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The Helium Wave Equation*

T. H. GRONwALL**

Colnmbia University, ¹mYork, N. Y.

(Received February 3, 1937)

This paper represents an attempt to solve the equation V'P+(1/z)P, +(1/4r)(E —V)&=0,
which is the Gronwall form of the wave equation for helium Sstates. The equation V I+ (1/z)N,
=0 is separable in polar coordinates (r, p, q), and has solutions u I, =r' ~ sin~ pv, „t, (sin' p)e'~"
=r'~ ~m I,(p, q), where the v„,&'s are Jacobi polynomials, and the m I,'s form a complete orthog-
onal set of surface functions. The function p is expanded as P=PP~q(r&)w q, resu'lting in an

ma

infinite system of ordinary linear differential equations for the f I, s.

EDIToR s INTRoDUcTIoN

FTER persistent effort, the late T. H. Gronwall of Columbia University succeeded in putting
the wave equation for helium S states into a remarkably simple form. ' He then made an ex-

tensive study of the equation in order to learn something about the nature of the solutions. Many
calculations had been made when death intervened, and the notes were left behind in an unordered

state. Largely owing to the difficulty of arranging them, they were still unpublished in October, 1936,
when they came into my hands through the courtesy of Dr. F. Bohnenblust. They have since proved

very valuable for my own research, and so it is felt that the essential results should be published.
Those results which are to be used in the following paper have been checked, but the unused results,
such as the formulae for matrix elements in the Appendix, have not. (The derivation or verification is

easy but tedious, and is hence left to any reader who may be sufficiently concerned. ) For the sake of

clarity and brevity, I have made several insertions, which are indicated by enclosure within curly
brackets. Finally, it is a pleasure to express my appreciation of the opportunity to use freely the
unpublished work of Gronwall, and to thank Professor E. Hille for permission to publish it.

WAvE EQUATIoN

The wave equation for S states of the helium atom may be written' ' in the form

18$ 1(E 1 1
v'4+ ——+—

}
—+—,+

s cls r E4 [2(r+y)]t L2(r —y)]l 2Z(r x)'*i—
where 4x= r&'+r2' —rl2' ——2rlrg cos 0,

4y = r12 —r22,

4S=4Xarea Of 6 With SideS r1, r2, r12=2r1r2 Sin 0,
4r —4(x2+y2+s2) 2 —rt2+rs2

Here r1 and r2 refer to the electron-nucleus distances, 0 denotes the angle between the corresponding

radius vectors, and r12 denotes the interelectronic distance. Since the range of 0 is 0—0—vr, the domain

of x, y, and s is the upper half-space s —0. {It may be noted that tan 0 = (s/x), so that i) is the angle in

the xs plane from the x axis to the projection of the radius vector r upon this plane. Also, if we let
tx=tan ' (rs/rt), it follows that 2n is the angle from the y axis to the radius vector. For cos 2n

=2 cos' u —1; cos n= [rt/(rts+rss)'*]; and cos 2n= [(rts rss)/(rts+rss)]=(y/r). I—

Edited by J. H. Bartlett, Jr. , University of Illinois, Urbana, Illinois.
**Dr. T. H. Gronwall died May 9, 1932. This paper together with other manuscripts. was then transferred from the

physics department of Columbia University where this work was done to the care of Dr. E. Hille of Princeton University.
' T. H. Gronwall, Annals of Mathematics 33, 279 (1932).' The rational units of length and energy of Hylleraas are used. See Zeits. f. Physik 54, 347 (1929).
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The variational problem corresponding to Eq. (1) is

1(E 1
0"+So'+4.' {

———+ + {P s dx dy ds =0.
r i. 4 L2(r+y)]& L2(r —y)]' 2Z(r x—) t)

{In order that this problem have a meaning, the integral must exist. Such a requirement is sufficient
to exclude the so-called "second solutions" for hydrogen S states. ' We shall, therefore, adopt this as a
necessary boundary condition on the (univalent) function f, which will also be required to be of class
C', except perhaps on the (+x) and y axes, where 1t might conceivably become infinite. I

Introducing polar coordinates, with the s axis as the pole,

X= r COS Oo Sill p,
y=r Sill lo Sill p,
s=r cos p,

m ~oo o/o" 1 1 pg f~
oig, '+— lt ro+—PS' —{

—+—
{It

o s' ds sin P cos P dP d y =0,
o &o o s'sin'p s' &4 sl

where

f= L2 (I +sin lo sin P)] '+ L2 (I —sin oo sin P] & —(1/2Z) L1 —cos oo sin P] '*, and r =s'.

