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Only the odd powers of t& will have nonvanishing coe6cients. The coefficient of t& itself is zero, and if we consider values

of t for which t'4(1, then
2'

%2ZI=t& (cos q+ sin p)dq (—,', cos' p —I";- cos' q sin y ——,', cos q sin' y ——,'6 sin' y)
0

2n

dp( y e cos p+ s cos y sin y —
4 cos y sin y —s cos y sin3 y ——,'6 sin y)

0

=m-/8t",

(b) As t~i, I becomes infinite, as may bc seen from inspection. The infinity is due to the behavior of the integrand near
p=0, and it is therefore obvious that I becomes infinite in the same way as

2'J= cos gdq (1 —t& cos p) &=const. t&F(-,', z, 2, t). (See "G".)
0

If t~1, J behaves as —t& log (1 —t), which is positive.
(c) Numerical integration yields positive values of I for values of t between 0 and 1. The following values of cI (c a

constant) show the run of the function:

t =0.09, cI=0.15; t =0.25, cI=0.80; t =0.64, cI=5.5; and t =0.95 cI=23.

It is therefore to be concluded that I is positive throughout the interval O~t~1, and that the integral Jp't&dtI(t) cannot
possibly vanish.

APRIL 15, 1937 PHYSICAL REVIEW VOLUM L' 5 1

On the Connection Formulas and the Solutions of the Wave Equation

ICUDOLE'H E. LANGER

Department of Mathematics, University of 8'isconsin, Madison, wisconsin

Part 1 gives a general discussion of asymptotic represen-

tations of the solutions of the one-dimensional wave

equation. The forms ordinarily used in the so-called

W. K. B. method are multiple valued and consequently
necessitate a consideration of the Stokes' phenomenon,
in any region about a turning point, i.e., a point in which

the kinetic energy changes sign. Except under restrictive

hypotheses they give no description of the solutions near

the turning points. The author's method for representing

the solutions of such differential equations by means of

single valued functions is discussed, and the formulas

applicable to the wave equation are given. These formulas

are usable over the whole of an interval which includes a
turning point. The Stokes' phenomenon is not involved.

It need be considered only if expressions of the older type
are desired, and then the connection formulas of the

W. K. B.method are immediately evolved. An appropriate

formal development of the solutions of the wave equation

as power series in h is given.

Part 2 deals with the radial wave equation for motion in

a central field of force. Both the attractive and repulsive
Coulomb field are considered. It is shown that the applica-
tion of the W. K. B. analysis to this equation as it has
generally been made is uncritical and in error. The solution
commonly identified thereby as the wave function is in

fact not the wave function. The "failure" of the W. K. B.
formulas, and the apparent necessity for modifying them
by replacing the number l(l+1) by (l+-', )', has been noted
by many investigators. This is traced to the misapplication
of the theory. When correctly applied the theory naturally
yields the formulas which have been found to be called for
on other grounds.

Finally the case is discussed in which a turning point
lies too near the point r =0 for the W. K. B. method to be
effectively applicable. It is shown how the solutions are
describable in this case, the formulas given specializing,
when the field is an attractive field and the energy is zero,
to formulas which were given for that special case by
Kramers.

PART 1. THE ONE-DIMENSIONAL

WAVE EQUATION

with

2'
Q'(x) = I &—l'(x) I

h'HE wave equation for a mechanical system
of one degree of freedom is familiarly of the

form
d'u/dx'+ Q'(x) u =0,

m, E and V(x) representing respectively the
(1) mass, the total energy and the potential energy,
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and f(i standing for I(i/2z-, where fi is Planck's
constant. Kith the exception of a few special
functions U(x) the equation is not explicitly
solvable. In general, therefore, its solutions must
be studied through the medium of representative
functions which in a specific sense approximate
them. A well-known procedure for obtaining such
representations' consists in effect of substituting
into the diA'erential equation a series in powers of
k. With proper adjustments the coef6cients of
such a series may be successively determined, at
least theoretically, whenever x is restricted to an
interval upon which the function Q'(x) is bounded
from zero. The series so obtained, still with x
restricted as noted, represent the solutions in the
sense that they are approximations to them
which take on an asymptotic character with
respect to k when this symbol is regarded as an
arbitrary small parameter. Retaining only the
first terms of the series one finds in this way, if
Q'(x) is positive the real functions

W, (x; p, S) = SQ-*'(x) cos Jf Qdx+ 7, (2)
&1

and if Q'(x) is negative the real functions

W (x; n, P) = ~Q(x)
~

l n exp I (Q(dx
&1

+i(e v —f IQI&* (3)
&1

The letters n, p, y, 8 stand for entirely arbitrary
constants, while xI may, in each case, be any
constant for which the integral concerned is
convergent.

