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The first-order van der Waals forces between symmetrical top molecules which carry a dipole
along their figure axis are calculated. Their strength is compared with that of other interactions,
and found to be greater than London’s second-order effect for linear dipoles over the main part
of the range of the latter. A simple preliminary theory of the effect of these forces on the width of
spectral lines in bands of polyatomic molecules is given, and it is shown that they lead to results

of the correct order of magnitude.

HE van der Waals forces between dipole
molecules have been worked out on the
basis of quantum mechanics, and classified in a
systematic manner, chiefly by F. London.! He
finds that, in general, greatest importance is to
be ascribed to the attractive forces arising from
the dispersion effect, the electronic perturbations
of high frequency. This is common to all molec-
ular interactions and is independent of the
presence of permanent poles. The potential due
to dispersion forces varies (asymptotically) like
—1/R®% R being the distance between inter-
acting partners.
Besides this, there are the following effects
specifically connected with dipole molecules: (1)

The induction of an additional dipole moment

due to the permanent moment of a partner,
producing a small potential proportional asymp-
totically to —1/RS. (2) The effect of molecular
alignment which depends on the rotational quan-
tum number and hence on the temperature
distribution of the molecules. Its potential varies,
at large distances, as +1/R® but for close ap-
proach becomes proportional to —1/R3? and
relatively strong, for molecules in the lowest
rotational state. The transition from the 1/RS
to the 1/R3 law takes place at distances of
approach for which the perturbation energy
becomes comparable with the normal separation
of the rotational levels. (3) Resonance forces
due to the possibility of exchanging a quantum
of radiation, come into play when two inter-
acting partners have rotational quantum num-
bers, J, differing by unity. They correspond to
first-order interactions, have a potential pro-
portional to +1/R3, and produce a symmetrical

1F. London, Zeits. f. Physik 63, 245 (1930).

splitting of the rotational levels, which are, how-
ever, in general also lowered as a result of the
other types of interaction mentioned above.
These forces, clearly, have therefore the longest
range, but their average over all orientations of
the molecules is zero. Thus they are unimportant
when interest is confined to properties of a dipole
gas which depend on long time averages. But
phenomena like the broadening of spectral lines
depend on them quite essentially.

The present classification is sufficient as long
as one is dealing with linear or diatomic dipole
molecules, which indeed London chose as the
model for his calculations. These exhibit no first-
order Stark effect; hence their interactions bring
about no removal of space degeneracy. With
polyatomic dipoles the situation is different, for
the symmetrical top gives rise to a linear Stark
effect. We expect, therefore, a first-order splitting
of the rotational levels on approach of two sym-
metrical top molecules. A calculation of this
effect will be presented below. Although the
treatment has not been extended to asymmetrical
molecules, the results obtained will hold quali-
tatively for such cases as well.

We suppose that the top carries a dipole of
moment u along its figure axis. If the axes of
two similar tops make angles 6; and 6, with the
line, of length R, joining the molecular centers,
their azimuths being ¢; and ¢,, then the classical
perturbation energy is

V= —u?/R¥2 cos 6; cos 6,
—sin 6 sin 62 cos (¢1— ¢2) .

(0

To set up the secular equation it is necessary to
calculate the matrix elements of (1) between the
unperturbed degenerate states of the top. These
depend on the three quantum numbers J, K, M
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corresponding to the three Eulerian degrees of
freedom 6, ¢, x.2 V- does not contain x; the
matrix elements are therefore diagonal in K.
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If the two interacting molecules have quantum
numbers J, K, M and J’, K’, M’, the unperturbed
function representing their combined state is

Vo, g, 0, &, m=N(J, K, M)N(J', K', M")Ou, x, (61) O, &+, 3 (0z) Mo+ M’ o2t Kx1+K x2) |

where the N’s are normalizing factors. We require the matrix elements for fixed values of J, K, J', K’,
between the various permitted sets M;, M'; and M;, M’;. Since M runs from —J to +J and M’ from
—J' to +J’, our secular determinant will have (274-1)(2J"41) rows and columns. In forming the
elements, the integrations over the x’s and ¢’s can be carried out immediately, the result at that

stage being:

