is still open as to which of the
many conceivable action functions is to be used
in the new field theory. I't was originally thought
that the Lagrangian and corresponding Hamil-
tonian

L=1+F-G%»% 3=01+P—-0»% (0.1)
where

F=3fuft, P=dpu*p™,  (0.2)

o G=tfuf*™, Q=lpup™,  (03)

was the simplest choice which would lead to a
finite energy for an electric particle. This is,

1 Born, Proc. Roy. Soc. A143, 1410 (1934); Born and
Infeld, Proc. Roy. Soc. A144, 425 (1934).

2 Heisenberg and Euler, Zeits. {. Physik 98, 714 (1936);
Euler and Kockel, Naturwiss. 23, 246 (1935).

3 Heisenberg, Zeits. f. Physik 101, 533 (1936).

however, not the case. It is possible to find an
infinite number* of quite different action func-
tions, each giving simple algebraic relations
between the fi; and py; fields and each leading to
a finite energy for an electric particle. This lack
of uniqueness is not the only objection to the
action function used up to now. For this action
function gives complete symmetry between the
electric and magnetic fields so that to the
solution representing an electrical particle corre-
sponds an exactly similar solution for a magnetic
particle. Another serious objection to the theory
is that the equations of motion are not a con-
sequence of the field equations alone but require
the introduction of a special hypothesis whose
meaning is obscure.® This difficulty is connected
with the existence of the singularity in the field
of the elementary particle. Again, if the theory
be treated within the framework of the general
theory of relativity, the gravitational potentials
are also not regular, with the result that space-
time itself is singular at the ‘‘center”” of the
elementary particle.®

In the present paper we impose as a funda-
mental condition the requirement that only
those solutions have physical significance for
which the fi; functions are everywhere regular.
This condition, which we later generalize for the
gravitational case, forms a criterion for the
choice of the action function, and we show that
the action function to which we are actually led

4 Infeld, Proc. Camb. Phil. Soc. 32, 127 (1936), 33, 70
(1937), hereinafter referred to, respectively, as I and I1.

® Frenkel, Proc. Roy. Soc. A146, 933 (1934); Feenberg,
Phys. Rev. 47, 148 (1935); Born, Proc. Indian Acad. Sci.
3, 8 (1936) and 3, 85 (1936); Pryce, Proc. Roy. Soc. A155,
597 (1936).

6See § 5 of this paper.
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766 B. HOFFMANN
avoids, at least partially, the various difficulties
discussed above. Our action function is unique so
far as terms of the significant lower orders are
concerned, it leads to a regular fi; field for the
fundamental electric particle, it rejects the
possibility of isolated magnetic poles, and it
allows the derivation of the Lorentz law without
extra hypothesis. Further, it leads to a regular
gravitational field for the fundamental electric
particle, and it shows that its gravitational mass
and electromagnetic mass are essentially the

same, thus showing that gravitational mass

cannot be negative, a result which does not
follow from the usual general theory of rela-
tivity. Moreover, the present theory preserves
the general scheme of the earlier theory with all
its inherent advantages.

We divide the paper into two parts. The first
part contains all of the work which can be
treated within the framework of the special
theory of relativity, while the second part dis-
cusses those aspects of the work in which the
explicit use of the gravitational potentials of the
general theory of relativity is essential.

ParT 1

§1. The action function

We assume’ that our action function 7 is a
function of the two scalar invariants F, P
defined by

F=1fu.f*'=B*—F2;

(1.1)
P=1p*p*Hi=D2— I,

where the star denotes the dual tensor and, in
the Galilean case,

U, f*34, f*¥—fas, fa1, f12—B,

{f*”y ¥ f¥ =1, fas, f34—E,
¥, p¥, p*H—pas, Par, pr2—H,
{P*%, ¥, p*PP—pus, Pasy p3a—D.