Upon any interval on which Q'(x) is positive,
the form (2) with each choice of its constants
represents some solution of the equation (1). If
there is also an interval upon which Q'(x) is
negative that same solution is represented
thereon by a form (3), with specific constants.
The property that they represent one and the
same solution thus correla, tes each form (2) with
a form (3) and vice versa, the correlation being
fixed by the association of their respective
constants; It is easily seen that to determine this

' J. Horn, Math. Annalen 52, 271 (1899); G. D. Birk-
hoff, Trans. Amer. Math. Soc. 9, 219 (1908); O. Blumen-
thal, Archiv. d. Math. u. Physik 19, 136 (1912); G.
Kentzel, Zeits. f. Physik 38, 518 (1926).

association much more is necessary than, for
instance, the mere substitution of i~Q~ in the
place of Q and the transcription. of (2) into the
form (3).For, in the first place, each of the forms
(2) or (3) becomes infinite at any point where
Q'(x) is zero, and hence neither form can be
retained during the transit from one to another
interval between which Q'(x) changes sign. In the
second place the differential equation of which
the functions (2) and (3) are solutions is

d' W/dx'+ I Q'(x) —(a(x) I W= 0
with

~(x) =3LQ'(x) 3'/4Q'(x) —Q"(x)/2Q(x).

For this equation any point where Q'(x) vanishes
is obviously a singular point. The functions (2)
and (3) are, therefore, multiple valued in the
region about such a point (i.e. , a so-called turning
point) whereas the solutions of the equation (1)
are single valued. Since the approximation of a
single valued function by a multiple valued one
can maintain only in a restricted region, it is
clear, that the mere existence of a pair of
relations

u(x) W+(x; y, ff),

u(x) W (x; n, p),

valid, respectively, in intervals on opposite sides
of a turning point, cannot be used as a basis for
inferring that the right-hand members are one
and the same solution of the equation (4) simply
because the left-hand members are the same
solution of the equation (1). The contrary is in
fact the case; the so-called Stokes' phenomenon.

The possib'ility of inferring either of the rela-
tions (5) from the other depends, therefore, upon
the so-called "connection formulas, " which as-
sociated the values n, I8 with the y, 8, and which
are, therefore, the quantitative analysis of the
Stokes' phenomenon. Such formulas have been
deduced from various considerations. Thus they
have been obtained for such cases as permit the
assumption that in a suitable interval including
the turning point the function Q'(x) is repre-
sentable with a sufficient degree of accuracy by a
linear function. ' They have also been found for

'H. A. Kramers, Zeits. f. Physik 39, 829 (1926); also
H. Jeffreys, Proc. London Math. Soc. (2) 23, 428 (1923);
also H. A. Kramers and G. P. Ittmann, Zeits. f. Physik
58, 217 (1929); and for an extension of the method, S.
Goldstein, Proc. London Math. Soc. (2) 28, 81 (1929).
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such cases as permit the assumption of a suitable
mode of passage around the turning point
through the complex plane. ' This latter method
unfortunately leads to no description of the
solutions in the immediate neighborhood of the
turning point. The problem can, however, be
dealt with, and with greater effectiveness, by a
method which eliminates completely the whole
source of the difficulty, ' namely the approxima-
tion of a single valued function by means of
multiple valued ones.

If in an equation of the form (1) x& is a turning
point at which the function Q'(x) has a zero,
which may be of any order, say v, the functions

U(x; n, P) =S(x) I~PJ „(()+PPJ„(&)I (6)

the turning point, but are adapted to do so in the
whole interval including the turning point. The
term "representation" is used to signify, as
heretofore, the leading term of an expression
which is asymptotic with respect to k.

As is evident the representations (6) are
explicitly relative to the point xI. At any other
turning point they are to be replaced by those
relative to it, which are again obtainable from
the formulas (6) with only the obvious modifi-
cations. It is a necessary restriction, then, that
the interval may not extend across or even
completely up to another turning point. Except
for this it may extend even to infinity, provided in
such case that the integral

are solutions of the differential equation ~I'I~( )rQ( )Id (10)
d'U—+ I Q'(x) —0(x) } U= 0
dx

with 8(x) =S"(x)/S(x).