The corresponding differential equation is

0-+(5/s)4. + (4/s' »n' P)0 oo+(4/s') (As+2 cot 2PA) +{&+ (4f/s)]4 =o

Bhsrc ORvnocoNAI. FUNcrlows

To And an appropriate orthogonal system on the half-sphere, we consider the equation

u„+(5/s)u, + (4/s' sin' P)u„„+(4/s') (ups+2 cot 2Pup) =0.

Substituting

u =s'"—"
~ keg„,o(t) t =sin' p,

cos
sin

(2)

where m and k are integers, m~k —0, we 6nd

Now, writing g o(t) =to"v(m, k, t), the preceding equation gives

(4)

{This equation may be recognized as the hypergeometric equation in the usual form. I

The only solution of (4) which is finite both at t=0 and t= 1 is the Jacobi polynomial F(k —III, m+1,
k+1, t), m~k~0 (multiplied by a constant).

Now'

1

t toF(k —m, rit+1, k+ 1, t) F(k —rll', rlt'+1, k+1, t)dt
0

= (1/2m+ 1 —k) Li'(III —0+1)I'(0+1)/I'(rlo+ 1)]'6
The editor (J. H. B.) desires to thank Professor R. Courant for informing him of this.

4 This fo11oms from Jordan, Cours d'Analyse III, 242, Eq. (45, 46) upon making a= y=k+ I and n =m —k.
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We also have (Jordan' )

F(k —m, m+1, k+1, t) = [I'(0+1)/I'(m+1)]t "(d/dt)" "[i"(1—t) "' "].
Writing

v(m k t) =[r(m+ I)/r(k+1)r(m —kent)]F(k —m, m+ I, k+ I, t), 0 k —m—,

1

t~v m k t v m' k t dt = 1 2m 1 —k 5„„,„.

m—s (m+))!
v(ns k t) =[I/r(m —k+1)]t '(d/dt)" "[t"(1 t)'" ']—= p (—)" — -- — t"

v=o p!(k+))!(m—k —v)!
(6)

From (6)
v(m k 0) =[m!/k!(m —k)!],
v{m k 1) = (—)" ".,

v, (m k 0) = —[(m+1) !/(k+1) !(m—k —1) !],
v, (m k 1) = (—)"-"(m+1)(m —k).

EXPANSION IN TERMS OIi ORTHOGONAL I' UNCTIONS

The variational problem in terms of t may be written as

m 2n 1

)J f f L))t~)0'+)))~'00'+L4&() &)l~'IA' L()i/4)+(f/~) —jf'3~'&~d—~+=o.
0 0 0

/=Pc, „)P ),(s)g &(t) ~;„kp,
mk

(10)

where the cosines belong to the para terms and the sines to the ortho terms. In the following treat-
ment, we shall consider only the para terms.

Setting eI,
——2 for k =0, and eI, ——1 for k &0, we obtain

f

�2'
1

dy dt 1 4,'+ j. s2t „'+ 4t 1 —t s2

= P ~e„c„„c„,„dt[(1/4)4'„„4',„,,g„,„g„„)„r+(I/s. ')4„,A„,„I(.k'/t)g„, g„, g+4t(1 t)g' sg' zI]—
mm'tv 0

1

= Q ~c)c„).,c„.), t dt[(1/4))t'„),P'„.,g„pg„.),+{1/s')P )P„.)(2m —k)(2m+2 k)g )g )—]
mm'k

=Q (7re)tc'„),/2m+1 —k) [(1/4) (P' p) '+ (1/s') (2m —k) (2m+2 —k) P„)„.].

We have integrated by parts, used the differential equation for g„), and Eq. (5).
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The potential energy may be treated in like manner. Let us write

f

�2'
1

dy f dt's L{2(1+t*'sin p) } '*+ {2(1 t' sin—p) }
'*—(1/2Z) {1 t'* co—s q-} *]

0 &0
a(mkm'k')c kc .i.P„g&t„&, .