Vi, &, i, 00, Koy Mrgs 0, K, My, Jr, Koy M0

=—W/RNM)NM' )N(M)NM ){32x4,(J, K, M) I,(J', K', M'3)6(M;, M3)s(M';, M)
—8ntI,(J, K, M) I;(J", K’, M')8(M;, M;—1)8(M’;, M'+1)
""87"413(-]: Kr Mi)I2(JI) K,) Mli)a(Mi: M5+1)5(M,i, M’i— 1)} (2)

with the following definitions of the integrals:

T 1
I(J, K, M;) =f cos 002, k, a;sin 0d9=2f (1—2x) @%, x, m;(x)dx,
0 0
™ 1
I,(J, K, M) =f sin 0y, x, m;Ou, x, M;-18in 0d0=4f 2(1—x)20u, x, ai(x) Ou, &, a;—1(x)dx, (3)
0 0

I;(J, K, M, =f sin 00Oy, &, a;Qu, &, a;+18in 0d0=1,(J, K, M;+1).
0

The © functions are Jacobi polynomials, and
the transformation from 6 to x is the usual one:
x=%(1—cos 8). I is the integral which appears
in the theory of the linear Stark effect; it has
been calculated by Reiche and Rademacher, and
by Manneback.? Its value is given by

NAMYL(J, K, M) =KM:/(4n*TJ(J+1)). (4)

We have calculated I, by the reduction method
as explained by Reiche and Rademacher. The
details of the calculation are straightforward
and hardly of sufficient interest to be set down
here. The result is

I KK’
VM:‘- Mg My, Mi;=—
RS J(J+1)J'(J'+1)

N(M)N(M;—V)I:(J, K, M)
_ +K[(J—M;+1)(J+M,)7]:
B Ar2 J(J4+1) '

()

Here the — sign holds if the numerically greater
of K or M is positive, the + sign if it is negative,
or if K= — M. (Except for its sign, Eq. (5) may
be checked against Dennison’s? intensity for-
mulae to which it is related by the definition (3)
Of Iz)

On putting these values of I, I; and I; into (2)
we find, leaving off the fixed subscripts from V,

{(—2M M 5(M;, M)s(M';, M"s)

£ (- M+ )T+ M) (T =M )T+ M +1) Po(Mj, Mi—1)8(M';, M's+1)
£33 (T+M:iA4 1) (T = M) (T =M+ 1) (T + M) P6(M;, Mi+-1)8(M' 5, M's—1)}.  (6)

2 Cf. the familiar papers by Reiche and Rademacher, Manneback, Kronig and Rabi, and Dennison. The present
notation is illustrated in Pauling and Wilson, Introduction to Quantum Mechanics, p. 276. For references cf. D. M.
Dennison, Rev. Mod. Phys. 3, 280 (1931).
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With the use of these matrix elements we wish
to determine the roots AE of the secular equation,
det (Vi;—AES;)=0. If arranged properly, all
elements of the determinant will be zero except
those in, and adjacent to, the principal diagonal.
The most convenient way of factoring the deter-
minant is the following.

We observe by inspecting (6) that a state
function characterized by M:M’; gives a non-
vanishing matrix element only by combination
with another state M ,;M’; if M;+M'j= M+ M'..
Thus if the states M M’ are divided into sets so
that, for each set, M4 M’ is constant, and if we
number the members of each set consecutively,
the determinant consists of diagonal squares and
hence factors immediately. Since there is but
one member, namely M=J, M’'=J’, in the set
for which M+4-M'=J+J’, this particular state
combines only with itself, and the corresponding
matrix element is a root of the secular equation.
Closer analysis shows that it is not in general
the largest root, but that it lies near the edge
of the pattern. It may therefore serve as an
indication of the magnitude of the splitting. Its
value is obtained, of course, from (6) by putting
M=M;=J, M';=M';=J’, which yields

2u? KK’
AEj= —— ——————— ©)
R (J+1)(J'+1)

This is a double root, because it results also
from the diagonal element of the state M= —J
and M'= —J'. (7) suggests at once the formula
for the linear Stark effect

KM
P
J(J+1)

and shows its relation with the interaction here
considered, since the greatest Stark displacement
is given by uFK/(J+1) which is very similar
to (7).