The symbols J in (6) stand for the Bessel func-
tions usually so denoted, while

1 z

Qdx, S(x) =Q '*(x)&'* &. (9)
v+2 ~

The differential equation (7) resembles the
equation (1) on any range of values for which the
function 0(x) is small relatively to Q'(x). It can
be shown that this includes any range on which
representation of the solutions of (1) by forms

(2) or (3) is possible. Beyond that, however, the
range need not exclude the turning point xI, for in
the neighborhood of this point, as may easily be
verified, the function S(x) is bounded from zero.
Since the turning point is, therefore, an ordinary,
nonsingular point for the equation (7), the
functions (6) are single valued, and are thus
evidently suited with a distinct advantage over
such functions as (2) or (3), for instance, for the
role of approximations to the single valued
solutions of the equation (1). They are not
restricted to yield representations of the solutions
of (1) in intervals on the one or the other side of

'A. Zwaan, Dissertation (Utrecht, 1929), see also E. C.
Kemble, Phys. Rev. 48, 549 (1935).

4 R. E. Lankier, Trans. Am. Math. Soc. 33, 29 (1931),
also 34, 447 (1932), also Bull. Am. Math. Soc. 3'7, 397
(1935).

3Q

(a
cos

I
+ri

I J&&3(8—i
(vr

icos
I

ri l~ &(:&(6)—
&3

(11a)

with $=J;, Qdx, and g an arbitrary constant on

converges, when extended over the interval, with
the permissible exception of a neighborhood of xI.

Since the representation of a solution of Eq. (1)
by a form (6), if it holds at all thus holds to the
left, to the right and at the turning point, no
question of connection formulas arises in associ-
ation with it. The Stokes' phenomenon is there-
fore obviated, unless, to be sure, representations
in terms of the more familiar functions (2) or
(3) are desired. In that case it is merely necessary
to replace the Bessel functions in (6) by their
appropriate asymptotic expressions which are
available from the literature of the Bessel func-
tions. If that is done the connection formulas
associating the forms (2) and (3) appear auto-
matically and without resort to additional
restrictions.

In the usual case the wave equation (1) in-
volves a function Q'(x) which has a simple zero
at xI. With the positive direction of the x axis
chosen so that (x—xq) has the same sign as Q'(x),
the form (6) becomes more explicit, the general
solution of the equation (1) being represented by
the formula
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the range —x/2 (g= vr/2. This form is real when

(x—x&) is positive or zero. When (x—x~) is
negative it may be rewritten so as again to avoid
the use of imaginaries in the form

(12a) evidently leads to the connection formula

&1

IQ(x)I lexp — IQIdx

8{&I
s(x) 7r sin Y/

' Iy/3(
I ( I ) ~2Q l(x) cos Qdx ——, (14)

&1

+2 cos
I

——
rl }X,p(I(I)

wit I&I =I;* IQIdx. These formulas describe
u(x) over a whole interval including xq. In
subintervals lying completely on one or the other
side of xI the Bessel functions admit of asymptotic
representations, the substitution of which results
in the formulas

(a) u(x) -2Q &(x) cos {$ —(x/4) +g },

(b) u(x) IQ(x) I-l{2sing e'&~ +cosy e-'&~},
(12)

&I

IQ(x)I l 2 sin g exp IQIdx

p&I

+cos g exp —
Jl IQIdx

S 7r
&—2Q l(x) cos Qdx ——+q, (13)

which are appropriate, respectively, when (x—x&)

is positive or negative. It is clear that in (12b) the
term in the negative exponential is negligible
relatively to the other, except when q is numeri-
cally very small.

The formulas (12) clearly involve the con-
nection formulas appropriate to (2) and (3), for if
the phase of the solution u(x) dictates for g in

(12a) a value differing appreciably from zero,
this value substituted in (12b) leads to the
connection foi mula

which is central in the so-called W.K.B. method
of dealing with the equation (1). Near the
turning point the descriptions of the solutions to
which either (13) or (14) apply are obtainable
from the formulas (11a) or (11b) with appro-
priate values of g.

