CORRECTION FOR RESOLUTION OF SPECTROMETER

997.641A) and that difference as known from
the other pairs containing it. The difference
cannot be accurately found from the pair at
871.396 and 865.435 inasmuch as the first line
is really double. Twenty new lines have been
classified. These locate fourteen new terms. The
complete list of classified lines and the complete
term table are listed in Tables IX and X,
respectively. Using the conversion factor 1.2336
X 10~* for changing cm™ to electron volts the
ionization potential is 69.69840.003 volts.
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The relation between the theoretical intensity function
of a continuous spectrum and the intensity measured with
an ionization chamber (or counter) and a spectrometer, is
discussed. It is shown that while the problem of correcting
the observed intensity for the finite resolution of the
spectrometer does not always have a mathematically
unique solution, the requirement that the theoretical
intensity have a smooth graph is sufficient to make the
solution practically unique. On this basis, an approximate

INTRODUCTION

HE problem of correcting the measurements

of a continuous spectrum for the effect of

the finite resolution of the spectrometer has

apparently received little attention. It is known

that if I(\) is the intensity measured with an

ionization chamber or counter, and p(\) is the

theoretical intensity, the two functions are con-
nected by an equation of the form

+a(N)

I\ = p(ANFEHK(N, £)dE. (1)

—a(N)

The functions ¢ and K are positive and have been
determined for various types of instruments, but
the general nature of the relation thus established
between I and p has not been investigated.

solution of the problem is given, which involves the first
and second differences of a set of equally spaced measure-
ments. A second method of solution is discussed which
involves the scansion of a template of the measured in-
tensity wave-length curve by a photoelectric cell connected
to a recording galvanometer. This method has practical
disadvantages but illustrates several theorems derived
analytically in the earlier part of the paper.

Eq. (1) has usually been approximated by

IN) =a(\)p(N), (2)
+a(h)
where a(\) = K\, £)dg, )
—a(h)

but there are cases in which this is not a sufficient
approximation, e.g., some of the measurements of
continuous beta-ray spectra made for the purpose
of determining the mass of the neutrino.!

The validity of this approximation is readily
estimated as follows: let p,(\) and p_(\) be the
largest and smallest values, respectively, of
p(\+£) for |£] La(M). Then it follows from the
positiveness of K that

ap_g I< apy. (4)

! W. J. Henderson, Proc. Camb. Phil. Soc. 31, 285 (1935);
E. M. Lyman, Phys. Rev. 51, 5 (1937).
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This inequality can be given a graphical interpre-
tation: through any point P of the I, \ curve,
draw a straight line parallel to the \ axis, which
extends a distance a(\) to either side of P. Then
the graph of a(A\)p(\) will intersect this line. If
the point P traces the I, X curve, the ends of the
line will trace two other curves. It cannot be
proven rigorously that the graph of ap will lie
between these two curves at all points, but it will
be seen below that it is safe to assume that this
will be the case if the spectrum is a continuous
one. The two limits thus obtained for ap may
differ by more than the experimental error in the
measurements of I; if this is the case, then Eq.
(2) is usually not a sufficiently good approxima-
tion. It is ordinarily difficult to diminish the
difference between the two limits, since this

depends on the spectrum and on the resolving.

power of the spectrometer. The error in the
measurement of I on the other hand, can be
decreased with comparative ease; it may there-
fore be desirable to work under conditions that
invalidate Eq. (2), and to devise more elaborate
methods of calculating p from 1.

GENERAL THEORY oF EqQ. (1)

If Eq. (1) is considered as an equation for
determining p in terms of I, a number of general
theorems concerning its solutions may be proven.
It is easily seen that its solution is not unique
unless certain data analogous to boundary con-
ditions are available. To see this, it may be noted
that if f is the difference of two solutions of Eq.
(1), then it must satisfy the homogeneous
equation

+a(\)
0= f FO+HEQN, B, 5)

—a(\)

and conversely, if f is a solution of this equation,
and I a solution of Eq. (1), then I.=1I,4+f will be
another solution of the latter. Of course, it might
be that Eq. (5) has no solution other than f=0,
but this does not seem likely. As an example, let
a and K be constants; then any periodic function
of N\, of period 2a, whose integral over one
complete period vanishes, will be a solution of
Eq. (5). This illustration seems to be typical of
the general case that arises in practise.