The arrangement of the elements in sets just
discussed causes the determinant to consist of
square blocks along the diagonal, increasing in
size up to the (2J+41)rst which has the maximum
number (2J+1) of rows and columns.® They

AE,=p

3We are assuming here that J'>J. There are thus

2
altogether 2 Z n+ Q27 —2J4+1)2T+1)=2J+1)(2J'+1)

n=1

rows.
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Fic. 1. Splitting of energy levels on approach of two
molecules, one in the state J=K =1, the other in state
J'=K’'=1 for the upper diagram, J'=K’=2 for the lower
diagram. Light lines indicate single levels, heavy lines
double levels. The arrow heads on the vertical lines mark
the allowed transitions (40 in all).

continue to have this size up to the (2J'41)rst
block and then decrease again. The entire deter-
minant is symmetrical about the midpoint of
the principal diagonal. Hence all roots, except
those arising from the central block, are double.

In the general case, many of the roots are
irrational, and no closed formula can be given
for the splitting of the levels. But it can always
be computed with relative ease by the method
just outlined. As seen from (6), the lowest level
(J=0) undergoes no perturbation of the kind in
question, because its K value is zero. For the
case of two tops, with | K| = |K’| =1, each having
one quantum of rotational energy, the roots are

—'2) "'17 1_'\/3y +1) +2y 1+'\/3

in units u?/4R3, The first, second and fourth of
these are double, the others single. This situation
is illustrated in Fig. 1. In Fig. 1 we have also
plotted as another example the splitting of the
levels occurring when two molecules, one with
J=1, the other with J'=2, approach each other.
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That the present effect cannot take place for
molecules with only one moment of inertia is
clear. The eigenfunctions and energies of a sym-
metrical top go over into those of. a linear
molecule if we let K be zero. But then all the
matrix elements (6) vanish.

II

To calculate the second-order interactions be-
tween two symmetrical tops would not be diffi-
cult. But one would expect the result to be very
similar to that obtained by London! for diatomic
molecules. Let us then, in order to arrive at an
estimate of relative magnitudes, compare the
present results with those of London. For the
lowest rotational state, the second-order forces
are the only ones present. If /=1, J'=1, how-
ever, the first-order forces here computed are
generally predominant. To illustrate this we
recall that, for | K| = |K’| =1, (taking the second
largest root)

1 u?
[AED | == —, (®)
hil 2 R?
while
1 wt h?
[JAE® | =— —, B=——, (9)
6B RS 8724

Both these formulae are valid only as long as
the perturbation energy is considerably smaller
than the normal separation of the lines; i.e., if
AE<B. What happens on closer approach is
discussed by London. Now

] AE® l R3

|AE® | - 2

If we assume B=1.8 X107 ergs, u=1.5X10"18
e.s.u., this ratio is unity for R=7A. Thus for
distances greater than this, AE® predominates,
and AE® becomes rapidly insignificant in com-
parison with it. It might also be remarked that
at R=7A, AE is already greater than B, so that
there is in this example no range at all in which
formula (9) is both accurate and important.
This situation is quite general for large values
of K and K’, as may be seen from (7). ,

The equation of state of dipole gases is not
affected by the interactions considered in this
paper, except at low temperatures. It is known
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that for ordinary temperatures, at which most
measturements are made, the sum of state is suffi-
ciently well approximated by the classical phase
integral.

The influence on the broadening of molecular
band lines should be more appreciable. The
present inquiry has indeed been stimulated by a
suggestion due to Watson* who concludes, on
the basis of a survey of experimental data re-
garding pressure effects, that the lines of some
polyatomic molecules seem more effectively
broadened than those of linear ones. The experi-
mental data are as yet very qualitative. Great
difficulties arise from lack of resolution of the
lines and from the fact that an exact assignment
of quantum numbers has not been achieved.
Moreover, in the case of parallel type bands,
where the structure is most intelligible, the band
lines are composite, consisting of a superposition
of lines for all values of K. Since the splitting of
the levels is proportional to K, the broadening of
a spectral line is due to a superposition of pat-
terns of the type shown in Fig. 1, but on different
scales. For each value of K, the actual pattern is
further greatly complicated by the velocity effect.