(1.2)

The fii and pr* are the four-dimensional
curls of potential vectors ¢x, ¥x, respectively,
and must, therefore, satisfy the integrability

7 The general ideas underlying the variational method
used in this paper will be found more fully developed in
I and II.

AND L. INFELD

conditions
(af*¥1/axh) =0,

(9p*1/axY) =0.

(1.3a)
(1.3b)

We assume that the f;; and p*! are canonically
conjugate with respect to the action function,
and that f**' and pi* are similarly conjugate.
This means that

P =(8T/3fr1) =2T rf*,
f¥et= (0T /dpw*) =2T pp**,

(1.4a)
(1.4b)

where Tp, Tp denote partial derivatives of T
with respect to F and P, respectively. With this
assumption of conjugacy the field equations
obtained from the action principle

) f Tdx'dx*dx*dxt=0 (1.5)
by wvariation of the potentials ¢; and y, are
precisely the Egs. (1.3a), (1.3b).

The Eqgs. (1.4a), (1.4b) are twelve equations
for determining the six quantities pr;* as func-
tions of the six quantities f;, or vice versa. They
will thus, in general, not be consistent. It is
easy to see that if they are to be consistent we
must have

ATpTp=1. (1.6)

Also, if we multiply (1.4a), (1.4b), respectively,
by fi: and pr;* and add we get

TrF+TpP=0. (1.7)

To satisfy (1.7) we take T to be a homogeneous
function of F and P of degree zero. That is, we
introduce

e=(—F/P)} (1.8)

and assume that T is a function of e. From
(1.7), by applying (1.6), we now obtain

2Tp€=1,
2Tpet=1,

(1.9a)
(1.9b)

where the signs are determined by the con-
vention that the fi; and p; fields shall always
have the same direction, in which case 275 and
2T p must always be positive.

From (1.9a), (1.9b) and (1.8) we have

T¢=—P, or €&T.=F, (1.10)

giving F as a function of P, or vice versa.
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Ex
|

F16. 1. E, plotted against x for E,=1/(14+r9)%

Having summarized the general theory of the
variational principle we use, we must now find a
specific form for the 7" function which will give
a field theory free from the difficulties formu-
lated in the introduction.

We regard the f}; field as fundamental and the
P components as functions of the f; components
in accordance with (1.10). Since P is thus a
function of F we may write

pri=NfH,

where X depends on the scalar F only.
The field equations (1.3a), (1.3b) may now be
written in the form

(9f**!/0x") =0,

(1.11)

(8% /oxt) =4mpt, (1.12)

where p* is the charge and current density
vector and has the form,

drpt=— (3 log \/ax!)fEL. (1.13)

The Eqs. (1.12) are formally the same as those
of the Lorentz theory. The difference lies in the
fact that the p* are functions of the fi; field.
The conservation law of the current density
vector follows at once from (1.12) because of the
antisymmetric character of f*:

47 (8% 9xk) = (9f+1/x0x?) =0.  (1.14)

In a pure field theory the field equations must
be well defined for every point of space-time
since whenever the field equations are un-
defined extra conditions must be introduced to
take the place of the defaulting equations in
the singular domain.

We are thus led to the following regularity
condition for the present case:

767

Only those solutions of (1.12) may have physical
meaning for which the functions fi, and their first
derivatives exist everywhere.

We shall now show that this regularity con-
dition restricts the possibilities for the action
function T and allows us ultimately to determine
the essential terms in its expansion uniquely,
thus removing the arbitrariness in the choice of
the action function which has hitherto existed.

In order to find the action function we must
discuss the character of a spherically symmetric
electrostatic solution. In the previous theory fi:
was not everywhere continuous, for in that
theory we had?® for this case, in natural units,

D.=1/r*; E.=1/(14r9}  (1.15)

thus E, changes from (41) to (—1) on passing
through the ‘““center’” of the particle, =0, as
shown in Fig. 1. It is evident that any finite
value for E, at r=0 will lead to a discontinuity
of this type. Therefore it is essential that in the
spherically symmetric electrostatic case E, shall
vanish for r=0:

E,—C~rn;
e=E,/D,—r*tn,

For »—0;

n>0. (1.16)

The condition (1.16), which is an expression of
the regularity condition, concerns the behavior
of the field as »—0. We impose the further con-
dition that for large 7 the field shall become
Maxwellian. This gives, by (1.10)

For > ; D,—E,—r?2—0;

e—1; T.—0; T—0.° (1.17)
From (1.16) we have
For r—0; P—r4; 1/eor-&tm 5>0.