It must be born in mind that the formulas
here in question are all in a sense approximate,
and not exact. On that account it is essential that
inference of the one representation from the
other in the relations (13) or (14) be made only in
the directions indicated by the arrows. A com-
parison of formula (12a) with experimental or
other data can suffice only to determine the value
of g approximately. This fact is of dominating
importance when the distinction between "q
equals zero" or "q nearly equals zero" is in
question, for in the former case the first term in
(12b) is absent, while in the latter it is present
and then necessarily of dominant importance
when x is sufficiently remote from xI. The arrow
in (14), therefore, may not be reversed. On the
other hand, since an arbitrary multiplicative
constant factor may be inserted in or removed
from u(x), the value of g is identifiable from (12b)
only when the second term is not entirely over-
shadowed by the first, namely when q =0. Hence
one may not reverse the arrow in (13).'

The deduction of power series in 5 which are
asymptotic to u(x), and of which the forms (2) or
(3) are the leading terms is familiar, as has
already been mentioned. It is to be noted that
such series with the forms (6) as leading terms
may also be formally derived. Let the expression

U'(x)A(x, h')+ U(x)B(x, 5'),

The case in which there is no other turning point
to the left of xi requires special mention. For in
that case the wave function, i.e., the solution
u(x) which remains bounded for all x can be
given by (12b) only with g=0. This value in

'The case in which two turning points lie too close
together for application of the formulas (13) and (14)
requires independent consideration. Cf. S. Goldstein,
Proc. London Math. Soc. (2) 33, 246 (1932); W. Voss,
Zeits. f. Physik 83, 581 (1933);R. E. Langer, Trans. Am.
Math. Soc. 36, 90 (1934), and Bull. Am. Math. Soc. 40,
574 (1934).
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in which

A(x, l4') = Pn;(x)h'&'
j=o

with any chosen constants as the lower limits of
integration. It is to be noted that the formulas
(16) are convergent even when x is the turning
point.

B(x, h, ') = QP;(x)f4",
j=o

be substituted for 44(x) in the equation (1). It is
found then, if

1
0'(x) =—e'(x) +e(x),

h2

PART 2. THE RADIAL WAVE EQUATION

In the case of motion in a central field of force
the general wave equation in spherical polar
coordinates permits a separation of the variables. '
If the'radial component of the motion is desig-
nated by f(r)/r, the wave equation for P(r) is
thus found to be

that

2qP
U(x) {

28 — —2qo !A'
l4' )

with

dV/«'+ Qp'(r) 0 =0

2m Ze' l(l+1)
Qo'(r) =-—E+——

h2 r r2

(17)

( ql2

+{ 8 ———qp! A+B"+8B
h2

+ U'(x) {2B'+A"+8A } =0.

2P = —n;" —8n;, J 1 ) 2 ) 3 ) ~

Thus, one obtains formally the expansion

44(x) = U(x)+ U'(x) Qn (x)h"
j=l

If the coeKcient of each power of k2 which
multiplies either U(x) or U'(x) is set equal to
zero, the choice no ——0, Po

——1, is seen to be
permissible, while the subsequent coe%cients
must satisfy the relations

2gPn +2gigg'n; =P; i"+8P; 4

+(28 2gp)n; y+(8 gp')n;

With thecustomaryinterpretation of the symbols
the formula (18) implies the field to be an
attractive field, since the potential energy is
given by the term —Ze'/r. The case of a repulsive
field may be included in the discussion by the
simple expedient of admitting for the charge Z
negative values as well as positive ones. The
variable r representing radial distance is, of
course, restricted to be positive.

Structurally, the equation (17) bears evident
features of resemblance to the equation (1).
Insofar as the writer is aware, the degree of this
resemblance has hitherto been regarded without
exception as sufficient for assuming the out-and-
out applicability to the equation (17) .of the
formulas deduced in the foregoing discussion,
especially of the formula (14). The first point at
which QpP(r) is zero is found directly to be

+ U(x)pp (x)h" (15) (a) pi=
j=l

in which the coe%cients are given in succession
by the formulas

l(l+ 1)l'4'

2El(l+1)5'i '
mZe' 1+{1+

mZPe4

if Z)0, 1/0, E=—0,

2(8—Qp)n; i'+(8' —9p')n; 4

1 P' +P; l"+OP; l
n;(x) = —

il
— — dx,

2gg(x) ~ gl
(16)

(b) p4=
Ze'

f 2El(l+1) l4'y &

!1+{1+—2E 0 mZ'e4

(19)

P;(x) = ——
~l (n,"+8n;)dx,

2~

if Z&0, E)0.
'Cf. , for instance, T. Sexi, Zeits. f. Physik 99, 751

(1936).
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d'+/«'+ I Qp'(~) «(r) I += 0 (2o)

