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This paper is a sequel to the preceding one by Gronwall. In Part I it is shown that the

ground state eigenfunction, if it exists, cannot have the form &k= p ss+&'as "(p) cos ks,
y, k=0

where s=r&=(r~'+r~') &, and y is some constant. In Part II, it is assumed that the solution
of Gronwall's infinite system of ordinary differential equations (see preceding abstract) is to
be found by extrapolation from a finite system. Arguments are given to show that if the wave
function is finite everywhere except at the origin, then the expansion about the origin is of the

form p= p c&"&(s, p, s)(log s)", where the c'"& s are ascending power series in s.
R=O

ESEARCHES on hyperfine structure and on isotope shift by the writer' and his co-workers have
demonstrated that extremely good wave functions are required for significant quantitative

results. The chief bar to the finding of accurate solutions of the wave equation is its nonseparability.
This has not prevented, however, the construction of a serviceable atomic model, and this is due to
the predominant influence of the nucleus. In particular, isotope shifts are very small. Inside the
nudeus the situation is quite different, according to our present ideas, for the elementary particles all
have approximately equal masses, and the nonseparable terms responsible for "isotope shift" are not
at all negligible. It is, therefore, of considerable importance for the development of a satisfactory
theory of the nucleus that one study these nonseparable wave equations.

The equation which has received most attention so far has been the helium wave equation, since
there are but three particles involved. The mathematical theory of partial differential equations with
singularities, of which this is one, is as yet undeveloped, so that we cannot even say whether or not
quadratically integrable solutions exist. (The present paper is devoted to this question, and we shall

give arguments to show why a large class of quadratically integrable functions cannot be solutions of
the helium wave equation. ) So far, physicists have assumed that the Schrodinger wave equation is
soluble in general. The procedure has then been to guess at the form of an approximating function,
and to apply the modified Ritz variational method. This furnishes us with an upper bound to the
lowest eigenvalue. Hylleraas' has made extensive calculations to determine this upper bound for the
ground state of helium, and has shown that the least upper bound attainable w'ith his form of function
agrees very closely with the experimentally determined eigenvalue. Nevertheless, this is not com-

pletely conclusive by itself. One must be able to find lower bounds, and to show that the approxi-
mating functions converge to a solution of the wave equation.

Suppose that p is an approximating function, and denote (FIv)/v& by c. If we take the weighted
average over configuration space, we have

HP P dT = PHPd7'.

The mean square deviation is

[(e—(e),)'],= (e') —(e')„where (e'), = t p'(FI&p/&f&)'dr = ~~ (FIv&)'dr

' See, for example, Bartlett and Gibbons, Phys. Rev. 44, 538 (1933),and Bartlett, Gibbons and Watson, Phys. Rev. 50,
315 (1936).' E. A. Hylleraas, Zeits. f. Physik 54, 347 (1929); 65, 209 (1930).
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We have calculated' the root-mean-square deviation of e for the six-term wave function of Hylleraas
and found it to be 3.5 electron volts. It is our opinion that this is a large deviation, although it might
be argued' that the difference between the approximating function and the exact wave function migh t
be small but yet have large second derivatives, so that this difference would be oscillatory over a
considerable portion of space.

Weinstein4 has suggested a method' for obtaining lower bounds. According to this, the lower bound
is ~, —I $(e —e,)'), I l, so that the spread between upper and lower bounds for the helium ground state
is 3.5 ev. Romberg' has developed an empirical method, which gives —(e'), '* as the "lower bound. "
The "lower bound" is then —1.45310, as compared with an upper bound of —1.45162, giving a spread
of only 0.08 volt. Now we must have (e'), ~e,~, and hence if the "lower bounds" keep increasing
steadily with improving wave functions, they will converge to the eigenvalue. So far, these "lower
bounds" have increased for the helium ground state, but, in the absence of a convergence proof,
there is no guarantee that they would continue to do so.

Even granting that a function p had been found which made [(e—e,)'j very small, which would
mean that c were close to a true eigenvalue over most of space, we still would not know how closely the
function y approximated the exact eigenfunction, and it is this information which we should like
to have.

In this paper, we attempt to construct functions which will be valid solutions of the wave equation
everywhere. As will be shown, great difhculties are encountered, one result being that the continuity
assumptions usually made in perturbation theory cannot be true if the helium wave equation is to
have a solution.

Since the work of Gronwall is our starting-point, we shall assume that this paper is read in con-
junction with his, and shall accordingly refer the reader to that paper for the definition of the symbols
used.