Thus if T can be expanded in a power series in
e it follows from (1.10) that the lowest term
must contain (1/¢). We therefore assume

—P=T.=—-1/¢eta+ -, (1.18)
where « is a constant. On integrating we find
T=k+ae—log e+, (1.19)

where £ is a constant of integration.

8 Born, Infeld, reference 1, §6.

9 For this last see I, p. 132, § 6. This result can also be
obtained from Eq. (3.7) of this paper since in the Maxwell
case T§ is known to be zero.
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The values of « and % can be determined
from the application of (1.17) to (1.18) and
(1.19) if we neglect the higher order terms in e:

k=—1.

a=1,

Thus, if we consider only the lower order terms
of the expansion of 7" we may take

T=e—log e+1. (1.20)

This is the form we shall use for the action
function in the present work. Although we have
neglected expressions of order € in (1.19) we
see that every field theory avoiding discon-
tinuities must have essentially the same features
as the one here formulated.!?

From (1.10) and (1.20) we find, as the con-
nection between F and P,

(=P/F)i=1+P, (1.21)
—P/(14P):=F, (1.22)
and thus, because of (1.11),
fru=pu/(14+P), (1.23)
—1+(1+4F)}
pr=———""—"F 1 (124)
2F

The sign to be used in (1.24) is determined from
the following considerations:

For F<0 and fi;—0 we have
pri— oo if the minus sign is taken before the
square root,
pri—0 if the plus sign is taken before the
square root.

For F>0 only the plus sign may be taken
since only in this case will fi; and i have the

same direction. For f;;—0 we always have -

pri—0 in this case.
From (1.24), since pi; is real, it is seen that
the smallest value for F is given by

144F=0, or F=-—1.

The Eq. (1.25) defines a surface, in general.
If real charges exist, i.e., if (1.3b) breaks down
at certain points, the minus sign must be taken
inside the surface and the plus sign outside.

(1.25)

10 This case is exactly that of =0 in II if we interchange
the electric and magnetic fields. The Hamiltonian has the

simple form
H=13log 14-P).

B. HOFFMANN AND L.

INFELD

On the surface itself, of course, the square root
vanishes. The existence of regions in which the
minus sign has to be taken before the square
root is directly connected with the existence of
charges. The extrema for F exist whenever
there are charged particles. This is a general
consequence of the fact that F must be zero
both at the center of the particle, where P— o,
and at large distances, where P—0.

§2. The spherically symmetric electrostatic case

In the spherically symmetric electrostatic case
we have B=H =0, and the field equations take
the form

curl E=0,

div D=0.

We have to replace D in (2.2) by its value as a
function of E. Eqgs. (1.23) and (1.24) give as
the relation between the radial components of
E and D,

(2.1)
(2.2)

ErzDr/(]- +-Dr2)y (2'3)
— 1 (1 —4E,?)}
D= " R \E, (24
2E,%

where the minus sign must be used inside the
sphere E,=1% and the plus sign outside.

Egs. (2.1) are identically fulfilled since E, is a
function of 7 alone.

Eq. (2.2) can be written as

dlog A
ar

divE=— E.=4mp, (2.5)

where p is the free charge density, defined as a
function of E,. The solution of (2.5) is

Er=1’2/(1 +7’4),

as we can easily deduce by inserting for D, in
(2.3) its value 2. Thus the field strength
vanishes for =0 as shown in Fig. 2, and its
derivative of the first order exists everywhere.
It has a maximum where #=1, exactly corre-
sponding to the sphere given by (1+44F)*=0.
From (2.6) and (2.5) we find that the free charge
density is given by

(2.6)

(1) (0
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F16. 2. E, plotted against x for E,=72/(147%).

it ‘'vanishes for r=0 and decreases for large 7
like 7.
The total charge is defined by

e=fpdz;=1/47rf div Edv,

and in the special case here considered it turns
out that e=1 since we have used natural units.