To get a rough measure of line widths, we
first calculate the average spread of a pattern for
given J, J', K, K’. Let the roots of the secular
determinant whose matrix elements are given
by (6), if measured in units of

u? KK’
R J(J+1)T (T +1)

be denoted by €, €, - - €, where

n=(2J+1)(2J'+1),

and each root is counted as many times as it
occurs. Then the secular equation becomes

det (Vi;j—edyy) = ﬁ (e—e;)

=1

=¢"—ae" b ?— - - +x=0. (10)
The form of the determinant shows at once that

a= Zei‘—“ Z V“

¢ W. W. Watson, J. Phys. Chem. 41, 61 (1937), especially
symposium discussion in later issue. We wish to express
our thanks to Professor Watson for many interesting
discussions.
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But the sum of the diagonal elements of (6) is

J J’

z

Mi=—J M'i=—J'

2M¢M/1;=

We see thus that there is no shift in the weighted

mean of the perturbed energy levels. Next, let

us find the root mean square displacement.

Consider the coefficient b of (10).
b=2(VuVii— Vi)

i>7

=%ZeiZ€j—%Zeiz= —%Zegz. (11)
) 7 1 k)
On the other hand,
2(ViViy= Vi) =2X3VuViy— X3Vl =2 Vi

>7 Wi i >7
If now we insert values from (6) we obtain

b=2 3 > MM MM ;-2 Y, M2M'%

Mi, Mj My, M’ M M';

-1 X (P-M2HT+M)JT?—M"*+T —M';)

M’ M
—3J(J+D) QI+ (T +1) (2T +1)
—i[(P+NQI+1)—3J(T+1)(2J+1)]
XLIT24+T) QT +1)=3T' (T +1)(2J'+1)]
= —1J(J+1)QI+1)T (T +1) (2T +1).

By reason of (11), this expression, if multiplied
by —2, is the sum of the squares of all the roots.
To get the root mean square spread of the levels,
we divide by # and extract the square root. Hence

(Dart=[3IT+DT T+,
KI
E 2 AV"—
LaEY] ( ) R [JT+1D)T (T +1)7]

(12)

Inasmuch as the present type of interaction
causes no mean shift, and is proportional to R,
it is very similar to resonance forces between
atoms. But if spectral lines are broadened by
resonance interactions for which the potential
has the form

AE=+B/R3,

the lines are known® to have an approximate

5 H. Margenau and W. W. Watson, Rev. Mod. Phys. 8,
43 (1936).
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half-width Avy=~4x2B/h- N, where N is the num-
ber of atoms per cc. Now while it is indefensible
in detail to identify the splitting patterns calcu-
lated in part I with any pattern which has the
same standard deviation, an approximate esti-
mate of the line width may certainly be obtained
by identifying the constant B in the law for
resonance forces with the constant

(E)éﬂ—leK’l[J(J+1)J’(J’+1)]‘*
3 h
in (12). We find

Au;zﬂ%N[KK’I[J(J—{—I)J’(J’—I-l)]—*. (13)

This is, approximately, the line width caused by
the effect here considered. Its isolation from
other effects is, of course, an idealization, since
line widths due to various causes may not be
simply added. But at lower pressures it is likely
to be the dominant cause of line broadening in
polyatomic molecules.