The characteristics of the practical case are
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(a) that K(\, £)=0 and has only a finite number
of roots when |£|=a()\), i.e., it does not vanish
identically over any whole interval of £; (b) that
both A—a(\) and N+4a(\) are monotonically
increasing functions of \. '

For convenience, let the interval on the \ axis
from N—a(\) to Ada(\) be called the 7 interval
at . It then follows from (a) that any solution of
Eq. (5) must change sign at least once in any 7
interval, or else be zero throughout that interval.
Confining attention to regular solutions, it follows
from this and (b) that if such a solution is zero
throughout one 7 interval, it is zero everywhere.
For, suppose that f is a solution of Eq. (5) that
vanishes throughout the 7 interval at Ao but is not
zeroin theinterval from Ao+a(Ng) toX1 >No+a(Ng).
It will then be possible to choosé \; so that f does
not change sign in the last mentioned interval.
Because of (b), there will then be an 7 interval
ending at \; in which f neither changes sign nor is
everywhere- zero. This possibility has already
been excluded, hence the supposition is false.

These results have several consequences for the
solutions of Eq. (1) : thus the graphs of any two
of its solutions will intersect at least once in every
7 interval. Therefore there is, practically speak-
ing, at most one solution that has a smooth
graph. More precisely, if two solutions differ by
an appreciable amount at even one point, at most
one of them can have a smooth graph. This
remark justifies the trial-and-error method of
solution used by Henderson.!

However, the requirement that p have a
smooth graph does not determine the solution
with mathematical uniqueness. In order to ac-
complish this, it is necessary that the values of p
be specified throughout one complete 7 interval.
This specification thus plays much the same role
in the theory of Eq. (1) as do the initial values in
the theory of differential equations. However,
this datum is not' always available, unless the
spectrum has a limit, beyond which the function
p vanishes identically. In this case, the precise
location of the limit need not be known (theo-
retically) in order to find the solution required.

There are several special examples of Eq. (1)
for which the general solution can be obtained.
The calculations that would be required for their
application to practical problems would be very
laborious and the effects of experimental error
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would be cumulative. Furthermore, it would
ordinarily be necessary to have recourse to the
method of trial and error in order to find the
correct initial conditions (or spectrum limit) and
this would multiply the labor. Consequently the
general solution will not be very useful, even
when found, and it seems preferable to develop
systematic approximate methods for finding a
smooth solution.

APPROXIMATE DETERMINATION OF A
SMOOTH SOLUTION

The remaining considerations of this paper will
be based on the assumption that ¢ and K are both
independant of \, so that Eq. (1) becomes

+a
1= [ s0+pK@a (LD
Then «, defined by Eq. (3) is a constant, and it
may be supposed that the units of p and I have
been so chosen that its value is unity. The
following definitions will also be useful :

+a
n= f LK (D),
- (6)
g=1 f (e— K (H)dt;

both [7] and { are less than a. If the function K
is symmetric, 7 will be zero. The quantity ¢ may
be called the half-width of K. It will be supposed
that measurements have been made at equally
spaced intervals of N: N, =No+nb, I(\,) =1,, etc.
It is next necessary to formulate the require-
ment that p have a smooth graph in such a
manner that it can be utilized analytically. It is
characteristic of a smooth curve that it can be
approximated by parabolas over relatively long
intervals; hence it may be required that if

p(N+x)=p(N)Fxp' (N + 327" N +R(N, x),  (7)

then |R(\, x)| <e whenever |x|<a+bd, (8)

where € is a negligible quantity. It is always
questionable whether, for a given I, there is a
solution that satisfies this requirement. If there
is such a solution, then the graph of I must be
approximable by a parabola in any interval of
length 26, with an error less than e. It is very
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likely that this will also be a sufficient condition
for all spectra that can properly be classed as
continuous with respect to the resolving power of
the spectrometer. In fact, this might well be
adopted as a criterion for this relation,? with the
additional proviso that b>a (see below), and
that e be the experimental error in*the measure-
ments of 1. -

The Eq. (7) may be used, with A=\,, to
calculate I,y1, I, and I,

I,p= Pn+("7+b)Pnl+%[(ﬂ+b)2+2§2]pn”y
In=Pn+npn,+%[n2+2§2]pn,,r (9)

Ini=pat(n—=0)ps'+3[(n—0)*+2{]pa"".
These equations are approximate, but the error is

in each case less than e. They may be solved
for py,:

pn="Tn—(n/20)AsLn+[(n*—2¢%) /26 ]A%,,  (10)
in which the abbreviations
AZIn:In+1“In—11
AZInzIn-}-l_ZIn_'_In—l’ (11)

have been used. The magnitude of the errorin p,
is readily estimated : it is certainly less than

(14a/b+4a?/b%)e.