The potential function ¢(#) belonging to E, can
be at once calculated since

(2.8)

E.=—dg/dr. (2.9)
This gives
()= f ridr 2{ 1+V2r+12
o(r T
, 1—{—1'4 8 1~\/77—|—72
—2 tan—! (2.10)
1—7
The potential is finite for =0
0(0)=V2r/4. (2.11)

The energy density is measured by T,* and
the total energy is given by

W=fT4“dv

integrated over all space. Since the total energy
in the spherically symmetric electrostatic case,
independently of the choice of the action func-
tion, is'! 2¢(0), we have

W=2¢(0)/3=V2x/6.

It can easily be shown that a magnetic solution
of this kind does not exist. For both B, and H,
are discontinuous at r=0 in the spherically

i, §5.

(2.12)
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symmetric magnetostatic case and the regularity
condition is thus not fulfilled.

§3. The energy momentum tensor and the laws
of motion

We go back now to the general case and calcu-
late the energy-momentum tensor. For the sake
of simplicity we shall use both the tensors fi;
and pr.

The field equations (1.3a), (1.3b) can be
written in the form

aflm afmk afkt
—+—4+—=0, 3.1

dx*  Jx?  Jxm

0pm™*  0Pmi* Oprr*
f + =0. (3.2)

dx* dxt Jx™
Multiplying (3.1) by 3p™, (3‘2)Aby 1fim and

adding, we get

l:plm flm +f lm lm]
Jdx* Jdx*

19
+_ ____[lefmk j‘*lmp*mk] — 0'
2 dx?

(3.3)

By (1.3a) and (1.3b) the terms in the first
brackets are merely the derivative of T with
respect to x’. So if we introduce

Tit=3{Tos'+ (D" fur+f*"p*mi) },
Eq. (3.3) becomes
6T;J/6x’=0.

(3.4)

(3.5)

Thus T! is the energy momentum tensor for the
present theory. The 3 factor is inserted in order
to obtain the Maxwellian expression for the
limiting case. This is clearly seen in the case of
T4, for instance:

T¢=E,H,—H,E,, (3.6)

which, for weak fields, goes over into the Max-
wellian expression for the x component of the
Poynting vector.

From (3.4) we find

Te=2T, 3.7

showing that our action function is half the
trace of the energy momentum tensor.

It was shown by Feenberg?® that in the earlier
form of the new field theory the equations of
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motion are not consequences of the field equa-
tions but constitute an extra dynamical con-
dition. We shall show now that in the present
form of the theory, in the first approximation,
the Lorentz equations of motion follow from the
field equations without further assumption. The
absence of singularities in the f; field is essential
for this result.

One of the equations expressing the con-
servation of energy and momentum is

aJ T31 d T32 aJ T33
- (3.8)
at ox dy 0z

0T34

or, in space notation,
3S./0t+div.Z=0,

where —S;NTM, Z~T31, T32, T33.

We may integrate (3 9) over some volume and
transform ‘the integral on the right-hand side
into a surface integral. For simplicity we assume,
though this is not essential, that .S,, Z are func-
tions of fx; and pi; according to (3.4). We should
exclude those points at which Z can become
infinite, which can only occur where P— . We
thus have, assuming for simplicity that only one
such point is in question,

— de decr onda, (3.10)

where 2’ is a small surface enclosing the space
point at which P— o, Z is an arbitrary surface
enclosing 2/, and Q is the volume between X
and Z'.