»A:m'Ic'

Then
2m' 1

a(mkm' k') = dp dt{ {2(1+t'*sin y) } **+ ]g ig„ i, cos kq cos k'q.
0 0

To simplify, we observe that, n being an integer,

2n. 2~

J
(1+t*' sin p) te'""dp=e'"~" ~f (1 t*' cos —

rp) te'"~d(p
0 60

and
2' 2'

1 —ts sin p 'e'"~dp=e"~"' 1 —t" cos p 2e' &dp
0 ~ 0

It follows that

a(mk, m'k') = (V2 cos ( ~

k —k'
~

x-/2) —(1/2Z)) I(mk m'k';
~
k k'

~

)—
+ (V2 cos ((k+k')7r/2) —(1/2Z))I(mk m'k'; k+k'),

where
2x 1

I(mk m'k'; n) =(1/2) dp f dt(1 tl cos p—) lg &,g i, cos np.
0 ~0

The variational problem is now, putting c'„i,= (2m+1 —k)/a~i„. ,

1 4 '»I, '+ 1 s' 2m —k 2ns 2 —k '»I, —E4
G(mk m k )&t'mill/~ p~cm&~c„, ~i, }sds =0.

»k m'k'

The corresponding Euler equations are, if we number the functions by setting n=-, m(m+1)+k,
and if we set A(mk m'k') = 2~c &c„ i, a(mk m'k'),

(1/4) (s'P„') ' —(2m —k) (2m+ 2 —k)s'P „+(8/4) s'&t „+P [A (nn') /27r]s4$ „=0.
n'

{This is an infinite system of ordinary linear differential equations of the second order. We should
like to find a solution which is finite everywhere. } Substitute p =s ' s'f (s), and let p=2( —Z)is,
obtaining

A (nn')
p'f "+(5 p —p') f ' —4(2m —k)(2m+2 k)f„(5/2) p—f„+P— pf„=0. —

~(—g) s

(The primes on f denote differentiation rs p.)

(12)

Let b(nn') =A(nn')/&r( —E)& and set f = Pc„&"&p"
v=0

(13)

The recursion formula is then

(&
—4m+2k) (v+ 4+4m —2k) c„&'&= (v+-', )c„&" '& —Pb„„.c„&"—'&

n'
(14)
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lGronwall attempted to cuto8theseries (13)by setting c„t"'= 0. He calculated 2 ~ for zz, zz'=0, 1, 2
and solved the equations (14) for z (—8) l. If this procedure were significant, then one might expect to
obtain three eigenvalues of helium in this manner. However, it is not clear which three they would
be, except that they would be of '5 type. If it be assumed that they are the three lowest, and if one
substitutes the experimentally observed values, then the resulting values of v do not agree with one
another. For this and other reasons, we therefore omit the reproduction of the calculations.

Gronwall also expanded the c„(")in factorial series of the form

and determined relations between the c„„'s.I

APPENDIX

1. Recursion formu1ae for the functions v(m 0 t)

tv(m, k, t) = —L(m+1) (m+1 —k)/(2m+1 —k) (2m+2 —k) jv(m+1, k, t)
+ I I 2m2+2m(1 —k}+k(k—1)j/(2m —k) (2m+2 —k) Iv(m k t)
—

I m(m —k)/(2m —k) (2m+1 —k) gv(m —1, k, t),
t(1 —t)v'(m, k, t) = L(m+1) (m —k) (m+1 —k)/(2m+1 —k) (2m+2 —k) )v(m+1, k, t)

—Lk(m+1)(m —k) j(2m —k)(2m+2 —k}gv(m k t)
—

I m(m+1)(m —k) j(2m —k)(2m+1 —k) gv(m —1, k, t),
tv'(m k t)+(m+1)v(m k t)+L(m+1)/(2m+2 —k) $v'(m 11, k, t) —P(m+1 —k)/(2m+2 —k) jv'(m k t) =0,

tv'(m k t) —(m —k)v(m k t) —
I m j(2m —k) gv'(m k t)+ I (m —k)/(2m —k}Qv'(m —1, k, t) =0,

v(m; k —1, t) = L(m+1) j(2m+2 —k) )v(m+1, k, t) —L(m+1 —k) j(2m+2 —k) jv(m k t),
tv(m, k+1, t) = —

I (m —k) j(2m —k) jv(m k t) +Lm/2m —k jv(m —1, k, t)
= C~v(m k t)+DI,v(m —1, k, t).

2. Expression for I(m, A m', 0', n) in terms of the v's

Integrate with respect to q.

(2~)!
(t Z& cos s) & =—g „'Z"zz cos" s,

=0 u. V.a2v

(17)
(18}
(19)

(20)

Consequently

2X P.
COS p4(p — $y zt I 2~,

0 2" 'p!(v —p)!

2m'

(1 Z& cos s) &e'"—"ds =gc Pzz+s

where

We have

so that

(2n+4p)!
2'"+'"p!(n+ p,) .'(n+2p, )!