If o>>a then the error will approach ¢, but it must
be recalled that b cannot be indefinitely increased
without affecting the validity of Eq. (8). In any
event, the errors of the calculation are not
cumulative, since the result for p, does not
depend on the result for pa—i.

A PHOTOELECTRIC METHOD OF APPROXIMATE
SoLuUTION

The foregoing method of approximate solution
leaves little to be desired in the way of com-
putational simplicity. The method to be dis-
cussed in this section is not as simple, and the
solutions obtained by it are subject to cumulative
errors. It is presented rather as an instructive
mathematical curiosity than as a feasible alterna-
tive to the previous method.

2 It should be noted that this criterion can always be
fulfilled for any spectrum if the measurements are suf-
ficiently inaccurate. Conversely, if the measurements are
extremely accurate, it becomes an exceedingly stringent
criterion. From this point of view, it may be regarded as
determining the desirable accuracy of the measurements
for a given spectrum and spectrometer.
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In Eq. (7), replace A by A—x, and x by x+¢,
and then substitute into Eq. (1.1). The result
will be

IN)=p(A=x)+(x+n)p (A\—x)
+3[ (428" (N —x), (12)

with an error that is less than e provided that
x <b. Next suppose that an opaque template of
the I, N curve is scanned by a photoelectric cell
connected to a recording galvanometer. The
ordinate of the trace, G, will be a function of \
that satisfies the equation

IN =GN +AG' N +BG"(N), (13)

where 4 and B are constants and the unit of G
has been conveniently chosen.

Egs. (12) and (13) suggest that one inquire
whether matters can be so arranged that

A=(x+n), B=3[(c+n)*+2{*]

The disposable parameters are

(14)

the period of the galvanometer: T'=2r/w sec.;

its damping constant: p sec.™!;

the speed with which the template is scanned:
s (units of N\)/sec.; ‘

the constant: x (units of \).

The quantities 7 and { are to be considered as
fixed, and of the four disposable parameters,
s and x are the most readily varied. In terms of
these quantities, the Eq. (14) becomes

(w+n) =2ps/(o*+p%),

Mobnte=s/rp), Y
whose solutions for x and s are
x=_""7ﬂ:2p§‘/<w2_p2)%y (15)

s= (o +ph)/(* =P},

the undetermined sign being the same in both .

equations.

In order that x and s shall both be real, it is
necessary that w>p; in other words, the gal-
vanometer must be under-damped, even though
p need not be zero. It can also be seen that
sT>2x¢: during the period of one free oscilla-
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tion of the galvanometer, an interval of the I,
\ curve must be scanned that is greater than the
half-width of K. These two requirements may be
contrasted with the characteristics of an ordi-
nary microphotometer, whose galvanometer is
critically damped (w=0) and whose scanning
speed is normally such that s7<(¢. It is thus
quite obvious that if the requirements of Eq.
(15) were imposed on a microphotometer in-
tended for use in registering line spectra, the
results obtained with it would not be very
sensible. This finds its mathematical explanation
in the fact that the graph of a line spectrum will
not satisfy the smoothness criterion unless e is
given a very large value, greater than the experi-
mental error in the measurements. The method
is thus restricted to continuous spectra.

Supposing that Eq. (15) is satisfied, it still
does not follow that G(A) and p(A—x) are
identical. The galvanometer trace will depend,
not only on I(\) but also on the initial conditions
of the galvanometer motion. Common sense indi-
cates that the galvanometer should be at rest
when the scansion begins: there should be no
‘‘galvanometer wiggles’’ in the trace. This con-
clusion is justified by a more detailed examina-
tion of the mathematics. It can easily be shown
from Eq. (15) that the trace of a free vibration
of the galvanometer is not a smooth curve unless
its amplitude is considerably less than e. This
remark serves to establish a convenient standard
for the estimation of smoothness. The further
theorem, that if both G(A\) and p(A—x) have
smooth graphs their difference is less than e,
cannot be proven with complete rigor, since
Eq. (12) is only approximate. Ignoring this
source of error, the theorem is valid. However,
this source of error may very-easily be important,
since it may result in systematically cumulative
differences between the calculated and theo-
retical p functions. Consequently the method is
not to be recommended for actual use, and is of
interest largely because of the close analogy
between the ‘‘galvanometer wiggles” and the
solutions of the homogeneous integral equation,
Eq. (5).