The wave equation is

4-+(5/~)4..+(4/~'»n'P)0„+(4/~')(6 +2 cot 2PP )+L&+(4f/~)j4 =o

(One might suppose that it would be of advantage to convert this into an homogeneous integral
equation by means of a Green's function. The problem is then to solve this integral equation, and this
is the sticking point. The Fredholm method is impractical, but one might attempt the method of
successive approximations. In order to use a Green's function such as 1/IC, one is (practically) forced
to expand it in a Laplace series. The function P will then be in an expanded form, which we might just
as well have assumed at the start. Again, the second approximation will usually be of the wrong
functional type, especially if the first approximation is taken as a Hylleraas function. M, e have,
therefore, avoided the integral equation method. )

PART I

Let us now try to find a solution of (1) of the form

P=Qg(u)gn+v n(u) =gn(~ P)
@=0

3 This possibility was pointed out to me by Professor Birkhoff, whom I wish to thank for friendly discussions of the
equation.

4 D. H. Weinstein, Phys. Rev. 40, 737 (1932); 41, 839 (1932); Proc. Nat. Acad. Sci. 20, 529 (1934).' Bartlett, Gibbons and Dunn, Phys. Rev. 47, 679 (1935). In this paper, we said that the methods of Weinstein (ref-
erence 4) and MacDonald seemed "dificult to justify rigorously. " Since then we have had a lengthy correspondence with
Dr. Weinstein, from which it developed that the argument depends essentially on the validity of the inequality
J'P(H —U)P]'dr~(W; —U)', (see Nat. Acad. paper, p. 530, Eq. (4)). This we have not been able to deduce without
assuming expansibility in terms of orthogonal functions.' W. Romberg, Physik. Zeits. Sowjetunion 8, 516 (1935); 9, 546 (1936).

~ T. H. Gronwall, Phys. Rev. Sl, 655 (1937). We shall refer to this as "G."
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Formal solutions of this type would be expected to exist, because the above equation involves s in
the manner of the ordinary confluent hypergeometric equation. If then, we substitute the series in
the equation and compare coeAicients of like powers of s, we find for the recursion formula

(p+y+2) (p+7+6)a&+'+ (4/sin' p) a&+'«+4(a&+'~v+2 cot 2pu&+'v) +Ra&+4fa&+' =0. (3)

y(y+4)a'+(4/sin' P)a +4(a's&+2 cot 2Pa'&) =0.

Expand a'= Pa'~ cos ky, and write a'" =t~"v. Then

y(y+4) k
~(1 —~)v„+ La+1 —(a+2)~7v, + — ———v = 0.

j6 2 4
(4)

This equation is similar to Eq. G(4). Exact correspondence may be achieved by making y=4yi —2&.

The solution of the above equation is

This is of the form F(a, b, c, t) with c—a ii= 0, an—d we wish to know its behavior as t—&1. Lindelof,
among otheI s, hRS shown that ln this case

~(~, &, ~, ~) =&(~) —Ã(~)/p(n} p(I )7 log (1—~)

where P(1) is Finite. A glance at G(9) shows that the variational integral will not exist unless the
coefficient of log (1 t) is zero. Thi—s will only be so if either a or fi is a negative integer or zero. We
thus have two possibilities: (1), (k/2)+(y/4)+1= n, (e—=0, 1, 2 ), implying y= 4n —4 2—h;—
and (2), (k/2) —(y/4) = n, or ad=2k+4—n Now the. exponent y must be the same no matter what
the magnitude of the term representing the electronic interaction. If this term were not present,
the solution of the wave equation would be

p —s—(i!&)(m+~2) —i
—2f P(~—u)i'+[2(~+w)l *"l

For this solution y = 0, so that k =0 Rnd n =0. A second exponent y = —4 is also possible for these
values of n and k. The exponent difference is integral, so that the second solution would involve
logarithms. It may be ruled out according to our general boundary condition (existence of the
variational integral).

For y =0, the solution is a' =aoo =F(0, 1, 1, t) =const. We may therefore put ao = 1. Now set P = —1
in the recursion formula.

5a'+ (4/sin' P)a'„„+4(a'ps+2 cot 2Pa'p)+4fa'=0

This is an inhomogeneous equation for a'. The homogeneous equation would correspond to (4) with

y = 1, which is not an eigenvalue of (4). Consequently, any solution of (5) which satisfies the boundary
condition will be unique. ' Such a solution is

a'= —(1/2)lI(1 —sm y sin P)i+(1+sin q sin P)lI+('1/2Z)(1 —cos p sin P}'*.