Formula (13) refers only to one set of values
J, K, J', K’, whereas a spectral line involves two,
the one just mentioned, and J41 or 0, K+1 or
0, J', K'. The diffuseness of both will appear in
the line. The exact manner in which they are
to be combined is complicated. For the present
purpose it will suffice to regard the quantum
numbers appearing in (13) as mean values for
the two states in question, since they do not
differ by more than unity. The breadth is seen
to depend on J, J' in a different way than it does
for linear molecules.®

In any practical application of formula (13)
to the spectra of polyatomic molecules one is
confronted with the difficulty that the quantum
numbers are not in general known, and that a
single line may involve numerous different values
of K. It will be observed, however, that the factor
|KK'|[J(J+1D)T'(J'+1)T* is always smaller
than unity and has a weighted mean around %
Remembering this, the effect (13) is found to be
about 20 times as weak as the self-broadening
of atomic resonance lines.

6 Line widths for linear dipole molecules were discussed
recently by W. W. Watson and H. Margenau, Phys. Rev.
51, 48 (1937).
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For NH; at atmospheric pressure, the value of
Avy=~37%(u2/h) N comes out to be 4.5 X 10! sec.™!
=1.5 cm™L Cornell,” in ‘measurements made in

7S. D. Cornell, Phys. Rev. this issue. We are indebted
to Mr. Cornell for the use of his material before publica-
tion.
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this laboratory, finds an average half-width of
1.45 cm™ in the 7920A band of NHj, and of
0.81 in the 10,230A band. The agreement as to
order of magnitude is gratifying in view of the
present inaccuracies in both experiment and
theory.
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Vapor Pressure of Caesium by the Positive Ion Method
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The positive ion currents from pure tungsten filaments
in saturated caesium vapor at bulb temperatures from
—35°C to +73°C were measured for filament temperatures
from 1000° to 1800°K. The results were corrected for the
cooling effect of the leads and for photoelectric emission
from the caesium film on the platinum deposited on the
bulb which was used as an ion collector. The vapor
pressures in mm of Hg are given for solid Cs (T"<302°K) by

IN some early studies of the effects of caesium
vapor on thermionic phenomenal'? it was
observed that with a negatively charged cylinder
surrounding a hot filament, positive ion currents
were obtained which are independent (over wide
ranges) of filament temperature and of voltage,
but increase rapidly as the caesium vapor pres-
sure is raised. These results were interpreted as
indicating that every caesium atom which strikes
a filament (above about 1200°K) is converted
into an ion. The ion current thus serves as a
measure of the pressure.

The vapor pressure p of caesium, in baryes,
was found to be accurately expressed (in a
temperature range from 0 to 40°C) by the
equation

log1o p=10.65—3992/T. 1)

The experimental data and the details of the
method by which this equation was obtained
have not been published.

* Dr. Taylor died January 22, 1937.

1]. Langmuir and K. H. Kingdon, Phys. Rev. 21, 380
(1923) and Science 57, 58 (1923).

?]. Langmuir and K. H. Kingdon, Proc. Roy Soc.
A107, 61 (1925).

logi0ps=10.5460—1.00 logo T'—4150/T
and for liquid Cs (7">302°K) by
logio pr,=11.0531—1.35 logio T—4041/7.
The vapor pressures given by these equations are be-
lieved to be accurate to within one percent from 220° to

350°K, within 3 percent up to 600° and within about 8
percent at 1000°K.

These results have been criticized by Rowe?
who compared them with measurements of
Kroner* in the range from 250° to 350°C.
Rowe found that Kroéner’'s data could be ex-
pressed by

10810 Prom=17.165—3966/T, 2)
while Eq. (1) expressed in the same units is
logm Pmm = 7.525— 3992/T (3)

The Langmuir-Kingdon (L-K) values of
Eq. (3) are greater than those calculated from
Kroéner’s data by a factor that varies from 1.85
at 27°C to 2.02 at 327°C. Rowe believed that the
positive ion method is at fault, and that the
discrepancy can be explained by assuming that
the caesium ions that leave the filament have a
double charge.

More recently Taylor and Langmuir® have
measured the limitations of the caesium ion cur-
rent by space charge in a cylindrical collector.

3 H. Rowe, Phil. Mag. 3, 544 (1927).

¢ A. Kroner, Ann. d. Physik (4) 40, 438 (1913).

®J. B. Taylor and I. Langmuir, Phys. Rev. 44, 423 -
(1933) ; see especially p. 442.