When Z(0, E(0, Qp'(r) does not vanish at all,
and when Z&0, E(0, it vanishes a second time,
namely at the point which is given precisely by
(19b). The case )=0 for an attractive field
stands out as exceptional, for the pole of Qp'(r) at
r=0 is then of a different sort than otherwise,
while the zero otherwise given by (19a) is then
entirely absent. With the point p& used in the
place of x&, and with r and Qp(r) replacing x and
Q(x) the relation (14) has been commonly re-
garded as applicable to the equation (17), and to
describe the wave function for that case. ' This
procedure, however, soon leads to a difficulty.
The resulting formulas were found by Kramers
to give an incorrect phase for the solution unless
the number I(I+1) is replaced by (I+—,')', a
modification which is tantamount to raising the
potential barrier. Young and Uhlenbeck found
the same modification requisite, both if the
Balmer formula is to be obtained, and if the wave
function is to vanish to the proper degree at r =0.
This "failure" of the W.K.B.method, i.e. , to the
extent that the change in question is requisite,
has been generally verified both in studies of
attractive and repulsive fields. No explanation of
it seems to have been given, though that can be
done very simply to the following effect. The
fault lies not in the method but in the application
of it. The commonly accepted assumption that
the equation (17) is of the form (1) as it stands
is, namely, incorrect. The formula (14) is at best
only restrictedly applicable to the equation (17),
and when it is applicable it describes a solution
which is not bounded, i.e., which is not the wave
function.

The functions which constitute the several
members of the relations (14) and (13) are
solutions of the differential equation

representing the solutions of the latter by means
of those of the former, fails, of course, near the
points where Qp'(r) becomes zero. It fails also,
though this seems to have been overlooked, near
r =0, for at that point the function ~p(r) becomes
infinite similarly to Qp (r). The relation (14),
therefore, though it can represent a solution of
the equation (17) in suitable intervals, cannot do
so in an interval which actually reaches up to the
point r =0. It follows at once from this that the
vanishing of the left-hand member of (14) at
r=0, gives no ground for concluding that the
solution of (17) which is elsewhere represented
by (14) also vanishes at r=0. That is in fact not
so. The solution elsewhere represented by (14)
becomes infinite at r=0, and so is not the
wave function.

Let the variables in the equation (17) be
changed by the substitution

r=e, P=e*"u. (22)

The domain of the variable becomes then
—~ (x(~, and the resulting equation is found
to be

with

d'u/dx'+ Q'(x) u = 0 (23)

2m
Q'(x) = IZ e'~+Ze'e'I —(I+—', )'. (24)

k2

Now this equation is obviously of the form (1).
Its turning points computed from (24) but
expressed in terms of r, are found to be

(E+-')'h'
(a) r, =

2E(I+-')'h'q '*

mZe' 1+] 1+.
E. mZ'e4

if Z)0, E=O,

with
3LQ'(r) O' Qo"(r)

«(r) =
4Q '(r) 2Qo(r)

(21)
(b) r~=

Z8

(25)

The resemblance between this equation and the
equation (17), and hence the possibility of

~ H. A. Kramers, Zeits. f. Physik 39, 836 (1926); L. A.
Young and G. E. Uhlenbeck, Phys. Rev. 36, 1158 (1930);
E. C. Kemble, Phys. Rev. 48, 560 (1935);F. L. Yost, J. A.
Wheeler and G. Breit, Phys. Rev. 49, 180 (1935);T. Sexi,
Zeits. f. Physik 99, 771 (1936).

if Z(0, E&0,

there being no turning point if Z(0, E(0, and a
second one given by (25b) if Z)0, Z(0. The
formulas (22) and (24) are found, moreover, to
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give the identities

e*&'Q—:(x)=—Q,-''-(r),

x r

Q(x)dx =— Q, (r)dr,

(26)

stances is questionable, and is generally less
satisfactory than otherwise. The formulas are of
course entirely inapplicable when there is no
turning point at all, namely when E(0 with a
repulsive field. In such cases the following
analysis of the wave equation may be resorted to.