This reduces, when Z—+~, to the solution above for the separable case. If (6) be substituted in (5},
then (5) is seen to be linear in 1/2Z, so that one need only verify that the coeKcient of 1/2Z vanishes.
This is done in the Appendix.

' E. Lindelof, Acta. Soc. Scient. I'ennicae I9, 22 (1893).' See Courant, 3fethoden der Math. I'hysik, edition I, p. 277.
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The recursion formula with p =0 is

12a'+ (4/sin' p) a'«+4(a'ee+ 2 cot 2pa'e) +E+4fa' =0. (7)

The homogeneous part of this equation corresponds to (4) with 7=2, and this is an eigenvalue. In
order, therefore, that a solution satisfying the boundary conditions exist, it is necessary that the
inhomogeneity corresponding to the self-adjoint form of (4) be orthogonal to the eigenfunction of (4).
Expand (7) in Fourier series, obtaining

1
12a'"—(4k'/sin' P) a'~+4( a'" se+2 cot 2Pa "e)= ——~ cos 0p(E+4fa')d p

Now, if y= 2, then 0 =1 and n= 0, so that the solution of (4) is F(0, 2, 2, t) =const. The self-adjoint
form of (4) is

v(v+1)
[t'(1 —t)v']'+ ——tv =0.

Substitute a' '=t'm, find the equation for m and multiply this by t, and the result is

v(v+1)
[t'(1 —t)m']'+ — ——tvo= —(t'/167r)JI 4fa' cos y dy. (9)

We have already noted that w= const, so that if (9) has a "proper" solution, the equation

1 2%

t'*dt cos q fa'd p= 0
0 0

must be true. We show in the Appendix that this is not so, so that the grourtd state solntiort of (tl, ~f it
exists, is Not of tke form (Z). Indeed, it would be an accident if there were a solution of (9) of the
required type, for everything which enters is predetermined.

PART II

Since the above assumption as to the radial behavior of the wave function has been shown not to
yieM a proper solution, one must relax the restrictions. As a preliminary, it is convenient to consider a
new system of polar coordinates, which we shall call the IT system, while the system of Gronwall will

be termed the G system. The H system will be defined by the transformation

x=r cos 0,

y =r sin 0 cos y,
s=r sin 0 sin p,

0—0—m,

O~p~vr,

so that the x axis is the polar axis. In this system, the wave equation is

f„+(5/s)P, + (4/s' sin' 8)Q,„+cot yf, )+(4/s')(P 8+2 cot Ppg)

+ 8+ , +s[2(1+sin 0 cos q)]' s[2(1—sin 0 cos p)]l Zs(1 —cos e)'*
=0.

The corresponding variational problem is

&~
~[4/, '+ (1/s' sin' 0)P„'+(1/s') fg"-——,'(E —V)P"-]s' ds sin' 0 do sin p d y =C.
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We are particularly interested in the behavior of P near the singularity 8=0, which corresponds to
coincidence of the two electrons. Suppose P is expansible as an ascending power series in 8 at this

point, i.e.,

a& "&(sy)8"+~.

Substituting in the wave equation, we have

a"„+(5/s)u",+ (4/s') (a'"+' +cot pa"'+'„)+(4/s') (rn+y+2) (m+y+3) a~+'

8& 4
+~ E+ (nw' atm+1+. . . —0st) Zsv2

For m = —2, a'„„+cot ya'„+7(p+ 1)a'=0.

If $8 & has a definite value at 8=0, no matter from what direction the axis is approached, then a" is
independent of p, and y=0, —1. This means that P is finite" at 8=0 (except perhaps for s=0).

Along the y axis, one should expect the solution for small electronic interaction to be not very
different from that for no interaction, or in other words to be finite. The magnitude of the interaction
is determined by the value of the atomic number Z, which may be varied continuously in the above
equation, so that we should expect the wave function along the y axis to be finite in general.

If the wave function is finite and su%ciently continuous except at s =0, then a development of the
type G(10) is probably valid, since this is analogous to a Laplace series, for which corresponding
theorems are true. Let us therefore assume such a development and rewrite G(11) as follows:

2A(nn')
f„"+(5/s)P„'—(4/s') (2' —k) (2nz+2 k )P„+EP—„+'P ———$„'=0.

m's( —E)'
(10)

Make the substitution P„=(F"/s"') and abbreviations B(eN') = (2/") [A(nm')/( E) ']; n„=—(2m —')
X (2ns+2 —k), obtaining

F~ —(4u„/s') p"+[E (15/4s'—)]p"+p[E(nn')/s] p"'= 0.
n'

This system may be reduced to one of the first order by the usual device of taking F", as a new
dependent variable, which we denote as p".

