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negligible except just above the threshold energy.
It is interesting to notice that the curve is similar
to the one calculated by Breit and Condon' for
the" square hole" and ordinary force, rather than
their curve for Majorana force. The difference
can again be ascribed to the effect on the l = 1
wave function of the presence or absence of a
small amount of V beyond r=ro.

In addition to the total cross section for
disintegration, we have computed the differential
cross section

1 3
f'(8) =—o„+—o, cos' 8,

4m. 47r

the distribution in angle of the protons produced
in the disintegration, where 0 is the angle between
the direction of the incident photon and that of
the ejected proton. This distribution is plotted in

Fig. 6 for different values of E, the difference
between hv and the threshold energy. Only the
curves for kv just above the threshold energy
show any great departure from the simple cos' 8

behavior.
A measurement of the absolute magnitudes of

'Breit and Condon, Phys. Rev. 49, 904 (1936). The
correspondence is also close with the curves calculated by
Way, Phys. Rev. 51, 552 (1937).

this disintegration cross section for photon
energies between 2 and 6 Mev will be of great
use in determining more precisely the form of the
neutron-proton binding force. For the higher
energies, this cross section is due predominantly
to the electric dipole transition, involving a
transition to a triplet P state of the outgoing
wave from the normal triplet s state. Therefore, it
depends on the l = 1 wave function, which is more
sensitive to the shape of the triplet potential hole
than is the s function. The absolute magnitude of
the cross section depends on the width of the
hole, reduction in ro causing a reduction in 0.. The
position of the maximum in the curve, however,
depends on the details of the shape of the
potential; the more sharply U falls to zero beyond
r = ro, the higher will be the energy for maximum o-.

The angular dependence of ejected protons for
photon energies close to the threshold gives
information as to the form of the singlet po-
tential, since this measures the ratio of magnetic
to electric dipole transition, and the magnetic
cross section depends on the singlet state. In
general, the deeper or wider this singlet po-
tential, the larger will be the range of photon
energy over which this angle dependence differs
markedly from the simple cos' 0 law.
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An expression is obtained for the size distribution function of the time intervals between
counts caused by a constant source and its daughter substance in equilibrium. The efficiency
of the detector and its finite recovery time are taken into account. The results apply also to
counts caused by bombarding particles and artificially radioactive atoms which they produce.

I. INTRQDUcTIoN

XPERIMENTS in which the time distribu-
tion of rays or particles from a radioactive

source is used to obtain information about the
source require for their interpretation a theory

of the distribution to be expected. We have
recently discussed' the fluctuations in the stocks
of substances present in a complex source, and

' Ruark and Devol, Phys. Rev. 49, 355 (1936); see also
Peierls, Proc. Roy. Soc. A149, 467 (1935); Adams, Phys.
Rev. 44, 651 (1933);and Schiff, Phys. Rev. 50, 88 (1936).
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fluctuations in the disintegration of its atoms;
but the distribution of disintegration times is
not the same as that of the counts they produce
in a detecting device of efficiency less than unity,
and of limited time resolving power. Here we

shall present a formula describing the distribu-
tion of counts produced by a long-lived substance
and its short-lived daughter, of decay constant ),
in equilibrium. The formula applies also to any
experiment in which a detector receives bombard-
ing particles from a constant source and particles
from a short-lived artificial radioactive source
produced by that bombardment. For conve-
nience, our discussion will be so worded as to
apply to this situation. The word "rays" will be
used to denote discrete entitities of any kind.

Consider a counter which is struck by F
primary rays per second, on the average. Back-
ground rays are included in this category, as are
also secondaries of any origin, except those due to
the breakdown of activated atoms. A ray is
included even if it does not enter the active
space of the counter, provided it produces an
activated atom which may later cause a count,
by ejecting an ionizing particle into the active
space. The chance that n primaries arrive in

any interval t is given by Bateman's formula

(Ft) "e r'/n!-
Suppose that on the average, in one second,

F~ primaries arrive and do not produce activated
atoms, while F2 primaries do produce them. We
refer to these two classes of primaries as class I
and class II, respectively. Each class is dis-
tributed in time according to Bateman's formula,
because a random selection from a Bateman
distribution is itself a Bateman distribution.
Similarly, the counts produced by each class
form a Bateman distribution; for example, the
chance that n class I primaries produce counts in

time t is
(Fghgt) ~e r'"&'/n!

Here h~ means the probability that a particular
class I primary will produce a count; h2 and h3

will denote similar probabilities for class I I
primaries and activated atoms, respectively.
These quantities include the influence of solid-

angle factors and of detector efficiency. The
recovery time of the detector will be neglected
for the present. We shall need two formulas
from our previous paper. '

II. CHANCE THAT THE INTERVAL FROM AN

A,RBITRARY INSTANT TO THE NEXT
CoUNT WILL ExcEED

During an interval (0, t), counts are in general
produced in several ways which may be classified
as follows. (1) Class I primaries arrive; (2) ac-
tivated atoms present at time zero disintegrate;
(3) class II primaries produce activated atoms,
some of which disintegrate before time t, and,
of course, some class II primaries produce
counts directly. Thus p contains three factors:

(1) The chance p~ that no class I pnmary causes
a count;

(4)pl —'exp ( Flhlt) ~

(2) The chance p2 tkat no activated atom present
at time sero causes a count. The chance that the
stock of activated atoms is j at time zero, and
that no atom of this stock causes a count in the
interval (0, t) is

S;e &" '[1+(1 ——
h3) (e" ' —1)) &

by Eq. (16) of our earlier paper. Summing over
all values of j, we get-

p&
——exp L

—F2hs(1 —e "')/X). (6)

(3) The chance ps that no count is caused by
class II primaries, or by tke atoms which they

(1) The chance of having a stock ofjactivated
atoms is

S;=x&e-*/j! (2)

where x is the expected stock, F2/X.