The change of variables
in which r =s', /=slav, (28)

2m
Q~'(r) =

k2

Ze2
g~+

r

(~+-o-)'

r2
(27) gives to the equation (17) the form

(d'v/ds') + I X'qP(s) + (-,' —&((')/s'I v =0 (29)

The formulas (11), (13) and (14) are directly
applicable to the equation (23). If they are so

applied, and the original variables are reintro-
duced, the results are found to be those which are
formally obtainable by the direct substitution of
r, P for u and x, and of the r& and QP(r) of (25)
and (27), for x& and Q'(x). The difference between
this procedure and the incorrect one of substi-
tuting the pq and Qo'(r) of (19) and (18) for x& and

Q'(x), is seen to amount formally to precisely the
replacement of /(/+1) by (I+-,')'. It will be
noted, moreover, that for the formula (25a) the
case I = 0 is not exceptional as it was for (19a).

Since the applicability of the formulas as
described right up to the point r = 0 depends upon
their applicability to the equation (23) over the
infinite interval to x= —~, the validity of the
procedure is still questionable. It is, however,
easily established, for from the formulas (24),
(8) and (9) it is seen that as x—& —&x&

Q(x) = O(1), (I(x) = O(x—').

with X' =8mZe'/5'
P=2l+1,

(s) = 1+I&-s /Zeo
(30)

The solutions of an equation of this type are
known, however, to be represented by the
functions

- ~(s)

(
C( 7, ods

E 0 )
(31)

the symbol C8 signifying any Bessel function of
the order &P. The representations are valid from
s=0 over an interval which does not rearh up to
a zero of the function &po(s).

In the case of an attractive field (Z)0) the
value )2 is positive. The choice of Cp successively
as J2~+~ and Y2~+~ yields respectively the repre-
sentations, which in terms of the original vari-
ables are

Thus the integrand in (10) is of the order of x ',
and for such the integral to x= —~ converges.
The formulas relative to the right-hand turning
point (which may, of course, be the only turning
point) are similarly seen to be applicable even to
x=+ oo, for from the formulas (24), (8) and (9)
it is seen that as x~+ ~

Q(x) = O(e-.), ~(x) =-O(1),

0

A(r)- ——~~&+il Q« ~,
, Q (r) . 4 o )

r 2
I

f Q.dr
(

A(r) ———— I'o&+&~ Qo«
~

( Q (r) . E o )

(32)

whence the integrand in (10) is of the order of
e, and the integral to x=+~ is convergent.

Whenever the number / is small the turning
point (25a) lies very near to the point r=0, and
this is true also in the case of the turning point
(25b) whenever the energy is very large. The use
of the formulas (13) or (14) under such circum-

with
2m

Qo'(r) =
PL2

Ze2
8+ (33)

' R. E. Langer, Trans. Amer. Math. Soc. 37, 397 (1935).

Clearly »(&(r) is the solution which vanishes at
r=0, while Po(r) is a specific one which is
unbounded there. Upon substituting for the
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Bessel functions their familiar asymptotic repre-
sentations, the formulas become alternatively

)2y -**

41(r) —
I

—
I Qo *(r) cos Q2« —(I+ l)~,

(~i ~ p

(34)

These formulas are usable in intervals which
extend across and include the first turning point
(25a). When E(0 there is a second turning point
which limits the intervals of the present formulas,
and relative to which the analysis given previ-
ously may be applied. In the special case in which
E= 0 the formulas (32) and (34) for the solution
P)(r) reduce to formulas which were obtained for
that case by Kramers. '

In the case of a repulsive field (Z(0) the value
) ' is negative and hence the choices

(
12(+)I Il'I vd'

I
and Xo«+)I Il'I v«»

I

o E. o )
for the Bessel functions in (31) will avcid the
introduction of imaginaries. The resulting formu-
las, in terms of the original variables, are then
found to be

T
1

I Qol«,
(A(r)- — —io+

/
IQol« I

- IQo(r)l-

A(r)-
J I&I«»

t'z„„l IQ, I« I.. IQ, (r)l . E. o )

The interval upon which they are usable extends
from r = 0 outward, but when E(0 it must not
include or extend up to the turning point which
then exists. The substitution of asymptotic
forms gives the alternative representations

1 r

+)(r) —
I Qo(r)

I

' «p
I Qol«

(2~)
t

p

(36)

&.(r) ——
I

—
I I Qo(r) I

—' exp—
I Q I«

Finally, the substitutions

(2mB)l —Z ('2nze')

h E. B )
reduce the equation (17) to

rPQ ' I(1+1)—+1———
dp p p

Analyses of the equation in this form, both with
1= 0 and l / 0, have been given. "By comparison
with them the present analysis and its consequent
formulas may be found to have at least the
advantages of simplicity and of generality of
method.
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