Then

(dp"/ds) =p", (dp"/ds) = [(4n"+(15/4))/s']F" —EF"—P[B(ne')/s]p'". (12)

Infinite systems such as this do not seem to have been studied to any great extent. One would expect
that solutions could be found by regarding (12) as the limit of a finite system. That one would obtain
in this way all analytic solutions is, however, open to question, in view of the work of Ritt." "Ke
shall limit ourselves here to the extrapolation from the finite system (thus making the argument to
this extent nonrigorous). Such a system can be solved readily, according to the work of Pierce. '3

It is convenient to change the notation so that the equations have the same form as those of Pierce.
Set p'=x" and F'=x" ' i =1, 2

Then (dx" '/ds) =x", (dx"/ds) =[(4n'+(15/4))/s']x'"' ' Ex" ' —P[B(2i—1, 2j —1)/s]x'& '. —

'0 The exponent y= —1 gives an infinite variational integral, and must hence be excluded."J.F. Ritt, Trans. Amer. Math. Soc. 18, 27 (1917).
"See also the summary of work in this field by R. D. Carmichael, Bull. Amer. Math. Soc. 42, 193 (1936)."J.Pierce, Amer. Math. Monthly 43, 530 (1936).

(13)
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This can be written as

(dx'/ds) =P(821/S2)x' (0, l=1, 2 2N), (14)

where ~ —2
O2i 1, 2i=s

821, 2f 140' —+ (15/4) Es 82i 1, 2i——lsi

tl2', 2'—1 +2 —1, 2'—ls (j+ 2)

According to Pierce, the solution of the system (14) is expressible as a series of definite integrals, as
follows:

x'= P y;.2,
A=1

(15)

where
p

(16)

and the integration is to avoid the origin. One is also to start by setting yil ——c;, which are arbitrary
constants. For purposes of visualization, it is perhaps best to write down the matrix

(~' ) =

0 s2 0 0 0 0

O2l 0 O 3 0 Og; 0

0 0 0 s' 0 0

, O4l 0 O43 0 O4„0

The equations (16) may be set down in more detail:

S

y12 —— y2, 2—1d& (since 0;;= 91262 ),
Sp

(16a)

y2I =
Sp j=l

(02, 2j—1/t )y2j 1i 2 ldki— — (16b)

S

y3&,
—— y4», ldt, etc.

~ Sp

(16c)

The coeScients O2, 2, l are

021 = (4121+(15/4)) —811S—Es
Og3 = —Bl3S, etC.

Then
S S

y2' —1, 2= (82 1, 2~/h )y2, 1dt=) c2jdt=c2. (s —so),
0 Sp Sp

(17)

8

y2j, 2 = [921 1C1+021' 2C2+ 02' 2C2+ ' ' ](dk/$ )
Sp

4n&+ 15 4 —Et' C2) l — 82; l, 2, )tCg;. l dt t'
Sp i=1
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(1 1p t' s)N—(4a'+(15/4))
I I

—Z(s —so) .2t 1
I

log —lZ &2t &—»,—&'»—»
4s sp) sp) f=&

S S

y„, , = (8», , „/t')y», dt= y2;, 2dt,
Sp Sp

(19)

S

y2 3= (02 ly12+02', 3V32+''')(dt/t).
Sp

(20)

The general formulae are

S

$2j—1, i ~2j, i—1d~)
SO

(21)

S

y2, ;= [(4m+(15/4) —Et')y2; i, ; 4
—+ 82 —1, 22—4ty2& &; &]( dt/t ).

Sp k=1
(22)

Byapplying first(22) and then (21), we may proceed fromy22 3, ; 2toypt —2, 4+3or from y24 I, 'to
y» &;+2. By mathematical induction, then, we can find the form of all the y,~'s. From formula (19),
we see that y» & 3 a'+b——& log s+c's+d's2, where a', b', c', and d' are constants. Applying (22), we
have

A& 8& log s
3'», 4=—+ + C& log s+D'(log s)'(+ascending power series in s).

s s

The application of (21) now gives y» & 3 and this is of the same form as ypt —3, 3 except for higher
powers of s and log s. In a similar fashion, one may find from y» &, 2 the expressions for y», 3 and

ypj —3, 4 The same results hold, so that the x'in (15) will be ascending power series in t (or s), except

for logarithmic terms. This would imply that the wave function is of the form Pc'2&(s, P, p) (log s)2,
L=O

where the c&"'s are of the same nature as the 1'of Eq. (2). This conclusion is legitimate subject to two
assumptions: (1) that P can be expanded in a series of the type G(10), and (2) that the infinite system
of equations has qualitatively the same behavior as any finite system.