Now it follows from (2.6) and the fact that
D,=1/r? that the p'f,; and f*"p,,* terms in
T)' will be at most of the order of 1. Further
the part of T}! involving the action function T°
can only give a contribution to the surface
integral over =’ of the order of #? log 7. Thus in
the limit when Z’ shrinks to a point the whole
integral over 2’ vanishes, and we have left

9
N Sudp=— f Z.do.
ot Jg =

(3.9)

(3.11)

The vanishing of the integral

f Zdo
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in the limit, together with the similar vanishing
of the corresponding integrals for the x and
y directions, is here a consequence of the regu-
larity condition and of the special form of the
action function. But this vanishing constitutes
the dynamical condition which leads to the
Lorentz laws of motion'? under the usual con-
ditions concerning the possibility of separating
the whole field into a spherically symmetric field
and a weak uniform external field.

Part 11

§4. Action function and field equations

The field equations of the general theory of
relativity are of the form

sz—%gklR= —87r'kal, (41)

where Ry, is the Ricci tensor formed out of the
metrical tensor gi;, R its contraction, T%; the
material energy momentum tensor, and vy the
relativistic gravitational constant. Though the
precise form of 7% is not specified by the general
theory of relativity, its physical significance must
definitely be that of an energy momentum tensor
and we shall accordingly use here for T%; the
energy momentum tensor corresponding to the
theory described in the first part of this paper.

Since, in the general theory of relativity, the
gr; may not be assumed to be Galilean, we must
define the scalars F, P so as to show explicitly
their dependence on the gi;:

Oom Qi
fim={———=);
dax*  gxm
a‘l/m 6‘/’10
P= %g“gm"pkm*Pln*; p*km: (_______

dx*  o9x™

=38" 8" fimfin;

Further we shall need to know the relationship
between a six-vector and its dual. The general
formula leads to

fres= 14, €tC.; fHU= fas, etc.;

V(—g) V(—g) 43
fras= —/(—g)f" etc.; fru=—+/(—g)f*% etc.,

with, of course, analogous relations holding for
the p's.

12 Pryce, reference 5, §9.
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The correct action principle for the general
theory is

1
6f gw—'yR — T(e)) V(—g)dx'dx?dxidxt=0, (4.4)

where T'(e) is the function defined in (1.20) and
variation is with respect to gw, ¢r and ¥y,
respectively.

The variation with respect to g, gives the
conditions®

V(=D {(Rki—3guR) +8myT i} =0,
Tkl= %gle—aT/ag“

(4.5)
with (4.6)

This T reduces to the Ty; of (3.4) in the flat case.
Since T is homogeneous of degree zero in g, as
follows from (4.2), we have

Thus, on contracting (4.6) we find at once that
o =2T, (4.8)

a result already obtained for the Galilean case in
§3. Further, the variations with respect to ¢, and
¥ give field equations equivalent to (4.2):

i)
—(p*/(—¢)) =0, (4.9)
dxk

i)
—(f*/(—g)) =0, (4.10)
Jx*F

where use has been made of the ‘“‘constitutive’
equations
Pkl: aT/afkl, f*kl= 6T/6Pkl*

§5. The regularity condition

(4.11)

We have already seen that the condition of
regularity of the field gives the restriction that in
the spherically symmetric electrostatic case
E,=0 for r=0.

In the general theory we apply the regularity
condition not only to the f; field but also to the
gi: field. The regularity condition for the general
theory is that:

13 Jt has been pointed out to us by H. P. Robertson that
we use two different conventions in the variational process.
For variations of fi; etc. we assume 8fw = — 8fu, but for
variations of gi; we assume dg;; to be independent of dgi.
Since no confusion is likely to arise from this usage we

employ the present convention in order to agree with
previous work in this field.
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Only those solutions of the field equations may
have physical meaning for which space-time is
everywhere rvegular and for which the fu and gn
fields and those of their derivatives which enter the
field equations and the comservation laws exist
everywhere.

The most general spherically symmetric static
line element may always be brought to the form

ds*=edi? —eMdr*— r?(d6*+sin? 0d¢?), (5.1)

where N\ and » are functions of 7 alone.