(2) The chance that r activated atoms decay
in time t is the same as the chance that r are
produced, or that r class II primaries arrive.

(Fmt) 'e—&2 &/r I

Now, we desire the probability that no count
occurs in an interval of length t, and two func-
tions of this kind must be considered. The first,

P, is the probability that the interval from an
arbitrary instant to the next count will exceed t;
the second, P, is the probability that the int'erval

between two counts will exceed t. These two func-
tions are the same for a simple source obeying
Bateman's formula, but in the present problem
they are distinct. P is the function usually needed
for interpretation of experiments, but we first
obtain p, because it is useful in getting P.
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activate .W.e first work out the chance that (a) r
activated atoms are produced, that (b) none of
the r primaries produce counts directly, and that
(c) none of the r activated atoms produce
counts. Summing the product of these three
chances over all values of r, we shall get pa.
Using Eq. (3), the product in question is

{.(»)'e "'/r'I (1—h~)" ~" (7)

where I is the chance that a given atom activated
during the interval in question does not produce
a count before time t. Let us consider this given
atom. Since we have specified that it is activated
during the interval (0, t), the chance it is ac-
tivated in a particular time element, t~ to t~+dt~,
is dt, /t.

If it is produced in this time element, the
probability it will not cause a count before time t

is 1 —[1—e "&' "&)h3. Averaging this over all
positions of the time of activation we have

1=1—h~+h3(1 —e "')/Xt. (8)

Putting this in Eq. (7) and summing the result
over r we obtain

pg=exp L
—F2t(hm+hg —h2h3)

+F2(1 —h, )hg(1 —e—"') /X$. (9)

Finally, by Eqs. (4), (6) and (9),

p=exp { —At —B(1—e "')/X$ (10)

where A =F~h~+ F2(hm+ h3 —h2h3); and
B=—F2h3(2 —h2).

III. THE DIsTRIBUTIoN oF INTERvALs BETwEEN
COUNTS

We now seek the probability P that no count
will occur in an interval t, following an initial
count at time zero. The initial count may be
caused by a class I primary, a class II primary,
or an activated atom. The probabilities of these
three causes are F~h~/D, Fmhm/D, and F2h8/D,
where D is the sum of the numerators of these
fractions. Let I'~, I'~, I'~ denote the probabilities
of no count in time t when the initial count is
due to a class I primary, a class II primary, or
an activated atom, respectively. Then

P= (F,hgPg+FmhgPe+FmhgPo)/D. (11)

Pg is identical with p, for the occurrence of a
class I primary at time zero does not affect the

probability that others will arrive in the interval
(0, t), or the stock of metastable atoms. Ps is
computed in the same way as p, with one excep-
tion; the production of an activated atom at
time zero changes the probability that no count
will be produced by the activated atoms present
just after time zero; therefore, to get I'& the
factor p2 occurring in p must be replaced by
another, ps2. The chance that the stock of
activated atoms is j just after the initial count is
the same as the chance that the stock is j—4

just before it. Therefore, in expression (5) we
must replace S; by S; &, summing over j from 1

to infinity, we find that

p»= LI —h3(1 —e "')3p~ (12)

and Ps= { 1 —ha(1 —e "')]p. -(13)
Furthermore, the computation of I'~ differs

from that of p in only one way. Our knowledge
that in the case before us the initial count was
produced by decay of an activated atom alters
the chance that there were j activated atoms
before the initial count.

To obtain this chance, S(j)„we proceed as
follows. Let U;(c) be the chance of a count due
to an activated atom in the time element (0, dt)
when it is known that the stock of activated
atoms was j before the count; and let U(c) be
the unconditional chance of a count due to an
activated atom in this time element. Now

U(c) =Z;S;U;(c), and according to 8ayes'
theorem

S U (c) = U(c)SU)' (14)

Also U;(c) =haj Xdt, and using Eq. (2) we finally
get

S(j),=S; ~. (15)

That is, S; ~ is the chance that the stock was j
before the initial count, so it is also the chance
that the stock is j—1 just after the count.
Therefore the computation of I'q is identical with
that of p, and substituting the values of Pg, Pe
and Po into (11) we obtain

P =p[1—F2h2hg(1 e "') Jj/D. (16)—
By somewhat similar methods it is possible to

deal with a'detector which has a constant re-
covery time r. If t»r, and f«1/r,
P'= {exp L

—A(t —r) —B(1—e "&' '~)/X]}
X L1 Fmh2h~(e ~—' e"')$/D —(17)