DISCUSSION

If, at the origin, the solution of the equation with a small electronic interaction were not very
difTerent from the corresponding solution of the unperturbed (separable) equation, then we should
expect that a solution of the form (2) would be possible. Since this does not appear to be so (Part I),
we must conclude that, if a solution of (1) exists, it differs essentially from the separable solution at
the origin. Hence we see that the ordinary continuity assumption of perturbation theory cannot be
generally legitimate, at least at such a singular point. .

Even though the eigenfunctions may exist, the continuity property does not always need to hold.
Rellich" gives an example in which the eigenvalues vary continuously when a small perturbation is
introduced, but the eigenfunctions do not.

For the present, then, we see that there are serious difficulties in the way of finding a solution to the
helium wave equation, if such exists. If the properties of continuity in the parameter are to be preserved,
then no solution can exist. If a solution does exist, then the continuity requirement must be aban-
doned, at least in certain regions of phase space. It is conceivable that retention of the continuity

"F.Rellich, Math. Annalen 113, 600 (1936). I am indebted to Professor Weyl for referring me to this paper.
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requirement except at the singularities may allow one to 6od a solution quadratically integrable over
all space. This is beyond the scope of the present paper, but is worthy of further investigation.

This research has been carried out at the Institute for Advanced Study, and the writer deeply
appreciates the opportunity to avail himself of its facilities. He wishes to thank the University of
Illinois for the granting of a sabbatical leave. Furthermore, he is grateful to Professor E. P. Kigner
for reminding him of Gronwall's form of the wave equation, and to Professor S. Bochner for fruitful
suggestions which led to Part I of this paper. The problem has a]so been discussed with many others,
to whom thanks are extended for their interest @nd encouragement.

1. Solution of Eq. (5},veri6cation
APPENDIx

Given: a'=a0'+(1/2Z)I'1 —cos q sin p)", where a0' satisfies (5) if Z= ~.
To show: a' satisfies (5) for any Z.
Demonstration: Let b'=a' —a0'.

& p= (1/2Z) 2 «s q «s p(1 —«s q sin p); b'q, = (1/2Z) g sin p sin p(1 —cos (p sin p)
eos q cos'p sin ppp= —(1/2Z)-,' cos q

2 (1 —cos p sin P) & (1—cos y sin P) l

1 sin2 p sin P COS P
ll y(p

= (1/2Z) 2 sin P — . +
2 (1—cos q sin P) & (1—eos q sin P) &

J 1 sins p+cos' s cos' p cos y(1+sin' p)
(23)

2 (1—cos q sin P}& sin P(1 —cos p sin P) &

2 cot 2pblp = —(1/4Z}(eos' p —sin' p) (cos q /sin p)(i. —cos q sin p). &, (24)
(23)+(24) = (1/4Z) 11—-', (1+cos y sin p)+3 sin p cos q )(1—eos p sin p)

—
&,

fa0= (1/4Z) j —2(1 —cos q sin P)
(23)+(24)+fa =(1/4Z) I —;;(1—cos ~ s n p) ~)= ——S .

Since (25) is the same as (5), the verification is complete. As stated in the text, we have needed only to compare the
terms involving Z.

Now, if h(p} is a function of period 2x,

I s 21r s0 21r

h(p)dq ——— II(2~ —
V }d~= h( —v)d V

0 2K 0

1 —t cos P 2~ 1. —t cos P
cos gdp . = cos +de

0 1+t& sin y o i —t& sin y
] —tk COS ~ « .2m 1 —t& cos (p+~/2)cos qdq = cos (q+a/2)d(q +~j2)

0 1 —t& sin q 1 —t& sin (q+~/2)

In particular,

Also,

I
2. Comyutation of t&dt cos qfaldq

0 0

f= L2(1+t& sin p) j-&+L2(1 —t& sin m) j l —(1/2Z}(1—t & cos y) &,

al = —(1/N) I (1+t& sin q) «+(1—t«sin q) &I+(1/2Z}(1—t~ cos q}~&

fa'= —1 —(1/2Z)'+(1/2Z~2) I(1—ts cos y) «p(1+t& sin p) &+(1—t& sin p)
+(1—t& cos y}' &L(i —t& sin q)&+(1 —t& sin q}~jI.