In the general theory of relativity the spheri-
cally symmetric solution of the purely gravita-
tional field equationsis given by the Schwarzschild
line element

ds?*=Adi?— Adr* —r*(d6?+sin? 0d ¢?),
A=1=2m~y/r,

(5.2)
(5.3)

where (—2my) is a constant of integration, m
having the significance of the gravitational mass
of the body producing the field and v being the
gravitational constant. This line element has an
essential singularity at =0 and does not satisfy
the regularity condition.

In the general relativity form of the original
Born theory the requirement that there be no
infinities in the gi; forces the identification of
gravitational with electromagnetic mass'* and
leads to the line element (5.2) with

8wy T
A=1——- 41— 21dr. 5.4
rf0{<+> Aldr. (5.4)

Thisline element approximates the Schwarzschild
form for 7 greater than the electronic radius but
avoids the infinities of that line element for r=0.
However, there is still a singularity at the pole.!?
For, when »—0, (5.4) gives

A—(1—8my)=4 (say)
so that (5.2) becomes

ds?—Bdt2— (1/B8)dr2 — r2(d6>+sin? 6d¢?). (5.5)

Thus the ratio of the circumference to the radius
of a small circle having its center at the pole s, in

1 Hoffmann, Phys. Rev. 47, 877 (1935). This paper
includes a detailed discussion of the difficulties connected
with the Schwarzschild line element and of the physical
principles underlying the argument of this and the next
section. For the sake of brevity much of this discussion is
not repeated here.

15 This was kindly pointed out by Einstein and Rosen.
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the limit, 278 and not 2. Therefore the pole is a
conical point and not regular. No coordinate
system can be introduced which will be non-
singular at =0 and derivatives are actually
undefined at this point.
Thus the regularity condition applied to (5.1)
requires that
N =1
£ (5.6)
and that certain derivatives shall exist. We shall
consider this matter in more detail later.

§6. The general spherically symmetric electro-
static case

The solution of the general spherically sym-
metric electrostatic case can be very largely
reduced to that of the corresponding Galilean
case treated in Part I because of a result we shall

now prove.
The energy tensor (4.6) can be written as

1 dT Je

Th=—gul —————
2 de gkt
1 r 1 8T{ 1 o

=—gpl —— —{—————&"kmJ im

27" 2 0 [(—FP)Y

Fy! % gk
‘—(—};) g D% kmp ln}- (6.1)

For the line element and coordinate system
defined by (5.1) the only non-zero components of
friand py,* are, in the present case, fuu= — fi1 and
pos*= — pss™*, respectively. Thus, since gt van-
ishes if k5[, the tensors

Fru=g""fimfin and Pu=g""pi*p1* (6.2)
are easily seen to be such that
Fil=F#; P{=P#(=0). 6.3)
Since, further
g'=g'(=1),
it follows from (6.1) and (6.3) that
Ti'=T4 (6.4)

Thus the field equations (4.5) imply that
V(=g {Ri'—3e'R} =+/(—g) {Rs*— 32 R}. (6.5)
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These equations at once give!®
N4v'=0

and since e* and ¢” must each approach unity as
r— o, we obtain the result that

Ar=0 - (6.6)
or gugu=1/(g"g¥) = —eMr=—1. (6.7)

This result shows that the values of 4/(—g), F,
P, T,and T3 for the present case,take the same
form as in the Galilean case for polar coordinates
and we may thus use results obtained in Part I
which are valid for the more general case con-
sidered here.

We have, therefore, at once,

pu=D,=1/r?; fu=E,=r*/(14r) (1.15)
and it turns out that the only equations which
remain to be satisfied are the (1—1) and (2—2)

equations of the set (4.5). Without making use of
(6.6) we may write these in the form

eMy'r+1) —1= —8myr*T '= —8ryr?Ts4, (6.8)
PeM 30— INY 1 (1/20) (7 X))
= —8myr*Te?, (6.9)
these being the same as
e‘X—”ii—(re") —1=—8myr? T4, (6.8a)
dr
e—*—%"rii—{ ri(e%") }
drl dr
—e M2 INY +(1/27)N} = —8myr? T2 (6.9a)