+p —+p

c„(1+p) (n+ 1+IJ.)
C0 2'" n!n!'

where

This gives

zf (1 Z&—cos s) &s'"z'dz =t"—zzP„(t), -

(2n}! 2n+1 2n+3
F„(t)=— I', -, n+1, t

23" n!n! 4 ' 4

I(m k, m' k' n) = t("+I'+~')"7 (t)v(m k t)v(m' k' t)dt. (21)

For the problem at hand, we require the knowledge of I(m k, m' k'; zz) only for zz =0+k' and zz =
( k —k'

~
.
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3. Formula for I(m, A, 0, 0, k)

By (21), I(m, k, 0, 0, k) =f t"Fqv(m k t)dt

But t~F&= L16/(2k+1) (2k+3) 7[t~+'(1 —t) Fz'7' from the differential equation. Hence

(1/16) (2k+1) (2k+3)I(m k 0 0 k) f=v[tv+'(1 t) F—q']'dt

Integrate by parts and observe that

de
t~+«(1 —t) ~1/V2 as t~1

dt

and
k 1 k 3

F& r(k+1)/F —+— F —+— log (1—t) as t~1.
2 4 2 4

1 1 1

Then vent~+'(1 t) Ft,'—]'dt = (( )™"/v—2)+ F& tL"+'(1 t)v'(—m k t) ]'dt ((—=)~—t'/~2) —(m+1) (m —k)f tvFtv(m k t)dt.
0 0 0

Therefore,

4. Formula for I(m k 1 0 k)

I(m k 0 0 k) = L8VZ( —)~ ~7/(4m —2k+1)(4m —2k+3). (22)

1 1 1
I(m k 10 k) = t Fqv(m k t)v(1 0 t)dt= t~F~v(m k t)(1 —2t)dt=I(m k 0 0 t) —2 t~+«F~v(m k t)dt.

0 0 0

But tv(m k t) =Av(m+1, k t)+Bv(m k t)+ Cv(m —1, k t). (Cf. Eq. (15)) and hence

I(m k 1 0 k) = (1 —28)I(m k 0 0 t) +A I(m+ 1, k 0 0 t) +CI(m —1, k 0 0 t).

S. Formulae for I(m k, m' m', n)

First we may note that v(m' m' t) = 1.Then

1
I(m k m' m', k+m') = t~~'Fg, + v(m k t)dt.

(23)

Consider m'=1.
Then, applying formula (20)

tFg, +«
——(4kF/, —(2k —1)Fp «}/(2k+1).

1 I 1
1"+'Fq+~v(m k t)dt= (4k/2k+1) t"Fqv(m k t)dt L(2k —1)/(2k. +—1)]ft" 'Fq ~tv(m k t)dt

= [4k/(2k+1)]I(m k 0 0 k) —L'(2k —1)/(2k+1)]ft& 'Fj.-iL Ct,. iv(m, k —1. , t)+It t, iv(m 1, k —1,—t) ]dt

and

I(m k, 1 1. k+1) =(4k/2k+1)I(m k 0 0 k) —P(2k —1)/(2k+1)7[CD «I(m, k —1, 0 0, k —1)
+Dq «I(m —1, k —1, 0 0 k —1)7, (24)

I(m m, m' m', m+m') =8%2/(2n+1)(2n+3), n, =m+m'.

If I(m m, m' m', m —m') = J(m', sz), n =m —m', then

2n+1, 2n+3m'+ m'+ J(m', n) = (1/V2)+m'(m'+n) J(m' —1, n),
4

so that the successive J's may be found. In particular,

J(0, n) = 8v2/(2n+ 1)(2n+3),
J(1, n) =

l 16/(2n+5) (2n+7) 7 ( (1/V2)+16(n 11)/V2(2n+1) (2n 13)}.
0. Recursion formula for I(m k m' A' n)

One may derive the following:

(2n+1)/2m+1 —k) [(m+1)I(m+1, k+1, m', k', n+1) —(m —k)I(n, k+1, m', k', @+1)7
=4nI(m, k, m', k', n)
—

{ (2n —1)/(2m+1 —k) 71 mI(m —1, k —1, m', k', n —1)—(m —k+1)I(m, k —1, m', k', n —1)7.

(25)

(26)

(27)

(28)

(29)

{Gronwall actually computed only the first few I' s. It might be useful to know their asymptotic properties in general

(for large values of the indices) for the solution of the system (12).}