Therefore
1 —t& sin qI= fa' cos qdq =(1/ZV2) (cos q+sin q)dq

0 0 1 —t~cos ~

numerically. It is also useful to know how I behaves

~ ][1+,t&cos y+St cos' V+ —0t «s &+'

cos q sin q
—8»n' v)

cos2 y sin y —
q~ cos y sin y —16 sin g)+ ' ' ' l.

The quickest and most convenient procedure is to evaluate I(t)
near the end points t =0 and t = 1.

(a) For t=0, expand the integrand in a Taylor's series.
21I

V2ZI= (cos p+sin q)dq)L1 —-', t& sin p —St sin' v —
I.0t~ »n' v'

I(cos s =+sin &p)ds [1+', tl( —sin s+cos-s)+&(I cos

+t (xs COS
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Only the odd powers of t& will have nonvanishing coe6cients. The coefficient of t& itself is zero, and if we consider values

of t for which t'4(1, then
2'

%2ZI=t& (cos q+ sin p)dq (—,', cos' p —I";- cos' q sin y ——,', cos q sin' y ——,'6 sin' y)
0

2n

dp( y e cos p+ s cos y sin y —
4 cos y sin y —s cos y sin3 y ——,'6 sin y)

0

=m-/8t",

(b) As t~i, I becomes infinite, as may bc seen from inspection. The infinity is due to the behavior of the integrand near
p=0, and it is therefore obvious that I becomes infinite in the same way as

2'J= cos gdq (1 —t& cos p) &=const. t&F(-,', z, 2, t). (See "G".)
0

If t~1, J behaves as —t& log (1 —t), which is positive.
(c) Numerical integration yields positive values of I for values of t between 0 and 1. The following values of cI (c a

constant) show the run of the function:

t =0.09, cI=0.15; t =0.25, cI=0.80; t =0.64, cI=5.5; and t =0.95 cI=23.

It is therefore to be concluded that I is positive throughout the interval O~t~1, and that the integral Jp't&dtI(t) cannot
possibly vanish.
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On the Connection Formulas and the Solutions of the Wave Equation

ICUDOLE'H E. LANGER

Department of Mathematics, University of 8'isconsin, Madison, wisconsin

Part 1 gives a general discussion of asymptotic represen-

tations of the solutions of the one-dimensional wave

equation. The forms ordinarily used in the so-called

W. K. B. method are multiple valued and consequently
necessitate a consideration of the Stokes' phenomenon,
in any region about a turning point, i.e., a point in which

the kinetic energy changes sign. Except under restrictive

hypotheses they give no description of the solutions near

the turning points. The author's method for representing

the solutions of such differential equations by means of

single valued functions is discussed, and the formulas

applicable to the wave equation are given. These formulas

are usable over the whole of an interval which includes a
turning point. The Stokes' phenomenon is not involved.

It need be considered only if expressions of the older type
are desired, and then the connection formulas of the

W. K. B.method are immediately evolved. An appropriate

formal development of the solutions of the wave equation

as power series in h is given.

Part 2 deals with the radial wave equation for motion in

a central field of force. Both the attractive and repulsive
Coulomb field are considered. It is shown that the applica-
tion of the W. K. B. analysis to this equation as it has
generally been made is uncritical and in error. The solution
commonly identified thereby as the wave function is in

fact not the wave function. The "failure" of the W. K. B.
formulas, and the apparent necessity for modifying them
by replacing the number l(l+1) by (l+-', )', has been noted
by many investigators. This is traced to the misapplication
of the theory. When correctly applied the theory naturally
yields the formulas which have been found to be called for
on other grounds.

Finally the case is discussed in which a turning point
lies too near the point r =0 for the W. K. B. method to be
effectively applicable. It is shown how the solutions are
describable in this case, the formulas given specializing,
when the field is an attractive field and the energy is zero,
to formulas which were given for that special case by
Kramers.

PART 1. THE ONE-DIMENSIONAL

WAVE EQUATION

with

2'
Q'(x) = I &—l'(x) I

h'HE wave equation for a mechanical system
of one degree of freedom is familiarly of the

form
d'u/dx'+ Q'(x) u =0,

m, E and V(x) representing respectively the
(1) mass, the total energy and the potential energy,