The values of the components 74, Ts* may be
calculated directly from (6.1) or from the value
(3.4) of the first part, with the help of (6.7),
(4.2), (4.3), (1.20) and (1.15). The values are
found to be

7,4
Té=—1lo ( ) 6.10
4 g 147 ( )
74
To=—lo ( )— . (6.1
i ) e O

16 See the values of (R!—}g:!R) and (R4— 3g4+‘R) given
in Eddington, Mathematical Theory of Relativity, second
edition, p. 104, Egs. (46.9).

17 This last can best be seen from (6.1) with the help of
(42), (43) and the fact that only f14~=—f41, p14=""P41,
and fos* = —fa2*, pas* = — pa2* of the covariant components
are different from zero in the present case.
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If we use (6.7) to simplify the left-hand sides of
(6.8), (6.9) we now obtain

d
e(Wr+1)—1=—(e'r) — 1= —8ryr2T ¢
dr \
7

=8ryr? log ——,
1+

(6.12)

e’ (v + v+ /1) = — 167y 2Ty

rt 2
= 167r772{10g ( ) — } (6.13)
1474 1+

The solution of (6.12) is seen to be

k 8ry pr
e"=1-————~f T ddr
r r Jo

k 8wy pr r
=1—— f 7* log
1474

¥ v o

dr, (6.14)

where £ is a constant of integration corresponding
to the (—2my) of the Schwarzschild line element
(5.2), (5.3). The Eq. (6.13) is essentially the
derivative of (6.12) with respect to 7 so that a
solution of (6.12) whose appropriate derivatives
exist will automatically be a solution also of
(6.13).

The regularity condition shows that we must
take £=0 in (6.14) since otherwise we shall have
an essential singularity at r=0. But if k=0 we
must regard the quantity 4ryJy 727447 as the
gravitational mass causing the field at coordinate
distance 7 from the pole. This quantity, however,
is precisely

'yfffT,{‘r? sin 0drd6d ¢

taken over the sphere having its center at 7=0
and coordinate radius 7 and is thus the measure,
in gravitational units, of the total electromagnetic
mass within this sphere. For 7 appreciably
greater than the electronic radius this line ele-
ment closely approximates the Schwarzschild

(6.15)
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form. Thus the regularity condition shows that
electromagnetic and gravitational mass are the
same and it is seen that, as in the Newtonian
theory, we now have the result that the attrac-
tion due to a uniform spherical shell of matter is
zero at any point inside the shell. A further result
of this identification of gravitational with electro-
magnetic mass is the fact that the gravitational
mass (6.15) is necessarily positive, which was not
the case in the Schwarzschild line element.

It remains to show that the regularity con-
ditions are completely fulfilled by our solution

ds?=Ad?—A~1dr* —r*(d6®+sin? 6d 4?),

8wy pr 7
A=1 +————f 7% log dr, (6.16)
r Jo 7t

. 1+
E,=r/(147Y).

In the limit »—0 we have 4—1 so that we avoid a
singularity of space-time at 7= 0. Also, since v is
very small, 4 will not change sign. Finally all the
derivatives entering (6.8a), (6.9a) are seen to
exist and the derivative of (6.8a) with respect to
7, the only part of the divergence relations which
involves further derivatives with respect to 7,
also exists. The regularity of the f; field was
discussed in §2 and that discussion remains valid
for the present case.

We have thus found a solution of the general
spherically symmetric electrostatic case which
fulfills the demands of the regularity condition
and which carries over to gravitational theory the
general ideas of the first part.

Since the gy of (6.16) has the value unity at
r=0 and at r= « it follows that its derivative
must change sign. In the usual gravitational
theory of general relativity the derivative of gy is
proportional to the gravitational force which
would act on a test particle in the Newtonian
approximation. In the present theory, then, it is
interesting to note that although this force is an
inverse square attraction for ordinary distances,
it is actually a repulsion for very small 7.



